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Survey: Statistical Insight
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From the histogram, determine whether blue or orange represents the
mean/median
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Given these boxplots, which of two underlying distributions are more similar?

75t percentile_:

median
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Which plot highlights more (statistical) evidence for a change in the
population means (between orange and blue)?
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In your view, what best describes the associations shown in the plot of 'x’
and'y' 7
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Which plot highlights more (statistical) evidence for a change in the
population means (between orange and blue)?
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Of these equations, which one resembles the standard two sample t-test 7

1 (P1 — P2)
V’"ﬁ(l — ﬁ)(% + %)

2 i (observed — expected)?

expected
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Outline

e Motivation: nowadays we are inundated with data, such as
microarrays, seqguencing, cytometry, imaging —> modern biologists
need to be data-savvy (data science, statistics, computation)

e Fundamental statistical concepts: central limit theorem, false
positives / false negatives, P-values, multiple testing, exploratory
data analysis, regression, clustering, dimension reduction,
reproducibillity, ...

e Data science / programming: BIO 134, BIO 144, (BIO 334, STA 420)

9
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Critical skills needed by statisticians (Jeffrey Leek’s words):

With all the excitement going on around statistics, there is also increasing diversity. It is
increasingly hard to define “statistician” since the definition ranges from very
mathematical to very applied. An obvious question is: what are the most critical skills

needed by statisticians?

So just for fun, I made up my list of the top 5 most critical skills for a statistician by my

own definition. They are by necessity very general (I only gave myself 5). Modern biologists

1. The ability to manipulate/organize/work with data on computers - whether
it is with excel, R, SAS, or Stata, to be a statistician you have to be able to work with — @
data.
2. A knowledge of exploratory data analysis - how to make plots, how to discover @ @
patterns with visualizations, how to explore assumptions
3. Scientific/contextual knowledge - at least enough to be able to abstract and @ @ @
formulate problems. This is what separates statisticians from mathematicians.
4. Skills to distinguish true from false patterns - whether with p-values, posterior enoug h knowled ge

probabilities, meaningful summary statistics, cross-validation or any other means. to understand
5. The ability to communicate results to people without math skills - a key ]
component of being a statistician is knowing how to explain math/plots/analyses. caveats of analySIS



‘echnologies
IN My research area

microarray, high-throughput sequencing, single cell, cytometry, etc.

“It's just data”
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Microarray fundamentals: Nature gives a complementary pairing

e i
v, D
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DNA:DNA / \

probe target
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DNA microarray: parallel northern blots; Nature gives a
complementary pairing

Abundance (of

complementary DNA
species) measured by
flouresence intensity

13
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Gene Expression Profiling: questions of interest

« What genes have changed in expression? (e.g. between disease/normal,
affected by treatment)
Gene discovery, differential expression

* Is a specified group of genes all up-regulated in a particular condition”
Gene set differential expression

» (Can the expression profile predict outcome?
Class prediction, classification

* Are there tumour sub-types not previously identified” Do my genes group
into previously undiscovered pathways?
Class discovery, clustering

14



. . “To consult the statistician after an experiment is
University of finished is often merely to ask [them] to conduct a
Zurich™ post mortem examination. [They] can perhaps say

what the experiment died of.” R. A. Fisher
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Motivation for exploratory data analysis: Case Study

(from Stefano, a former M.Sc. student in my Institute)

He is studying gene expression in fruitfly and is interested in transcriptional responses following “heat
shock”.

Basic schematic of experiment:

CTL t0 t12
TRT t4 t12 t24 {72

t

Change to lower
temperature.

~4 replicates for each condition

15
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library(limma)
plotMDS(d) # °‘d’ 1is a matrix

"Plot samples on a two-dimensional scatterplot so that
distances on the plot approximate the typical log2 fold

