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Mark D. Robinson

BIO390 Introduction to Bioinformatics 

Statistical Bioinformatics: motivation via data examples 
(1st hour), some fundamental concepts (2nd hour)
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Survey: Statistical Insight

klicker
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From the histogram, determine whether blue or orange represents the 
mean/median
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4x y u v

75th percentile

median

25th percentile

Given these boxplots, which of two underlying distributions are more similar?
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Which plot highlights more (statistical) evidence for a change in the 
population means (between orange and blue)?
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In your view, what best describes the associations shown in the plot of 'x' 
and 'y' ?
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Which plot highlights more (statistical) evidence for a change in the 
population means (between orange and blue)?
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Of these equations, which one resembles the standard two sample t-test ?

8

1 

2 

3

http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
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Outline

• Motivation: nowadays we are inundated with data, such as 
microarrays, sequencing, cytometry, imaging —> modern biologists 
need to be data-savvy (data science, statistics, computation) 

• Fundamental statistical concepts: central limit theorem, false 
positives / false negatives, P-values, multiple testing, exploratory 
data analysis, regression, clustering, dimension reduction, 
reproducibility, … 

• Data science / programming: BIO 134, BIO 144, (BIO 334, STA 426)
9
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Critical skills needed by statisticians (Jeffrey Leek’s words):

http://simplystatistics.org/2013/07/03/repost-the-5-most-critical-statistical-concepts/

Modern biologists

enough knowledge 
to understand 
caveats of analysis



Technologies  
in my research area

microarray, high-throughput sequencing, single cell, cytometry, etc.  
“it’s just data”
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Microarray fundamentals: Nature gives a complementary pairing

12probe target
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13

Abundance (of 
complementary DNA 
species) measured by 
flouresence intensity

probe target

DNA microarray: parallel northern blots; Nature gives a 
complementary pairing
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Gene Expression Profiling: questions of interest

• What genes have changed in expression? (e.g. between disease/normal, 
affected by treatment)                                                                           
Gene discovery, differential expression 

• Is a specified group of genes all up-regulated in a particular condition? 
Gene set differential expression 

• Can the expression profile predict outcome? 
Class prediction, classification 

• Are there tumour sub-types not previously identified? Do my genes group 
into previously undiscovered pathways? 
Class discovery, clustering

14
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Motivation for exploratory data analysis: Case Study

(from Stefano, a former M.Sc. student in my Institute) 
He is studying gene expression in fruitfly and is interested in transcriptional responses following “heat 
shock”.

15

 “To consult the statistician after an experiment is 
finished is often merely to ask [them] to conduct a 
post mortem examination. [They] can perhaps say 
what the experiment died of.” R. A. Fisher

CTL   t0  t12   
TRT  t4 t12 t24 t72

Basic schematic of experiment: 

~4 replicates for each condition

Change to lower 
temperature.
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Take a close look at where the 24 samples are to each other relative 
to the X- and Y-axes

16
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http://en.wikipedia.org/wiki/Multidimensional_scaling 
library(limma) 
plotMDS(d)  # ‘d’ is a matrix

22 samples x 
~20,000 genes 

reduced to 22 
samples x 2 
dimensions

"Plot samples on a two-dimensional scatterplot so that 
distances on the plot approximate the typical log2 fold 
changes between the samples."

http://en.wikipedia.org/wiki/Multidimensional_scaling
http://en.wikipedia.org/wiki/Multidimensional_scaling
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Magic: Surrogate variable analysis to detect and “remove” batch effects
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High-throughput sequencing

18

https://www.statnews.com/2017/01/09/illumina-ushering-in-the-100-genome/ 

(Solexa) Illumina

Sept 29th 2022 - NovaSeq X Series, unveiled earlier 
today, ushers in the era of the genome with revolutionary 
new production-scale sequencers .. can generate more 
than 20,000 whole genomes per year – 2.5 times the 
throughput of prior sequencers – greatly accelerating 
genomic discovery and clinical insights, to understand 
disease and ultimately transform patient lives.

