

Swiss Institute of Bioinformatics

INTRODUCTION TO BIOINFORMATICS:

Clinical Bioinformatics

V. Barbié, Clinical Bioinformatics Zürich, o5 December 2023

Outline

What is clinical bioinformatics

Why clinical bioinformatics? Next Generation Sequencing (NGS) in medical diagnosis

Overview of an oncology NGS diagnostic pipeline

Other considerations

Outline

What is clinical bioinformatics

Why clinical bioinformatics? Next Generation Sequencing (NGS)

in medical diagnosis

Overview of an oncology NGS diagnostic pipeline

Other considerations

Next Generation Sequencing principle

Next Generation Sequencing principle

Examples of NGS clinical applications

	Source DNA	Reference DNA
Oncology	Patient tumor or blood	Consensus human genome Germline

Outline

What is clinical bioinformatics

Why clinical bioinformatics? Next Generation Sequencing (NGS)

in medical diagnosis

Overview of an oncology NGS diagnostic pipeline

Other considerations

Identify single nucleotide variants (SNVs), insertions-deletions (indels) to inform clinical management

Overview of a NGS bioinformatics pipeline

- >> Gene panels analysis in clinical routine
 - Identify differences
 - Identify artifacts: quality control
 - Identify **somatic** vs. germline variants
 - Variant annotation: does it provide clinically-useful information?

Overview of a NGS bioinformatics pipeline

Bioinformatics pipeline

Tumoral sample DNA Libraries Extraction preparation

Sequencing Ion Proton MiSeq NextSeq

Reads filtering

Quality control

Each nucleotide has a quality score (Phred score)

representing the probability that a base was miscalled by the sequencer

	Phred Score	Prob. of incorrect base call	Base call accuracy	Code
$Q = 10 \log P$	10	1 in 10	90%	J
$Q = -10 \log_{10} P$	20	1 in 100	99%	Т
	30	1 in 1'000	99.9%	Λ
	40	1 in 10'000	99.99%	h

Đ

Overview of a NGS bioinformatics pipeline

Tumoral sample

DNA Extraction preparation

Sequencing Ion Proton MiSeq NextSeq

pipeline

Much better alignment on across regions difficult to sequence (e.g. repetitive regions)

Mapping: finding the best position for each read

Overview of a NGS bioinformatics pipeline

MiSeq NextSeq

Tumoral sample

DNA Extraction pr

Libraries preparation

Bioinformatics pipeline

Lab report

Seriant calling: putting it all together

True variant or technical error?

- >> Performed by the sequencer software or the bioinformatician
- >> Germline vs somatic calling
 - Germline: constitutional genome analysis, where variants occur in 50% (heterozygous) or 100% (homozygous) of the reads.
 - Somatic: no ploidy assumption, low frequency alleles.