Take a close look at where the 24 samples are to each other relative
to the X- and Y-axes
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Magic: Surrogate variable analysis to detect and “remove” batch effects

t72_R3
. t72_R1
S t727R4R2
L] cestmbRaE
° t0_R3
co ntrﬁj t|1_.{2rR4
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2
OPEN @ ACCESS Freely available online PLoS t%—Fﬁ
Capturing Heterogeneity in Gene Expression g -
Studies by Surrogate Variable Analysis )
Jeffrey T. Leek', John D. Storeym“
1 Department of Biostatistics, University of Washington, Seattle, Washington, United States of America, 2 Department of Genome Sciences, University of Washington, Seattle,
Washington, United States of America <« 1 t1 217382
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High-throughput sequencing (Solexa) lllumina

https://www.statnews.com/2017/01/09/illumina-ushering-in-the-100-genome/

Cost per Human Genome STAT+

Illumina says it can deliver a $100 genome
— soon

By MEGHANA KESHAVAN @megkesh / JANUARY 9, 2017

$100,000,000

$10,000,000

Moore’s Law

$1,000,000

$100,000

$10,000

N I H National Human Genome
Research Institute

0 A T Sept 29th 2022 - NovaSeq X Series, unveiled earlier
$‘°°zm today, ushers in the era of the genome with revolutionary
new production-scale sequencers .. can generate more
than 20,000 whole genomes per year — 2.5 times the
throughput of prior sequencers — greatly accelerating
genomic discovery and clinical insights, to understand
disease and ultimately transform patient lives.is
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University of Many assays based on sequencing DNA:
Zurich*™ https://liorpachter.wordpress.com/seq/

Department of Molecular Life Sciences

lllumina Sequencing Technology

DNA
(0.1-1.0 ug) il
I | |
| By ]
i I . I
oo b WS
- 1R >
| b p 0 :
= D I
Sample
preparation Cluster growth

Image acquisition Base calling

This slide courtesy of Gary Schroth, lllumina


https://liorpachter.wordpress.com/seq/

University of
Zurich™

Statistical Bioinformatics // Department of Molecular Life Sciences

Applications of high-throughput sequencing

Student portal n Contact en

m Z U r I Ch gl:l :l\::ehlz’f"lty of Alumni association

Keyword or person Q
B-Fabric

Departments v

Functional Genomics Center Zurich

About us Working with us OMICS areas Education Research & FAQ | News & Events
Publications

Cancer Research Microbiology Research

From environmental
metagenomics studies to
infectious disease surveillance
and more, NGS-based
sequencing can help

NGS-based sequencing
enables cancer researchers to
detect rare somatic variants,
tumor subclones, and
circulating DNA fragments.

ETH Zurich UZH FGCZ

Learn more about sequencing researchers gain genetic insight R = = H H
for cancer research. into bacteria and viruses. Learn Services Genomlcs,Transcrl ptomlcs serVIces
more about microbial . . . . . . . . . . . I . . .
genomics Proteomics/Protein analysis services All services in Genomics/Transcripomics require a project submission via B-Fabric, our project manage-
) i i ment system.
Genomics/Transcriptomics
services If you have specific questions about our Genomics/Transcripomics services please refer to our FAQ
section; alternatively, or in case you would like to request a quote,please do not hesitate to get in touch

Complex Disease Research Reproductive and Genetic Health Metabolomics/Biophysics services - ; .
with our sequencig team at sequencing@fgcz.ethz.ch

lllumina sequencing is
introducing new avenues for

lllumina sequencing and array

r Lab A
technologies deliver fast, User Lab Access

understanding immunological, accurate information that can Collaboration Application Group Application Order via B-Fabric

neurological, and other guide choices along the

complex disorders on a reproductive and genetic health EGCZ Policies DNA sequencing Whole Exome Sequencing Project

molecular level. Learn more journey. Find reproductive and i i ) )

about complex disease genetic health solutions. Job Offers DNA sequencing Methylation Profiling Project

genomics. DNA sequencin ChIP-Se Project

FGCZ Terms and Conditions a N 9 !

DNA sequencing Targeted Sequencing and Metagenomics Project
DNA sequencing De novo Genome Assembly Project
DNA sequencing Whole Genome Resequencing Project
RNA sequencing Transcriptome Profiling Project
RNA sequencing Small RNA Profiling Project
RNA sequencing De novo Transcriptome Assembly Project

20



Abundance by Counting
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@ @ Select cell
@ @ population

Extract total RNA

AAAAA proseeesenes] 2 4
b AAAAA mRNA T » ‘ RIN

Small RNA

Quality control

Abundance by
Fluorescence Intensity
(DNA microarray)

Poly(A) select
‘ribosome minus’