https://www.statnews.com/2017/01/09/illumina-ushering-in-the-100-genome/
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DNA  
(0.1-1.0 ug) 

 

Single molecule array
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Sequencing 

Illumina Sequencing Technology

This slide courtesy of Gary Schroth, Illumina

Many assays based on sequencing DNA: 
https://liorpachter.wordpress.com/seq/ 

https://liorpachter.wordpress.com/seq/
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Applications of high-throughput sequencing

20
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21http://en.wikipedia.org/wiki/DNA_microarray

Abundance by 
Fluorescence Intensity
(DNA microarray)

Abundance by Counting 
(RNA-seq)

Zeng & Mortazavi, Nature Immunology, 2012



ONT (Oxford Nanopore)
https://nanoporetech.com/applications/dna-nanopore-sequencing 

—> attachment of processive enzyme, leads RNA/DNA 
fragment to pore, combination of nucleotides going 
through pore creates  a “characteristic disruption of the 
electrical current” —> order of signals can be used to 
determine the sequence of bases on that single strand.

https://nanoporetech.com/applications/dna-nanopore-sequencing


ONT (Oxford Nanopore)
https://nanoporetech.com/applications/dna-nanopore-sequencing



Quick look at reads in a browser

ONT 

Illumina



But mRNAs (or 
corresponding cDNAs) are 

short —> concatenate them. 

MAS = Multiplexed Arrays 
Sequencing

Al’Khafaji et al., 2023



Bulk vs single-cell RNA-sequencing

Images modified from https://www.flickr.com/photos/konradfoerstner/21264667663 and https://commons.wikimedia.org/wiki/File:Innate_Immune_cells.svg

RNA extraction, 
preparation of cDNA, 
cell barcoding, UMIs 

(scRNA-seq only)

Cell sorting, tissue 
dissociation

sequencing

https://www.flickr.com/photos/konradfoerstner/21264667663


Diversity of (single cell) data types:  sequencing
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frontal cortex 

single nuclei RNA-seq 
(10x) 

Data from: 
4 mice vehicle treated 
4 mice LPS treated 

Each dot is one cell 

5000 genes -> 2D 
“embedding” / 
“projection”.

Motivation: Single-cell RNA-seq: finding cell subpopulation-specific 
changes in state
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Flow cytometry

29

RESEARCH TECHNIQUES MADE SIMPLE  �

2 Journal of Investigative Dermatology (2012), Volume 132 © 2012 The Society for Investigative Dermatology

RESEARCH TECHNIQUES MADE SIMPLE  �

2 Journal of Investigative Dermatology (2012), Volume 132 © 2012 The Society for Investigative Dermatology

Figure 1. Schematic representation of a flow cytometer. For details please see text. (1) Forward-scatter detector, (2) side-scatter detector, (3) fluorescence 
detector, (4) filters and mirrors, and (5) charged deflection plates.

Figure 2. Scatter plots displaying the FSC (X-axis) and SSC (Y-axis) of lysed whole peripheral blood. The FSC scatter data provide information on the relative 
size of the cells, whereas the SSC data estimate the granularity. Four ways of displaying identical data: (i) pseudocolor dot plot (allows simultaneous information 
of rare events (dots) and high-frequency areas with dots of different color), (ii) dot plot where each dot represents one event (note that here only 10,000 events 
are shown to avoid oversaturation of dots), (iii) 5% probability density plot, and (iv) 5% probability contour plot, where the density of a population is translated 
in varying shades of color or concentric rings of varying distance. Major leukocyte populations as defined by FSC and SSC properties are shown in (i). FSC-A, 
forward scatter area; RBC, red blood cells; SSC-A, side scatter area. 

Jahan-Tigh et al., Journal of Investigative Dermatology, 2012

v
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Mass cytometry

30
Bendall et al. (2011), Fig. 1A
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Finding molecular biomarkers associated with drug response

Algorithm guided 
analysis = statistics
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Differential abundance of cell populations

32

Krieg et al. - HighDim	analysis	predicts	response	to	PD-1	therapy	–	manuscript	

page 7 of 23	
	

non-responders,	 before	 and	 after	 therapy	 initiation	 (Figure	 1C).	 	 Significant	

increases	 in	 the	 expression	 of	 HLA-DR,	 CTLA-4,	 CD56,	 CD45RO,	 CD11a,	 CD25,	

and	 CCR5	 and	 down-regulation	 of	 CD3,	 CD27,	 CD28,	 CD127,	 and	 CD4	 were	

observed	in	responders	versus	non-responders.	