VCF: Variant Call Format

	<pre>##fileformat=VCFv4.1 ##fileDate=20090805 ##fileDate=20090805 ##tcgaversion=1.1 ##vcfProcessLog=<inputvcf=<file1.vcf>,InputVCFSource=<caller1>,InputVCFVer=<1.0>,InputVCFParam=<a1,b>,InputVCFgeneAnno=<anno1.gaf>> ##reference=ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/GRCh37-lite.fa ##contig=<id=20,length=62435964,assembly=b36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="homo_sapiens",taxonomy=x> ##topasingurantial</id=20,length=62435964,assembly=b36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="homo_sapiens",taxonomy=x></anno1.gaf></a1,b></caller1></inputvcf=<file1.vcf></pre>															
<pre>##INFO=<(ID=NS.Number=1,Type=Integer,Description="Number of Samples With Data") ##INFO=<(ID=DP,Number=1,Type=Integer,Description="Total Depth") ##INFO=<(ID=AF,Number=A,Type=Float,Description="Allele Frequency") ##INFO=<(ID=AA,Number=1,Type=String,Description="Ancestral Allele") ##INFO=<(ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129") ##INFO=<(ID=H2,Number=0,Type=Flag,Description="HapMap2 membership")</pre>																
ADER	##FILT ##FILT	ER= <id=q ER=<id=s< td=""><td>10,Descrip 50,Descrip</td><td>tion="Q tion="L</td><td>uality b ess than</td><td>elow : 50% d</td><td>LO"> of samp:</td><td>les have data"></td><td>F</td><td>ILTER me</td><td>eta-ir</td><td>nformati</td><td>ion</td><td></td><td></td><td></td></id=s<></id=q 	10,Descrip 50,Descrip	tion="Q tion="L	uality b ess than	elow : 50% d	LO"> of samp:	les have data">	F	ILTER me	eta-ir	nformati	ion			
##FORMAT= <id=gt, description="Genotype" number="1," type="String,"> ##FORMAT=<id=gq, description="Genotype Quality" number="1," type="Integer,"> ##FORMAT=<id=dp, description="Read Depth" number="2," type="Integer,"> ##FORMAT=<id=hq, description="Haplotype Quality" number="2," type="Integer,"></id=hq,></id=dp,></id=dp,></id=dp,></id=dp,></id=gq,></id=gt,>																
	<pre>##SAMPLE=<id=normal, accession="1234" file="TCGA-01-1000-1.bam," individual="TCGA-01-1000," platform="Illumina," source="dbGAP,"> ##SAMPLE=<id=tumor, accession="4567" file="TCGA-01-1000-2.bam," individual="TCGA-01-1000," platform="Illumina," source="dbGAP,"> ##PEDIGREE=<name_0=tumor, name_1="NORMAL"></name_0=tumor,></id=tumor,></id=normal,></pre>															
	Optional: FORMAT field specifying data type Fixed fields + Per-sample genotype data															
#CHROM POS ID REF ALT QUAL FILTER INFO									NORMAL		TUMOR					
вору	20 20 20 20 20	14370 17330 1110696 1230237 1234567	rs6054257 rs6040355 microsat1	G T A T GTC	A G,T G,GTCTC	29 3 67 47 50	PASS q10 PASS PASS PASS	NS=3;DP=14;AF=0.5;DB;H2 NS=3;DP=11;AF=0.017 NS=2;DP=10;AF=0.333,0.667 NS=3;DP=13;AA=T NS=3;DP=9;AA=G	; DB	GT : GQ : DF GT : GQ : DF	HQ HQ HQ HQ	0 0:48:1 0 0:49:3 1 2:21:6 0 0:54:7 0/1:35:4	L:51,51 3:58,50 5:23,27 7:56,60 4	1 0:48: 0 1:3:5 2 1:2:0 0 0:48: 0/2:17:	8:51,51 :65,3 :18,2 4:51,51 2	