Size-select by
PAGE or by kit

http://en.wikipedia.org/wiki/DNA_microarray

S Recovered
-\ St n o RNA amount
Cancer Cells Normal Cells X Small RNA . /1 feeemenneas v | o measurement
AAAAA AAAAA
Ligate RNA adapter
Fragment 1
e —— Agilent
L — —_— E— bioanalyzer
or RNA gel
RNA Isolation I Convert to cDNA
v v cDNA LA QPCR
l Construct library
Reverse
Transcrlptase _—= pe—— N 1 Agllent
l Labeling l l : "1 bioanalyzer
BES cDNA Sequence
“"Red Flourescent"” Probes “Green Fluorescent” Probes
Quantitation New transcript Variant mining
Combine Targets = discovery
- " —_—T —_—A—
Hybridize to - - —— —C— - —
Microarray Map reads onto - — —C— —G—
the genome l — —_—T— —G—
T -—T— —_—A—
-
[ [ — —— — —C- —G-
— - — - S
C A
Calculate RPKM l l l l
— -
— oo/ SNP RNA
— I —— iti
2 RPKM 1 RPKM 1 RPKM editing
T — — — —

Zeng & Mortazavi, Nature Immunology, 2012



https://nanoporetech.com/applications/dna-nanopore-sequencing

ONT (Oxford Nanopore)

C' @ Secure | https://store.nanoporetech.com/cdna-and-direct-rna/ | P
TTATGTTTGGTGCTATTGCTGGCGGTATTGCTTCTGCTCTTGCTG(C

\ FH

il n”

DEVICES KITS FLOW CELLS BUNDLES TRAINING & SERVICES

MiN ‘ﬂm‘t‘u'
LU | U“JLJ '

Direct RNA PCR cDNA PCR-free cDNA

Sequence RNA molecules directly and Optimised for throughput No PCR bias
. preserve base modifications
A 5 & il | 3t 0 A A L e Up to 10 million reads Up to 5 million reads

Up to 1 million reads

—> attachment of processive enzyme, leads RNA/DNA
fragment to pore, combination of nucleotides going
through pore creates a “characteristic disruption of the
electrical current” —> order of signals can be used to
determine the sequence of bases on that single strand.


https://nanoporetech.com/applications/dna-nanopore-sequencing

https://nanoporetech.com/applications/dna-nanopore-sequencing

ONT (Oxford Nanopore

Raw Data straight of ASIC
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Quick look at reads in a browser
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But mRNAs (or & O
corresponding cDNAs) are JEE S semeraton
short —> concatenate them. AT Az onas oo
MAS-Seq
E library preparation

MAS = Multiplexed Arrays D
% PacBio sequencing

q g m— —
cONA1  cDNA2  cDNA3  cDNA4
ﬂl\,{l Read segmentation +
MN@!  single-cell isoform analysis
1, = 0.5-5 kbp 1, ; ~ 0.5-5 kbp
CONA; poly-A 10x|My M. _4[TSO cDNA,_; poly-A 10x

Mn
|
(.

Figure 2. MAS-Seq for single-cell isoform sequencing. Single-cell
cDNA molecules are concatenated into a larger insert library and

A|’Khafajl et al., 2023 sequenced, then processed using the PacBio software.




Bulk vs single-cell RNA-sequencing

Cell sorting, tissue
dissociation

RNA extraction,
preparation of cDNA,
cell barcoding, UMIs

(sScRNA-seq only)

sequencing

Images modified from and https://commons.wikimedia.org/wiki/File:Innate_Immune_cells.svg


https://www.flickr.com/photos/konradfoerstner/21264667663

Diversity of (single cell) data types: sequencing

Point mutation

REVIEW ARTICLE Open Access
CNV

M&T—seq Single-cell sequencing techniques from individual
pigenome . .
DNA methylation —cCAT-s59 to multiomics analyses

Paired-seq
SNARE-seq

4 G&T-seq N
'\X;t?R-seg /

Chromatin accessibility

Yukie Kashima'?, Yoshitaka Sakamoto', Keiya Kaneko', Masahide Seki', Yutaka Suzuki' and Ayako Suzuki'

Transcriptome
T-ATAC-seq

\._ REAP-seq | ——
~———— 7~ Slide-seq ™\ - .
Proteome \_ ST _ Spatial information

Cell surface protein

Fig. 3 Multilayered single-cell sequencing. Representative single-
cell multimodal sequencing methods. Genomic, epigenomic, and
proteomic information can be simultaneously profiled with the
transcriptome. Spatial information for a tissue section can also be
obtained with gene expression data at the level of one to tens of cells.
ST spatial transcriptomics (Visium).