	

	

NR: non-responders 
R: responders Under the hood: Generalized linear mixed model to 

assess the change in relative abundance of 
subpopulations.

tSNE projection 
(each dot = cell, 
cells from multiple 
patients)



From bulk to single-cell RNA-seq to imaging- &  
sequencing-based spatially resolved transcriptomics

tissue

imaging-based

• molecule-level data
• targeted panel (100s of features)
• single-cell resolution requires 

segmentation

sequencing-based

• spot-level data
• whole transcriptome (10,000s of features)
• single-cell resolutions requires 

aggregation or deconvolution

single-cell

spatial 

bulk

Slide from 
Helena Crowell
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Some of the statistical fundamentals that underpin much of our research .. 
and our discoveries  (.. but also underpin analyses that you may do in the 
future)

– central limit theorem 
– false positives / false negatives (error control) 
– statistical tests, multiple testing, P-values 
– sharing information (limma) 
– clustering 
– exploratory data analysis, e.g., dimensionality reduction

34



Central limit theorem
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Central limit theorem

The short non-technical version: once you start taking sums (averages), sampling distributions 
of the mean converge to the Gaussian (normal) bell shaped curve as the sample size increases.

36

810 | VOL.10 NO.9 | SEPTEMBER 2013 | NATURE METHODS

THIS MONTH

size. Notice that it is still possible for a sample mean to fall far 
from the population mean, especially for small n. For example, 
in ten iterations of drawing 10,000 samples of size n = 3 from the 
irregular distribution, the number of times the sample mean fell 
outside μ ± s (indicated by vertical dotted lines in Fig. 3) ranged 
from 7.6% to 8.6%. Thus, use caution when interpreting means 
of small samples.

Always keep in mind that your measurements are estimates, which 
you should not endow with “an aura of exactitude and finality”5. The 
omnipresence of variability will ensure that each sample will be dif-
ferent. Moreover, as a consequence of the 1/√n proportionality fac-
tor in the CLT, the precision increase of a sample’s estimate of the 
population is much slower than the rate of data collection. In Figure 4  
we illustrate this variability and convergence for three samples drawn 
from the distribution in Figure 2a, as their size is progressively 
increased from n = 1 to n = 100. Be mindful of both effects and their 
role in diminishing the impact of additional measurements: to double 
your precision, you must collect four times more data.

Next month we will continue with the theme of estimation and dis-
cuss how uncertainty can be bounded with confidence intervals and 
visualized with error bars.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (doi:10.1038/nmeth.2613).

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Martin Krzywinski & Naomi Altman
1. Huxley, T.H. in Collected Essays 8, 229 (Macmillan, 1894).
2. vos Savant, M. Game show problem. http://marilynvossavant.com/game-

show-problem (accessed 29 July 2013).
3. Glantz, S.A. Circulation 61, 1–7 (1980).
4. Huck, S.W. Statistical Misconceptions (Routledge, 2009).
5. Ableson, R.P. Statistics as Principled Argument 27 (Psychology Press, 1995).

Martin Krzywinski is a staff scientist at Canada’s Michael Smith Genome Sciences 
Centre. Naomi Altman is a Professor of Statistics at The Pennsylvania State 
University.

large. When constructing a sample, it is not always obvious whether 
it is free from bias. For example, surveys sample only individuals who 
agreed to participate and do not capture information about those who 
refused. These two groups may be meaningfully different.

Samples are our windows to the population, and their statistics are 
used to estimate those of the population. The sample mean and s.d. are 
denoted by  –X     and s. The distinction between sample and population 
variables is emphasized by the use of Roman letters for samples and 
Greek letters for population (s versus s).

