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Machine learning

Supervised Unsupervised
learns on data with labels learns on data without labels

Discrete/Categorical

Continuous
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Machine learning

Supervised Unsupervised
learns on data with labels learns on data without labels

➢ Understand data structure

➢ Visualize data in 2D/3D

➢ Detect hidden features

➢ Automatize decisions
• Primary diagnosis

• Choice of treatment

➢ Predict future
• Treatment response

• Side effects

➢ Detect the most “important” 

features
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Types of input data in molecular biology and genetics

Context:
▪ Common diseases (Alzheimer, 

asthma, hypertension,…)

▪ Genetic syndromes (Down 
syndrome, CHARGE syndrome, …)

▪ Cancer 

Type of samples:
▪ Blood samples

▪ Saliva samples

▪ Tissue samples

▪ Maternal blood samples

Type of data:

• Genomic:

− Variants common in general population (SNPs)

− Rare variants

− Single nucleotide variants, SNV (a.k.a. mutations)

− Structural aberrations (e.g., translocations, amplifications)

− Copy number profiles

• Transcriptomic:

− RNA-seq (or expression microarrays) – bulk and single cell

− mi-RNA

• Epigenetic:

− DNA methylation (sequencing or methylation arrays)

− Histone modifications (ChIP-seq) and open chromatin (ATAC-seq, DHS-seq)

• Proteomic:

− RPPA (bulk), CyTOF (single cell)



SNPs Mutations 

(SNVs)

Structural 

variants

Copy 

number 

alterations

mRNA 

expression

miRNA 

expression

DNA 

methylation

3M-100M ~10-10K ~1-1000 ~10-25K ~25K ~1000 27K-28M

8

Omics data are high dimensional

Full –omics dataset millions of observations per patient:

+ sometimes these data is complemented with 

proteomics data (expression of hundreds of proteins)

Great challenge to avoid over-fitting and perform feature selection! 
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Machine learning

Unsupervised
learns on data without labels



• Single cell transcriptomics: 
development, cell type 
heterogeneity and cancer

• Bulk transcriptomics and 
epigenetics (cancer)

• Bulk transcriptomics: Effect of 
mutations

11

Examples: Dimension reduction and clustering

Spatiotemporal structure of cell fate decisions in murine 

neural crest. Soldatov et al., Science 364, 971 (2019)

tSNE



• Single cell transcriptomics: 
development, cell type 
heterogeneity and cancer

• Bulk transcriptomics and 
epigenetics (cancer)

• Bulk transcriptomics: Effect of 
mutations
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Examples: Dimension reduction and clustering

Dissecting the multicellular ecosystem of metastatic 

melanoma by single-cell RNA-seq. Tirosh et al. Science. 2016 

Apr 8;352(6282):189-96.

Clusters called by DBScan



Examples: Dimension reduction and clustering

• Single cell transcriptomics: 
development, cell type 
heterogeneity and cancer

• Bulk transcriptomics and 
epigenetics (cancer)

• Bulk transcriptomics: Effect of 
mutations

13

Single-cell landscape of bronchoalveolar immune cells in 

patients with COVID-19. Liao et al., Nature Medicine. 2020

Bronchoalveolar lavage fluid macrophages from patients with varying severity of 

COVID-19 and from healthy people:
FCN1hi

FCN1loSPP1+

SPP1+

FABP4+

classic M1-like macrophages

classic M1-like macrophages

M2-like macrophages

alveolar macrophages

Severe cases: Presence of proinflammatory monocyte-derived macrophages



Examples: Dimension reduction and clustering

• Single cell transcriptomics: 
development, cell type 
heterogeneity and cancer

• Bulk transcriptomics and 
epigenetics (cancer)

• Bulk transcriptomics: Effect of 
mutations

14

DNA methylation-based classification of central nervous 

system tumours. Capper et al. Nature 2018



Examples: Dimension reduction and clustering

• Single cell transcriptomics: 
development, cell type 
heterogeneity and cancer

• Bulk transcriptomics and 
epigenetics (cancer)

• Bulk transcriptomics: Effect of 
mutations

15

Dimensionality reduction by UMAP to visualize physical and 

genetic interactions. Michael W. Dorrity et al., Nature Comm. 

2020

Transcript profiles of 1484 single gene deletions of Saccharomyces cerevisiae (baker's yeast)



• Population genetics

16

Examples: Dimension reduction and clustering

PCA

«Genes mirror geography within Europe» Novembre et al, Nature, 2008



Most widely used methods:

• Principal component analysis (PCA) 

• t-distributed Stochastic Neighbor Embedding (tSNE) – check! 