[rpp— ——
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Statistical Bioinformatics // Depar

Motivation: Single-cell RNA-seq: fingihg cell subpopulation-specific
changes in state

frontal cortex

single nuclei RNA-seq
(10x)

Data from:
4 mice vehicle treated
4 mice LPS treated

Each dot is one cell

5000 genes -> 2D
“embedding” /
“projection”.
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Addition of
Flow cytometry // Peripheral Y&% e
Y
_(
R
_ \ . ﬂ m

Alignment of cells in

/ single file
1

7
=

Cell Cultures

0 mx ‘;‘Sa 200K 20 S Collection tubes

Figure 1. Schematic representation of a flow cytometer. For details please see text. (1) Forward-scatter detector, (2) side-scatter detector, (3) fluorescence
detector, (4) filters and mirrors, and (5) charged deflection plates.

Jahan-Tigh et al., Journal of Investigative Dermatology, 2012 29
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Mass cytometry

__ ’ Nebulize Single-Cell Droplets [
3&\‘&\ >\\>\\ ;’\ ‘{ _. Aot b« L Ce" 1
Ng - SR S R —
- ’ EF e TR A
Antibodies A ' L

Labeled with e " Y >
B ICP-MS Cell 2
Elemental Isotopes .
P "‘/L Y Elemental Analysis I
Mass Cytometer Cell 3
Cytobank.org
M )
Mass
2D Plots Expression & SPADE Analysis Upload Element
N Fold-Change A .FCS ABCD...J Integrate
. : Files Cell 1 3,8,9,7...8 Signal
S | e . Cell 2 1,8,6,5...4 | €
© A Cell 3 9,9,4,5...7

Isotope A

Bendall et al. (2011), Fig. 1A
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Finding molecular biomarkers associated with drug response

A Workflow
1. Melanoma Patients 2. Surface stain or 3. Single cell mass cytometry 4. Algorithm guided 5. Biomarker
restimulation ) analysis discovery
) and live barcoding

T ¢

Healthy donors HD, N=10

High-dimensional single-cell analysis predicts response
to anti-PD-1 immunotherapy

Carsten Kriegl© , Malgorzata Nowicka??3, Silvia Guglietta?, Sabrina Schindler?, Felix ] Hartmann!©,
Lukas M Weber23® , Reinhard Dummer?, Mark D Robinson?3© , Mitchell P Levesque®’® & Burkhard Becher!7
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Differential abundance of cell populations

tSNE projection
(each dot = caell,
cells from multiple
patients)

NR: non-responders
R: responders

Under the hood: Generalized linear mixed model to

assess the change in relative abundance of
subpopulations.

32



ulk to single-cell RNA-seq to Ime
o-based spatially resolved transe

Slide from
Helena Crowell

sequencing-based

* molecule-level data

* targeted panel (100s of features)
spatial * single-cell resolution requires
segmentation

* spot-level data
* whole transcriptome (10,000s of features)
* single-cell resolutions requires

aggregation or deconvolution
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Some of the statistical fundamentals that underpin much of our research ..
and our discoveries (.. but also underpin analyses that you may do in the
future)

— central limit theorem

— false positives / false negatives (error control)

— statistical tests, multiple testing, P-values

— sharing information (limma)

— clustering

— exploratory data analysis, e.g., dimensionality reduction

34



Central limit theorem
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Central limit theorem

The short non-technical version: once you start taking sums (averages), sampling distributions

of the mean converge to the Gaussian (normal) bell shaped curve as the sample size increases.

Population distribution
Normal Skewed Uniform Irregular

éamplihg distribution 6f sample méan

A i
oo ik F %
.y i A

Figure 3 | The distribution of sample means from most distributions will be
approximately normally distributed. Shown are sampling distributions of
sample means for 10,000 samples for indicated sample sizes drawn from four
different distributions. Mean and s.d. are indicated as in Figure 1.