Sample parameters such as  –X     have their own distribution, called 
the sampling distribution (Fig. 2c), which is constructed by consider-
ing all possible samples of a given size. Sample distribution param-
eters are marked with a subscript of the associated sample variable 
(for example, μX–   and sX–   are the mean and s.d. of the sample means 
of all samples). Just like the population, the sampling distribution is 
not directly measurable because we do not have access to all possible 
samples. However, it turns out to be an extremely useful concept in 
the process of estimating population statistics.

Notice that the distribution of sample means in Figure 2c looks 
quite different than the population in Figure 2a. In fact, it appears 
similar in shape to a normal distribution. Also notice that its spread, 
sX–  , is quite a bit smaller than that of the population, s .  Despite these 
differences, the population and sampling distributions are intimately 
related. This relationship is captured by one of the most important and 
fundamental statements in statistics, the central limit theorem (CLT).

The CLT tells us that the distribution of sample means (Fig. 2c) 
will become increasingly close to a normal distribution as the sample 
size increases, regardless of the shape of the population distribution 

(Fig. 2a) as long as the frequency of extreme values drops off quickly. 
The CLT also relates population and sample distribution parameters 
by μX–   = μ and sX–   = s/√n. The terms in the second relationship are 
often confused: sX–   is the spread of sample means, and s is the spread 
of the underlying population. As we increase n, sX–   will decrease (our 
samples will have more similar means) but s will not change (sam-
pling has no effect on the population). The measured spread of sample 
means is also known as the standard error of the mean (s.e.m., SE –X     ) 
and is used to estimate sX–  .

A demonstration of the CLT for different population distri-
butions (Fig. 3) qualitatively shows the increase in precision of 
our estimate of the population mean with increase in sample 

Population distribution
Normal Skewed Uniform Irregular

n = 3

n = 5

n = 10

n = 20

Sampling distribution of sample mean

Figure 3 | The distribution of sample means from most distributions will be 
approximately normally distributed. Shown are sampling distributions of 
sample means for 10,000 samples for indicated sample sizes drawn from four 
different distributions. Mean and s.d. are indicated as in Figure 1.

1 100908070605040302010
0

2
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8
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Sample size (n)

Sample mean (X )

Sample standard deviation (s)

Standard error of the mean (s.e.m.)

μ

σ

σ=
√n

X1 X2 X3

Xσ

Figure 4 | The mean ( 
–
X   ), s.d. (s) and s.e.m. of three samples of increasing 

size drawn from the distribution in Figure 2a. As n is increased, 
–
X   and s more 

closely approximate μ and s. The s.e.m. (s/√n) is an estimate of sX–  and 
measures how well the sample mean approximates the population mean.

If time, demonstrate this in R.



false positives, false negatives, 
multiple testing, P-values
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Hypothesis testing

• Method of making a decision 
• Is this result “statistically significant"?  ("Is my finding likely to occur by 

chance?") 
• (Controversial) 
• Statistical significance != Biological significance  
 
Operationally, it works (something) like:  
–  Define "null hypothesis" (usually some kind of baseline setting)  
–  Define alternative: non-null  
–  Calculate test statistics (e.g. where the sampling distribution under the null is 
known) and/or P-value  
–  If P-value < some (magic) cutoff, decide to reject the null hypothesis in favour 
of the alternative; otherwise, accept the null hypothesis

38

“Researchers should seek to analyse data in 
multiple ways to see whether different analyses 
converge on the same answer.“
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NHST (Null hypothesis statistical testing): Hypothetical example

Say we wanted to know whether ETHZ students are scoring better or worse in a 
particular course than UZH students.  First, we take a random sample from each 
population. 

Null hypothesis: population mean of ETHZ scores = population mean of UZH scores 
Alternative: means are different 

Critical point: Assume that null hypothesis is true (i.e., means are equal), calculate a 
test statistic that we know the distribution of (under the null). Calculate the probability 
of observing something as or more extreme than our test statistic. 