• Uniform Manifold Approximation and Projection (UMAP) – check! 

17

Methods for dimension reduction

PCA t-SNE UMAP

https://distill.pub/2016/misread-tsne/
https://pair-code.github.io/understanding-umap/#:~:text=In%20the%20simplest%20sense%2C%20UMAP,behind%20them%20is%20remarkably%20simple.


• https://github.com/BoevaLab/Teaching

• Input: The Cancer Genome Atlas (TCGA) mRNA expression data

18

Hands-on: gene expression data from several cancer types



• PCA: an orthogonal linear transformation that transforms the data to a new coordinate system such that the 
greatest variance by some scalar projection of the data comes to lie on the first coordinate (called the first 
principal component), the second greatest variance on the second coordinate, and so on.

04.10.2024 19

Principal component analysis (PCA) 

From https://liorpachter.wordpress.com/2014/05/26/what-is-principal-component-analysis/



04.10.2024 20

Principal component analysis (PCA) 

From https://builtin.com/data-science/step-step-explanation-principal-component-analysis

The first principal component:

the line that maximizes the variance (the 

average of the squared distances from the 

projected points (red dots) to the origin “o”).

The second principal component is calculated 

in the same way, with the condition that it is 

perpendicular to the first principal component 

and that it accounts for the next highest 

variance.

Etc.

https://builtin.com/data-science/step-step-explanation-principal-component-analysis


• Given n points in ℝp, principal components analysis consists of choosing a dimension k < p and then finding the 
affine space of dimension k with the property that the squared distance of the points to their orthogonal 
projection onto the space is minimized.

04.10.2024 21

Principal component analysis (PCA) 
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Principal component analysis (PCA) 

PC1

PC2

PCA: an orthogonal linear transformation 

PCA

Feature 1

F
e
a
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 2

Generally, one standardizes the data along each dimension before applying PCA.
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Principal component analysis (PCA) 

Q: How will look the PCA transformation of a PCA?

?

(1) the same (2) the “ball”

PCA PCA

(3) as original set (4) Inverted original

Feature 1

F
e
a

tu
re

 2

Generally, one standardizes the data along each dimension before applying PCA.



• PCA: an orthogonal linear transformation that transforms the data to a new coordinate system such that the 
greatest variance by some scalar projection of the data comes to lie on the first coordinate (called the first 
principal component), the second greatest variance on the second coordinate, and so on.
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Principal component analysis (PCA) 

From https://liorpachter.wordpress.com/2014/05/26/what-is-principal-component-analysis/

Given n points in Rp, principal components analysis consists of 
choosing a dimension k < p and then finding the affine space of 
dimension k with the property that the squared distance of the 
points to their orthogonal projection onto the space is minimized.



• PCA is a deterministic method, the only parameter one can choose is k for how many principal components to 
keep.

• Choosing k based on the proportion of the variance explained.
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Principal component analysis (PCA) 
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PCs

𝑉𝑎𝑟_𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑𝑘 =
𝜆𝑘
σ𝑖 𝜆𝑖

, where 

𝜆𝑘 is  kth eigenvalue.
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Let’s go to the Jupiter Notebook to see the result of PCA on out toy data 
set

PC1

P
C

2

• https://github.com/BoevaLab/Teaching

• Input: The Cancer Genome Atlas (TCGA) mRNA expression data



• tSNE: nonlinear dimensionality reduction technique, converts similarities between data points to joint 
probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-
dimensional embedding and the high-dimensional data. 

• t-SNE has a cost function that is not convex, i.e., with different initializations we can get different results.

27

t-distributed Stochastic Neighbor Embedding (tSNE)

First introduced by van der Maaten & Hinton paper from 2008.

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf


tSNE method’s the most important parameter:

− Perplexity, scikit-learn recommended range: [5, 50], default: 30

28

t-distributed Stochastic Neighbor Embedding (tSNE)

From https://distill.pub/2016/misread-tsne/



tSNE method’s particularities:

• Cluster sizes in a t-SNE plot mean nothing

29

t-distributed Stochastic Neighbor Embedding (tSNE)

From https://distill.pub/2016/misread-tsne/



tSNE method’s particularities:

• Cluster sizes in a t-SNE plot mean nothing

• Distances between clusters might not mean anything

30

t-distributed Stochastic Neighbor Embedding (tSNE)

From https://distill.pub/2016/misread-tsne/

200 points/cluster



tSNE method’s particularities:

• Cluster sizes in a t-SNE plot mean nothing

• Distances between clusters might not mean anything

• Random noise does not always look random, and sometimes one can see some shapes

31

t-distributed Stochastic Neighbor Embedding (tSNE)

From https://distill.pub/2016/misread-tsne/
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What would you choose as the best value of perplexity in this example?