If time, demonstrate this in R.

36



false positives, false negatives,
multiple testing, P-values
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Statistical Bioinformatics // Department of I\/Ioleculf It,S tlme to talk abOU_t dltChlng Statistical
Hypothesis testing significance

Looking beyond a much used and abused measure would make science harder, but better.

¢ Method of making a decision

e |s this result “statistically significant'? ("Is my finding likely to occur by
chance?")

e (Controversial)

e Statistical significance != Biological significance “Researchers should seek to analyse data in
multiple ways to see whether different analyses

. . . . converge on the same answer.”
Operationally, it works (something) like: J

— Define "null hypothesis" (usually some kind of baseline setting)
— Define alternative: non-null

— Calculate test statistics (e.g. where the sampling distribution under the null is
known) and/or P-value

— If P-value < some (magic) cutoff, decide to reject the null hypothesis in favour

of the alternative; otherwise, accept the null hypothesis ”
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NHST (Null hypothesis statistical testing): Hypothetical example

Say we wanted to know whether ETHZ students are scoring better or worse in a
particular course than UZH students. First, we take a random sample from each
population.

Null hypothesis: population mean of ETHZ scores = population mean of UZH scores
Alternative: means are different

Critical point: Assume that null hypothesis is true (i.e., means are equal), calculate a
test statistic that we know the distribution of (under the null). Calculate the probability
of observing something as or more extreme than our test statistic.

We'll use a t-statistic.

39
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There are some variations of the t-test, but let us assume that the variances

are equal

e °

°
° ° ® o
®
pr——— <
°
I I I I I I I I
0 5 10 15 20 25 30 35

X Xo
.S_\’l_\‘) V‘ nl _I_ n_,)
'(nl —1)s3 s, + (n2 — 1)5
SxiXo = 1/
i I ny 4+ ny — 2
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BIOMETRIKA.
Where does the t-test come from?

THE PROBABLE ERROR OF A MEAN.

By STUDENT.

If the number of experiments be very large, we may have precise information
as to the value of the mean, but if our sample be small, we have two sources of
uncertainty :—(1) owing to the “error of random sampling ” the mean of our series
of experiments deviates more or less widely from the mean of the population, and
(2) the sample is not sufficiently large to determine what is the law of distribution
of individuals. It is usual, however, to assume a normal distribution, because, in
a very large number of cases, this gives an approximation so close that a small
sample will give no real information as to the manner in which the population
deviates from normality: since some law of distribution must be assumed it is
better to work with a curve whose area and ordinates are tabled, and whose
properties are well known. This assumption is accordingly made in the present
paper, so that its conclusions are not strictly applicable to populations known not
to be normally distributed; yet it appears probable that the deviation from
normality must be very extreme to lead to serious error. We are concerned here
solely with the first of these two sources of uncertainty.

41
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OK, but mathematically, where does the t-distribution come from?

N
Z:(X"_“)T - Z _ Jn
T = — (Xn ll') ;
V/l/ Sn
S2
V=(n- 1)0—721

Clever discovery by William Gosset (i.e. “Student”)
The variance parameter cancels out —> straightforward extension to the 2-sample
problem.
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- Arthur Charpentier @ < Eollow > 9

v @freakonometrics

. Statistical Errors
False positives /

~~ ~~

false negatives YV —0 Y =1

NEGATIVE POSITIVE

Y=0

NOT PREGNANT

Most statistical testing
regimes set an error rate (5%)

Type | error = false positive
Type Il error = false negative

Y=1]

PREGNANT

https://twitter.com/freakonometrics/status/779060142239260672
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imma (sharing information)
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Differential expression, small sample inference

« Table of data (e.g., microarray gene expression data with replicates of each of condition A,
condition B)
- rows = features (e.g., genes), columns = experimental units (samples)
« Most common problem in statistical bioinformatics: want to infer whether there is a change in
the response - a statistical test for each row of the table.

> head(y)

genel -0.
gene2 -3
gene3 -0.
gene4 -2
gene5 -3.
gene6 1

group0
1874854

.5418798

1226303

.3394536

7978820

.4627078

group0

.2584037
.4540999
. 9354707
.3495697
.4545702
.3096070

group0

.05550717
.11750996
.10537767
.47742610
.14796503
.26230124

groupl

.4617966
.3270442
.1037990
.2287093
.0500796
.7903434

-0.
"'50
0

6.
4.
0.

groupl
3563024
3462622

.5221678

1376670
7235714
8398769

groupl

.03271432
.54049106
.72360854
.23871974
.00033769
.96822312

[1] http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html
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A very common experiment: microarray or RNA sequencing

Mutant x 2 WT x 2

Which genes are differentially expressed?

n, = n, = 2 Affymetrix arrays

~30,000 probe-sets
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In genomics, there is often a multiple testing problem

— You often make multiple tests (e.g., for every gene). Say, you set your
cutoft such that you had a 5% false positive rate.

— In doing 20,000 tests (for 20,000 genes), ~1000 would be rejected just by
chance.

— There are various ways to "correct’ for multiple testing. Two popular ones
Include:

1. False discovery rate (weak)
2. Bonferroni correction (strong)
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Classical 2-sample t-tests

ymu o ywt

SgC

give very high false discovery rates

C = | Residual df = 2
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t-tests with common variance (pooled over all genes measured)

ymu B ywt
S, C

g.pooled

with residual standard deviation SO pooled

dCross genes

More stable, but ignores gene-specific variability
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A better compromise: moderate between
Shrink standard deviations towards common value

9 d,s; + d,s

S
’ dy +d,

2
g

|

Moderated t-statistics

~+
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freedom
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Exact distribution for moderated t

An unexpected piece of mathematics shows that, under the
null hypothesis,

~

by~ v

The degrees of freedom add.

In effect, the moderated variance adds d, extra samples to
the analysis, thus increasing the statistical power.

Smyth 2004
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Hierarchical (Agglomerative) Clustering

Divisive (all features start as 1
cluster, then subsequently
split) versus Agglomerative
(every feature is it's own
cluster, then subsequently
merged)

Metric: to define how similar
any two vectors are.

Linkage: determines how
clusters are merged into a tree

Height

1.0 1.5 20 25 3.0 35|40

Cluster Dendrogram

g
]
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http://en.wikipedia.org/wiki/Euclidean distance
University of Euclidean distance: P R

Zurich™ d(p,q) = d(a,p) = V(@ —P)2 + (@2 — P22+ -+ (@ — Pa)2 =

Statistical Bioinformatics // Department of Molecular Life Sciences

Are these “vectors” similar ? > sqrt(sum((x-(y-12))72))

[1] 3.926007
> sqrt(sum((x-y)”"2))
[1] 84.84028

It depends how you define similar.

0 10 20 30 40 50 0 10 20 30 40 50

Euclidean distance: 84.84 3.92
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http://en.wikipedia.org/wiki/Correlation_and_dependence

Tay =

Are these “vectors” similar ?

It depends how you define similar.

5 (2 — &) (4 — §) S (2 — 2) (% — 7)

i=1 i=1

— 1 = f n n !
(7= oty S - £ -2

=1

> cor(x,y)

[1] 0.8901139
> cor(x,y-12)
[1] ©0.8901139

e R P P |

° °
) e © ® o ©
4 .o * * .o ¢
© o0 o8 + 'Y . o8
°
0 : ° .... ® PY . : ® .... ® PY
® o® o ¢ ° e® o ¢
° °
. ' s °,
- [ .... N7 [ ’...
° °
° °
o ° - °
[ ) [ [ J [ )
~{ @ ol ®
| . s . 5 | . s . 5
Correlation: 0.89 0.89
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Hierarchical (Agglomerative) Clustering §-

Start with distances.

Linkage: determines how clusters are merged into a tree.

- From eyeballing, here is a likely set of
merges:
© ®a
b,c
0 - o g d,e
a,g,
¥ (d,e),f
7 (b,c).((d,e).f)
. ALL
~ e b e 0
o f
- o C e €
0 | 2 ) ‘ 5
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Different linkages AR
Cluster Dendrogram Cluster Dendrogram
S _
@ o |
i
o} 0 ]
o (s}
o |
(e}
o
T o ] T © |
Rey o o
T £ o |
i [ -
0
e e - i |
- I mTe o [ ]
o] o © o o] o © 0]
d d
hclust (*, "single") hclust (*, "average")

57



dimension reduction
(exploratory data analysis)



Dimension reduction: general introduction

® Many types of data come as a matrix of N samples (e.g.,
cells, patients) x G features (e.g., genes, proteins)

® Fach sample is a point in G-dimensional space

® Goal: represent the data in 2-3 dimensions, but preserve
structure as best as possible (i.e., points that are close in
G dimensions should be close in 2 or 3 dimensions)
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Dimension reduction Is versatile

K features x N cells —>
2 dimensions x N cells

r- ‘.\
2o
ﬁ*'
201 o c. 4.
o~..
10 @0
o o
% & .2
- 0+ - . 3
° o‘ \3of 4
-104 A
.‘k.. ‘ ‘:~
-204
20 0 20
tSNE_1
T — T

Each point =
single cell
(10x PBMC)

N cells x K features —> N cell
subpopulations x 2 dimensions

group_id

b o

A rs

cluster_id

. Astrocytes
Endothelial

‘ . Microglia

@ orc
A @ CPEcels

MDSH1

Each point =
subpopulation from a

A Oligodendrocytes

@ Excit. Neuron
A Inhib. Neuron

MDS2

P samples x K features —>

P samples x 2 dimensions

single sample (| ps mouse cortex)

(SRR1039520]
(SRR1039508
SRR1039512)
condition
SRR1039! 5 trt
R1039516] 0 -
1039
SRR1
T 0 i
MDS1
Each point =
sample
[airway)



Introduction to dimension reduction:
PCA (principal components analysis)

® Form successive linear combinations of

the features that are: orthogonal, ordered  ,

by variance ~
Y =XA -
Yrk = A1kTr1 T A2k T2 + ++ + ApkLrp > o —

® A is the loadings matrix

® Typically, first 2-3 columns ('principal =

components’) of Y are retained for 2 1 0 1 2
visualisation; often top P PCs are retained
for other analyses (e.qg., clustering)

https://strata.uga.edu/software/pdf/pcaTutorial.pdf



https://strata.uga.edu/software/pdf/pcaTutorial.pdf

Many variations
(linear/non-
inear), many
notions of
distance, many
ways to
‘compress’

MDS on class means PCA

© el
Cadal
s
[ ] R,
- l.." .

KNN: 0.00
KNC: 1.00
CPD: 0.85
e
Perplexity n/100 PCA initialisation
KNN: 0.04 KNN: 0.13
KNC: 0.68 : KNC: 0.70
CPD: 0.73 CPD: 0.62

¢ Default t-SNE
(perpexity 30, random init., # = 200)

KNN: 0.13
KNC: 0.23
CPD: 0.51

f

Multi-scale, PCA initialisation,
high learning rate (n = n/12)

KNN: 0.11
KNC: 0.82
CPD: 0.74

Kobak et al. 2019
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Another data example .. a regression model to separate
interesting signal (gene expression) from technical effects
(probes)
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18 kb

I 1
168960000)| 168965000)| 168970006)| 168975006)|
1 1 HUEF-?POlblelsl m n 1
) 1 1

1 i
'
HuGene-probqs
[

'
Chromosome Bands Localized by FISH Mapping Clones
. Chromosome Band 1ig24.2

RefSeq Genes
PREX1 <l
PREX1 <+l }

| L
Ensemb1 Gene Fredictions

ENSTB888023346 1 [B99qY | }
| ENSTe88883677660 <k

11 = S = = reeh

HuGene data [red-heart,blue-brain,mixtures] 10 ENSG00000116132

12

10

e Data for one gene that is differentially expressed between heart (red is 100% heart)
and brain (blue is 100% brain).
e 11 mixtures x 3 replicates = 33 samples (33 lines)

e Note the parallelism: probes have different affinities Tissue mixture dataset 64
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Linear model decomposes the probe-level data into PROBE effects and
CHIP effects

o Linear model;

Probe-Level Data y PROBE effects

N ‘\ H‘H Yik =G + Pk TS
e

N | | ‘ ] B Robust Multichip
Analysis (RMA)
uses this model.
Irizarry et al. 2003,
AR N Biostatistics

CHIP effects

Parameters are
estimated robustly,
meaning a small
number of outliers
have minimal effect

Tissue mixture dataset 65