We’ll use a t-statistic.
39
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There are some variations of the t-test, but let us assume that the variances 
are equal

40

Institute of Molecular Life Sciences 

Many*varia)ons,*but*let’s*assume*the*variance*is*same*for*
ETHZ*and*UZH*students*

 

 

 

n1 <- length(uzh) 

n2 <- length(eth) 

poolv <- weighted.mean( c(var(uzh),var(eth)), c(n1-1,n2-1) ) 

tstat <- (mean(uzh)-mean(eth)) / sqrt( poolv * (1/n1+1/n2) ) 

 

t.test(uzh,eth,var.equal=TRUE) 

 

plot( c(uzh,eth), pch=19,  

      col=rep(c("black","blue"),c(n1,n2)),  

      ylab="", xlab="" ) 

abline(v=20.5) 

abline(h=mean(uzh),lwd=4) 

abline(h=mean(eth),lwd=4,col="blue") 

 

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

57
58

59
60

61
62

Institute of Molecular Life Sciences 

Many*varia)ons,*but*let’s*assume*the*variance*is*same*for*
ETHZ*and*UZH*students*

 

 

 

n1 <- length(uzh) 

n2 <- length(eth) 

poolv <- weighted.mean( c(var(uzh),var(eth)), c(n1-1,n2-1) ) 

tstat <- (mean(uzh)-mean(eth)) / sqrt( poolv * (1/n1+1/n2) ) 

 

t.test(uzh,eth,var.equal=TRUE) 

 

plot( c(uzh,eth), pch=19,  

      col=rep(c("black","blue"),c(n1,n2)),  

      ylab="", xlab="" ) 

abline(v=20.5) 

abline(h=mean(uzh),lwd=4) 

abline(h=mean(eth),lwd=4,col="blue") 

 

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

57
58

59
60

61
62



Statistical Bioinformatics // Department of Molecular Life Sciences

Where does the t-test come from?

41
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OK, but mathematically, where does the t-distribution come from?

42

Clever discovery by William Gosset (i.e. “Student”) 
The variance parameter cancels out —> straightforward extension to the 2-sample 
problem.

https://en.wikipedia.org/wiki/Student%27s_t-test 

https://en.wikipedia.org/wiki/Student%27s_t-test
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False positives / 
false negatives

43

Most statistical testing 
regimes set an error rate (5%) 

Type I error = false positive 
Type II error = false negative

https://twitter.com/freakonometrics/status/779060142239260672 

https://twitter.com/freakonometrics/status/779060142239260672


limma (sharing information)
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Differential expression, small sample inference

45

• Table of data (e.g., microarray gene expression data with replicates of each of condition A, 
condition B) 

- rows = features (e.g., genes), columns = experimental units (samples) 
• Most common problem in statistical bioinformatics: want to infer whether there is a change in 

the response à a statistical test for each row of the table. 

[1] http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html 

http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html
http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html
http://www.stat.ubc.ca/~rollin/stats/ssize/n2.html
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A very common experiment: microarray or RNA sequencing

46

Mutant x 2 WT x 2

Which genes are differentially expressed?

n1 = n2 = 2 Affymetrix arrays 

~30,000 probe-sets

Gene X
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In genomics, there is often a multiple testing problem

– You often make multiple tests (e.g., for every gene). Say, you set your 
cutoff such that you had a 5% false positive rate. 

– In doing 20,000 tests (for 20,000 genes), ~1000 would be rejected just by 
chance. 

– There are various ways to "correct" for multiple testing. Two popular ones 
include: 

1.  False discovery rate (weak) 
2.  Bonferroni correction (strong) 

47
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Classical 2-sample t-tests

48

give very high false discovery rates

Residual df = 2
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t-tests with common variance (pooled over all genes measured)

49

across genes

with residual standard deviation pooled

More stable, but ignores gene-specific variability
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A better compromise: moderate between

50

Moderated t-statistics

Shrink standard deviations towards common value

= degrees of 
freedom
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Exact distribution for moderated t

51

An unexpected piece of mathematics shows that, under the 
null hypothesis,

The degrees of freedom add. 
In effect, the moderated variance adds d0 extra samples to 
the analysis, thus increasing the statistical power.