Perplexity: 10                             20                                    30                                    50    100                                  200

Bladder

Breast

Cervical squamous cell

Esophageal

Head and Neck squamous cell

Kidney clear cell

Kidney papillary

Liver

Ovarian

Skin Cutaneous Melanoma

Stomach

Thyroid 

Uterine Corpus Endometrial

Cancer type abbreviations: https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Uniform Manifold Approximation and Projection (UMAP)

From https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668



UMAP: nonlinear dimensionality reduction technique. Idea is similar to tSNE, but

− Much faster

− Not limited to the first 2-3 dimensions

− Uses binary cross-entropy as a cost function instead of the KL-divergence

− Better preserves global structure

− Uses the number of nearest neighbors and min-dist correction instead of perplexity

34

Uniform Manifold Approximation and Projection (UMAP)

First introduced by McInnes, L, Healy, J, ArXiv e-prints 1802.03426, 2018

PCA tSNE UMAP

https://arxiv.org/abs/1802.03426


UMAP’s the most important parameters:

min_dist, recommended range: [0.1, 1], default: 0.1

− Controls how tightly the embedding is allowed compress points together. Larger values ensure embedded 
points are more evenly distributed, while smaller values allow the algorithm to optimise more accurately 
with regard to local structure. Sensible values are in the range 0.001 to 0.5, with 0.1 being a reasonable 
default.

n_neighbors, recommended range: [2, 100], default: 15

− Determines the number of neighboring points used in local approximations of manifold structure. Larger 
values will result in more global structure being preserved at the loss of detailed local structure. In general, 
this parameter should often be in the range 5 to 50, with a choice of 10 to 15 being a sensible default.

35

Uniform Manifold Approximation and Projection (UMAP)

From https://distill.pub/2016/misread-tsne/
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What would you choose as the best value of min_dist and n_neighbors for 
this example?

Min_dist: 0.1                                    0.5                                          1  

Bladder

Breast

Cervical squamous cell

Esophageal

Head and Neck squamous cell

Kidney clear cell

Kidney papillary

Liver

Ovarian

Skin Cutaneous Melanoma

Stomach

Thyroid 

Uterine Corpus Endometrial

Cancer type abbreviations: https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations

n_neighbors: 15

n_neighbors: 50 



• One should often try different methods with different parameters to choose the one that fits the best to our 
expectations from the data

• Random noise does not always look random, and sometimes one can see shapes

• Projections on the first n principal components can be used as input (instead of the original X) to other 
dimension reduction methods such as tSNE to reduce execution time. 

37

Take home message: dimensionality reduction
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Machine learning



• K-means

• Gaussian mixture models

• Spectral clustering

• Hierarchical clustering

40

Clustering methods

From https://scikit-learn.org/stable/modules/clustering.html



• k-means: aims to partition n observations into k clusters in which each observation belongs to the cluster with 
the nearest mean (cluster centers)

• k-means clustering tends to find clusters of comparable spatial extent

41

K-means

From https://en.wikipedia.org/wiki/K-means_clustering



GMM: probabilistic model that assumes all the data points are generated from a mixture of a finite number of 
Gaussian distributions with unknown parameters

42

Gaussian mixture models (GMM)

From https://scikit-learn.org/stable/modules/mixture.html 



GMM: probabilistic model that assumes all the data points are generated from a mixture of a finite number of 
Gaussian distributions with unknown parameters

43

Gaussian mixture models (GMM)

From http://primo.ai/index.php?title=Expectation%E2%80%93Maximization_(EM)_Clustering_using_Gaussian_Mixture_Models_(GMM)
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k-means clustering tends to find clusters of comparable spatial extent, 
while the GMM expectation-maximization mechanism allows clusters to 
have different shapes. 

From https://en.wikipedia.org/wiki/K-means_clustering

Also, GMMs support mixed membership



• Spectral clustering: uses a standard clustering method (e.g., k-means) on relevant eigenvectors of a Laplacian 
matrix 𝐿 of symmetric data similarity matrix 𝐴. – can also use k-nearest neighbors graphs for construction of A. 