VCF: Variant Call Format

	<pre>##fileformat=VCFv4.1 ##fileDate=20090805 ##togaversion=1.1 ##vofProcessLog=<inputvcf=<file1.vof>.InputVCFSource=<caller1>.InputVCFVer=<1. ##vofProcessLog=<inputvcf=<file1.vof>.InputVCFSource=<caller1>.InputVCFVer=<1. ##reference=ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mamm. ##contig=<id=20.length=62435964.assembly=b36.md5=f126cdf8a6e0c7f379d618ff66beb ##info='<ID=NS.Number=1.Type=Integer.Description="Number' ##phasing="partial" data"="" of="" samples="" with=""> ##INFO=<id=np.number=1.type=integer.description="number data"="" of="" samples="" with=""> ##INFO=<id=pp.number=1.type=integer.description="total depth"=""> ##INFO=<id=af.number=1.type=integer.description="allele frequency"=""> ##INFO=<id=af.number=1.type=string.description="allele frequency"=""> ##INFO=<id=b.number=1.type=float.description="allele frequency"=""> ##INFO=<id=b.number=0.type=float.description="allele"> ##INFO=<id=b.number=0.type=float.description="allele"> ##INFO=<id=b.number=0.type=float.description="allele"> ##INFO=<id=b.number=0.type=float.description="allele"> ##INFO=<id=b.number=0.type=float.description="allele"> ##INFO=<id=b.number=0.type=float.description="allele"> ##INFO=<id=b.number=0.type=float.description="allel< th=""><th colspan="4">0>,InputVCFParam=(a1,b>,InputVCFgeneAnno=(anno1.gaf>> tals/Homo_sapiens/GRCh37/special_requests/GRCh37-lite.fa 2da,species="Homo sapiens",taxonomy=x> INFO meta-information</th></id=b.number=0.type=float.description="allel<></id=b.number=0.type=float.description="allele"></id=b.number=0.type=float.description="allele"></id=b.number=0.type=float.description="allele"></id=b.number=0.type=float.description="allele"></id=b.number=0.type=float.description="allele"></id=b.number=0.type=float.description="allele"></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=b.number=1.type=float.description="allele></id=af.number=1.type=string.description="allele></id=af.number=1.type=integer.description="allele></id=pp.number=1.type=integer.description="total></id=np.number=1.type=integer.description="number></id=20.length=62435964.assembly=b36.md5=f126cdf8a6e0c7f379d618ff66beb></caller1></inputvcf=<file1.vof></caller1></inputvcf=<file1.vof></pre>	0>,InputVCFParam=(a1,b>,InputVCFgeneAnno=(anno1.gaf>> tals/Homo_sapiens/GRCh37/special_requests/GRCh37-lite.fa 2da,species="Homo sapiens",taxonomy=x> INFO meta-information							
	##FILTER= <id=q10,description="quality 10"="" below=""> ##FILTER=<id=s50,description="less 50%="" data"="" have="" of="" samples="" than=""></id=s50,description="less></id=q10,description="quality>								
	##FORMAT= <id=gt, description="Genotype" number="1," type="String,"> ##FORMAT=<id=gq, description="Genotype Quality" number="1," type="Integer,"> ##FORMAT=<id=dp, description="Read Depth" number="1," type="Integer,"> ##FORMAT=<id=hq, description="Haplotype Quality" number="2," type="Integer,"></id=hq,></id=dp,></id=gq,></id=gt,>								
	<pre>##SAMPLE=<id=normal.individual=tcga-01-1000.file=tcga-01-1000-1.bam.platform=i ##SAMPLE=<id=tumor.individual=tcga-01-1000.file=tcga-01-1000-2.bam.platform=i1 ##PEDIGREE=<name_0=tumor.name_1=normal></name_0=tumor.name_1=normal></id=tumor.individual=tcga-01-1000.file=tcga-01-1000-2.bam.platform=i1 </id=normal.individual=tcga-01-1000.file=tcga-01-1000-1.bam.platform=i </pre>	llumina,Source=dbGAP,Accession=1234> lumina,Source=dbGAP,Accession=4567>							
	• • • • • • • • • • • • • • • • • • •	ptional: FORMAT field specifying data type + Per-sample genotype data							
	#CHROM POS ID REF ALT QUAL FILTER INFO	FORMAT NORMAL TUMOR							
BODY	20 14370 rs6054257 G A 29 PASS NS=3; DP=14; AF=0.5; DB; H2 20 17330 . T A 3 q10 NS=3; DP=11; AF=0.017 20 1110696 rs6040355 A G,T 67 PASS NS=2; DP=10; AF=0.333, 0.667; 100 20 1230237 . T . 47 PASS NS=3; DP=13; AA=T 20 1234567 microsat1 GTC G, GTCTC 50 PASS NS=3; DP=9; AA=G	G1:GQ:DP:HQ U U:48:1:51,51 1 U:48:8:51,51 GT:GQ:DP:HQ 0 0:49:3:58,50 0 1:3:5:65,3 DB GT:GQ:DP:HQ 1 2:21:6:23,27 2 1:2:0:18,2 GT:GQ:DP:HQ 0 0:54:7:56,60 0 0:48:4:51,51 GT:GQ:DP 0/1:35:4 0/2:17:2							

VCF: Variant Call Format

	#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO
BODY	20 20 20 20 20 20	14370 17330 1110696 1230237 1234567	rs6054257 rs6040355 microsat1	G T A T GTC	A A G, T Ġ, GTCTC	29 3 67 47 50	PASS q10 PASS PASS PASS	NS=3;DP=14;AF=0.5;DB;H2 NS=3;DP=11;AF=0.017 NS=2;DP=10;AF=0.333,0.667;DB NS=3;DP=13;AA=T NS=3;DP=9;AA=G

Things to watch out when assessing variant quality

Depth: nb of reads that include a given nucleotide, at a given position

- >> Diagnosis: gene panel at 1500X, whole exome at 100X
- In oncology, impossible to detect low frequency clones with exome analyses

Coverage: % or nb of bases of a reference genome that are covered with a certain depth, e.g. 90% at 5X

Strand bias in paired-end sequencing

- >> Both DNA strands are sequenced
- >> Normal mutations should occur on both with equal frequencies

Overview of a NGS bioinformatics pipeline

Medical genetics: focus on pathogenicity

Genetics

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,4}, Sherri Bale, PhD¹, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD¹²⁴, Wayne W, Grody, MD, PhD²⁴⁴⁴, Madhurl Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹¹ and Heidi L. Rehm, PhD¹⁵, on behalf of the ACMG Laboratory Quality Assurance Committee

GENETICS in MEDICINE | Volume 17 | Number 5 | May 2015

Find pathogenic variants

i.e. genetic alterations increasing an individual's susceptibility or predisposition to a certain disorder

Oncology: focus on clinical significance

SPECIAL ARTICLE

Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer

A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists

Find actionable variants

i.e. genetic alterations possibly having an impact on clinical care

- >> Location of the variant (e.g. intron, exon, regulatory region...)
- >> Genes and transcripts affected by the variant
- >> Predict variant effect (e.g. stop gained, missense...)

- Convert genomic coordinates (chromosome, position) to the corresponding cDNA/amino-acid coordinates
- >> HGVS nomenclature (<u>http://varnomen.hgvs.org</u>)
- Substitution
 c.76A>T
- Deletion c.76delA
- Insertion c.76_77insG
- Genomic sequence g.476A>T
- Protein sequence p.Lys76Asn
- >> Important to store for tracking
- Version of the human genome assembly
- Accession and version of the mRNA transcripts

Point mutations (single base substitution)

Frameshift mutations (insertion or deletion of one or several bases)

https://courses.lumenlearning.com/microbiology/chapter/mutations/

- >> Location of the variant (e.g. intron, exon, regulatory region...)
- >> Genes and transcripts affected by the variant
- >> Predict variant effect (e.g. stop gained, missense...)
- >> Predict variant impact on protein function, splicing

Predicting variants impact: examples of tools

TOOLS	SnpEff (ClinEff)	VEP	SIFT	PolyPhen-2	FATHMM
Variant effect and location (sequence ontology)	\checkmark	\checkmark			
Prediction of impact (score or category)	\checkmark	← ←	_ 🗸	\checkmark	\checkmark
Features used for impact prediction	Rules based on variant effect (stop gained, lost)		AA conservation in related seq.	AA conservation and structural features	AA conservation and protein tolerance to mutations

ACMG STANDARDS AND GUIDELINES In Medicine

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD¹³⁴, Sherri Bale, PhD¹, David Bick, MD², Soma Das, PhD¹, Julie Gastier-Foster, PhD¹³⁴, Wayne W. Grody, MD, PhD¹³⁴¹, Madhuri Hegde, PhD¹³, Elaine Lyon, PhD¹¹, Elaine Spector, PhD¹⁵, Kat V Gelkerding, MD¹³ and Heidi I. Rehm, PhD¹³, on behalf of the ACMG Laboratory Quality Assurance Committee

GENETICS in MEDICINE | Volume 17 | Number 5 | May 2015

Use a combination of tools and keep variants with consensus prediction.

(not exhaustive)

- >> Location of the variant (e.g. intron, exon, regulatory region...)
- >> Genes and transcripts affected by the variant
- >> Predict variant effect (e.g. stop gained, missense...)
- >> Predict variant impact on protein function, splicing
- >> Retrieve annotations from public databases

÷ Sib

Non exhaustive

Important questions

- >> Is it prevalent in the cancer subtype of interest?
- >> Is it known in other cancer subtypes or diseases?
- >> Is it present in the general population?
- >> Is it related to an ongoing clinical trial?
- >> What is the evidence level? Observed vs. predicted
- >> Are there other known variants in the same gene?

>> Is the mutation in an evolutionarily conserved region accross species?

Front Pharmacol. 2015 Mar 10;6:1. doi: 10.3389/fphar.2015.00001

I found a damaging mutation: is it always bad?

>> Keep the mutation in context: what is the gene function?

- Tumor suppressor gene Damaging mutations are pathogenic.
- Oncogene
 Activating mutations are pathogenic.
 (beware: damaging mutation can be activating!)

Keep the gene function in mind when interpreting its deleteriousness

Outline

What is clinical bioinformatics

Why clinical bioinformatics?

Next Generation Sequencing (NGS) in medical diagnosis

Overview of an oncology NGS diagnostic pipeline

Other considerations

Certificate of Advanced Studies (CAS) in

Personalized molecular oncology

pmo.unibas.ch

CAS PMO: 4 modules and a mini-thesis

Thank you

DATA SCIENTISTS FOR LIFE

sib.swiss