Smyth 2004



clustering (hierarchical)
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Hierarchical (Agglomerative) Clustering

Divisive (all features start as 1 
cluster, then subsequently 
split) versus Agglomerative 
(every feature is it’s own 
cluster, then subsequently 
merged) 
Metric: to define how similar 
any two vectors are. 
Linkage: determines how 
clusters are merged into a tree 

53

http://en.wikipedia.org/wiki/Hierarchical_clustering 
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Are these “vectors” similar ?

54
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http://en.wikipedia.org/wiki/Euclidean_distance 
Euclidean distance:

It depends how you define similar.

Euclidean distance:      84.84     3.92

> sqrt(sum((x-(y-12))^2)) 
[1] 3.926007 
> sqrt(sum((x-y)^2)) 
[1] 84.84028 

http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Euclidean_distance
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Are these “vectors” similar ?
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It depends how you define similar.

> cor(x,y) 
[1] 0.8901139 
> cor(x,y-12) 
[1] 0.8901139

Correlation:              0.89              0.89

http://en.wikipedia.org/wiki/Correlation_and_dependence 

http://en.wikipedia.org/wiki/Correlation_and_dependence
http://en.wikipedia.org/wiki/Correlation_and_dependence
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Hierarchical (Agglomerative) Clustering

Start with distances. 
Linkage: determines how clusters are merged into a tree. 
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http://en.wikipedia.org/wiki/Hierarchical_clustering 
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From eyeballing, here is a likely set of 
merges: 

b,c 
d,e 
a,g, 
(d,e),f 
(b,c),((d,e),f) 
ALL

http://en.wikipedia.org/wiki/Hierarchical_clustering
http://en.wikipedia.org/wiki/Hierarchical_clustering
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Different linkages
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dimension reduction 
(exploratory data analysis)



Dimension reduction: general introduction

• Many types of data come as a matrix of N samples (e.g., 
cells, patients) x G features (e.g., genes, proteins) 

• Each sample is a point in G-dimensional space 
• Goal: represent the data in 2-3 dimensions, but preserve 

structure as best as possible (i.e., points that are close in 
G dimensions should be close in 2 or 3 dimensions)
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Dimension reduction is versatile

60

Each point  = 
single cell

Each point  = 
sample

K features  x N cells —>  
2 dimensions x N cells 

P samples x K features —> 
P samples x 2 dimensions

(airway)(10x PBMC)

N cells x K features —> N cell 
subpopulations x 2 dimensions

Each point  = 
subpopulation from a 

single sample (LPS mouse cortex)



Introduction to dimension reduction:  
PCA (principal components analysis)

• Form successive linear combinations of 
the features that are: orthogonal, ordered 
by variance 

• A is the loadings matrix 
• Typically, first 2-3 columns ('principal 

components') of Y are retained for 
visualisation; often top P PCs are retained 
for other analyses (e.g., clustering)

https://strata.uga.edu/software/pdf/pcaTutorial.pdf

https://strata.uga.edu/software/pdf/pcaTutorial.pdf


Many variations 
(linear/non-

linear), many 
notions of 

distance, many 
ways to 

“compress”

Kobak et al. 2019
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Another data example .. a regression model to separate 
interesting signal (gene expression) from technical effects 
(probes)

63
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The nature of Affymetrix Probe Level Data

64

•		Data	for	one	gene	that	is	differentially	expressed	between	heart	(red	is	100%	heart)	
and	brain	(blue	is	100%	brain). 
•		11	mixtures	x	3	replicates	=	33	samples	(33	lines) 
•		Note	the	parallelism:	probes	have	different	affinities Tissue	mixture	dataset
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Linear model decomposes the probe-level data into PROBE effects and 
CHIP effects

65

yik = gi + pk +eik

y

e

p

g

Robust Multichip 
Analysis (RMA) 
uses this model. 
Irizarry et al. 2003, 
Biostatistics 

Parameters are 
estimated robustly, 
meaning a small 
number of outliers 
have minimal effect

Tissue	mixture	dataset

Linear model:


