
Kubernetes Trouble Cheat Sheet Best Practices - Low hanging fruits

Most helpful debugging commands
Onboard new cluster
Set multiple kubeconfig files export KUBECONFIG=~/.kube/conf1:~/.kube/conf2:~/.kube/conf3
Merge multiple kubeconfig into one file export KUBECONFIG=xxx kubectl config view --flatten > ~/.kube/merged-config
Set user credentials kubectl config set-credentials <user-name>
Display current kubeconfig kubectl config view
List contexts, find the new cluster kubectl config get-contexts
Switch to a specific context kubectl config use-context <cluster name>
Check connection and Versions kubectl version // outdated?
Show Cluster Info kubectl cluster-info
What namespaces can I access kubectl get namespaces
Set default namespace kubectl config set-context --current --namespace=production

Let's look for trouble
Show recent events kubectl get events -A --sort-by=.metadata.creationTimestamp
Show node status & version kubectl get nodes -o wide // all nodes ready?
Show node resource usage kubectl top nodes // is a node super busy?
Show node details kubectl describe node <node_name>
Show restarting pods kubectl get pods -o wide -A --sort-by='.status.containerStatuses[0].restartCount'
Show busy pods kubectl top pods --all-namespaces --sort-by=cpu
Logs from all pods with label kubectl logs --tail=500 -l app=xxxx -f // use with | grep to filter

Turn it off and on again
Redeploy all pods of a deployment kubectl rollout restart deployment/myapp
Rescale deployments kubectl scale --current-replicas=2 --replicas=3 deployment/mysql
Delete stuck pods kubectl delete pod unwanted --now

We need to dig deeper
Launch a debug container kubectl debug -it --container=debugger --image=alpine --target=namespace pod
Forward a port to debug against kubectl port-forward <pod name> <portliste>:<portforwar>
Execute a command in a pod kubectl exec -it <pod-name> -- /bin/bash
Copy files over from pod to local kubectl cp <pod-name>:<path-to-file> <path-to-local-file> -c <container-name>
Copy files over from local to pod kubectl cp <path-to-local-file> <pod-name>:<path-to-file>

A node in trouble
Mark node as unschedulable kubectl cordon node <node_name>
Mark node as schedulable kubectl uncordon node <node_name>
Evict all pods from a node kubectl drain node <node_name>
Apply a taint to a node kubectl taint node <node_name>
Add or modify annotations of a node kubectl annotate node <node_name>

1. Use namespaces 2. Use declarative configuration with GitOps

Use a namespace for each logical partition to enable
better access control with RBAC, apply network policies,
prioritize computation resources with Resource Quotas,
and simplify administration tasks.

No direct edits with kubectl beyond troubleshooting! Use
$ kubectl apply -f my-conf.yaml and make changes through
YAML configurations to ensure reproducible deployments. Store
these in version control. Even better: use a CI/CD pipeline to
apply changes and give developers read-only permissions.

3. Use readiness and liveness probes 4. Don't run as root & immutable pods

Without a readiness probe, a container will receive
traffic right after launch, even if it might not be ready.
Liveness probes check if the app is still alive and restart
the container if it is not.

spec.containers:
 livenessProbe:
 httpGet:
 path: /healthcheck
 port: 8000
 readinessProbe:
 httpGet:
 path: /healthcheck
 port: 8000

Don’t use the local filesystem to store state—containers should
be stateless. Make pods immutable with
‘readOnlyRootFilesystem’ and use ‘emptyDir’ volumes if file
system writes are necessary. Don’t run processes with root
privileges and block privilege escalation. This will significantly
reduce the attack surface.

spec.containers:
 securityContext:
 allowPrivilegeEscalation: false
 privileged: false
 readOnlyRootFilesystem: true
 runAsGroup: 101
 runAsUser: 101

5. Reduce containers size
and update base image regularly

6. Containers should crash on error

Aim for small container images! This accelerates builds
and deployments and significantly reduces the attack
surface. Alpine is a good starting point for most
applications. Make sure to keep the base image up to
date.

Don’t handle errors or exceptions inside the containers. Instead,
let them crash and exit. This allows kubelet to restart the
service and provides better observability of app states at a
cluster level. Exception: don’t crash if a dependency (e.g., a
database) isn’t ready; retry instead to avoid a
CrashLoopBackOff.

7. Use resource requests and limits 8. Spread pods with affinity

Don't let a single process block or OOM a node.
Use cpu requests and memory requests and limits.
Don't use limit cpu. KRR (Kubernetes Resource
Recommender) is a great tool to help setting good limits.
Containers without limits are treated as low priority and
will be evicted first in case of scarce resources.

spec.containers.resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"

Pods of a specific app should not be grouped on one node; if
that node fails, the entire app could go down. Add an affinity
rule to distribute the pods across multiple nodes using a
suitable label.

spec.topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: kubernetes.io/hostname
 whenUnsatisfiable: ScheduleAnyway
 labelSelector:
 matchLabels:
 app: "my-app"

7. Use Pod disruption budgets 8. Have a plan for secrets

Busy services may need to maintain a certain number of
pods. To protect a service from unexpected events that
could take down several pods simultaneously, define a
Pod Disruption Budget.

spec:
 minAvailable: 50%

Obviously, you shouldn’t have clear text secrets in git. Not
having a storage solution violates rule #2. A simple approach is
to use sealed-secrets. This will encrypt secrets with a known
public key, allowing you to commit secrets to git. Even better,
use an external service to manage your secrets in a vault.

Sven.Eliasson@gmail.com Fullstack / DevOps - Kubernetes / Clickhouse 18.05.2024, 1.0

mailto:Sven.Eliasson@gmail.com