• 𝐿 ∶= 𝐷 − 𝐴, where 𝐷 is the diagonal matrix, such as  𝐷𝑖𝑖 = σ𝑗 𝐴𝑖𝑗.

45

Spectral clustering: relies on the assumption that “close” points should 
belong in the same cluster

From https://towardsdatascience.com/spectral-clustering-aba2640c0d5b



• Hierarchical clustering: family of clustering algorithms that build nested clusters by merging or splitting them 
successively. This hierarchy of clusters is represented as a tree (or dendrogram).

46

Hierarchical clustering

From https://www.saedsayad.com/clustering_hierarchical.htm

▪ Agglomerative approach: This is a "bottom-up" 
approach: each observation starts in its own cluster, and 
pairs of clusters are merged as one moves up the 
hierarchy.

▪ Divisive approach: This is a "top-down" approach: all 
observations start in one cluster, and splits are 
performed recursively as one moves down the hierarchy.

𝑘 = 4



You choose:

• Distance metric (between observations): Euclidean, Squared Euclidean, Manhattan, Maximum

• Linkage criterium (distance between sets of observations): 

− “Ward” minimizes the sum of squared differences within all clusters (within-cluster variance). 
It is a variance-minimizing approach and in this sense is similar to the k-means objective 
function but tackled with an agglomerative hierarchical approach. 

− “Maximum” or “complete linkage” minimizes the maximum distance between observations of 
pairs of clusters.

− “Average linkage” minimizes the average of the distances between all observations of pairs of 
clusters.

− “Single linkage” minimizes the distance between the closest observations of pairs of clusters.

47

Hierarchical clustering: important parameters

https://blog.tdwi.eu/hierarchical-clustering-in-python/



• Linkage criterium (distance between sets of observations): 

48

Hierarchical clustering: important parameters

From https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering

https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html

“Ward” gives the most regular cluster sizes

https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html


• Elbow method (for sum of squared distances to cluster centers)

− How find the “elbow”? By eye or https://github.com/arvkevi/kneed

• Silhouette analysis

• BIC and AIC

49

How to choose the best number of clusters k?

Elbow
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• Elbow method

• Silhouette analysis

− Plots silhouette score: a measure of how close each point in one 
cluster is to points in the neighboring clusters, in [-1, 1].

− Values near +1 indicate that the sample is far away from the 
neighboring clusters. A value of 0 indicates that the sample is on or 
very close to the decision boundary between two neighboring 
clusters and negative values indicate that those samples might 
have been assigned to the wrong cluster.

50

How to choose the best number of clusters k?

From https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html 



• Elbow method

• Silhouette analysis

• Akaike information criterion (AIC) or Bayesian information criterion 
(BIC)

− The BIC generally penalizes free parameters more strongly than 
the AIC

51

How to choose the best number of clusters k?

From https://sites.northwestern.edu/msia/2016/12/08/k-means-shouldnt-be-our-only-choice/



• Elbow method

• Silhouette analysis

• BIC and AIC

52

How to choose the best number of clusters k?

Let’s go to our hands on exercise to see how it works!
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Which value of k would you choose? 
(Mini-batch k-means clustering method)
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Which value of k would you choose?

True types 

𝑘 = 8

Bladder

Breast

Cervical squamous cell

Esophageal

Head and Neck squamous cell

Kidney clear cell

Kidney papillary

Liver

Ovarian

Skin Cutaneous Melanoma

Stomach

Thyroid 

Uterine Corpus Endometrial

𝑘 = 12
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Which value of k would you choose? (Gaussian mixture model)

BIC                                                                                        AIC
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Which value of k would you choose? (Gaussian mixture model)

Best solution according to BIC: k=13 True labels
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NMI and ARI allows to see which clustering model is the best on our data set 

Method k ARI NMI

Mini-batch k-means 8 0.7479 0.8102

Mini-batch k-means 19 0.7426 0.8179

Gaussian mixture model 13 0.7600 0.8479

Spectral clustering 13 0.8148 0.8671

Hierarchical clustering (linkage='ward’) 13 0.7394 0.8379

NMI = Normalized Mutual Information
measure mutual dependence between the true and predicted labels 
(can be also used as a measure of similarity between two clusterings)

When true labels are available (rarely the case though):

ARI = Adjusted rand index
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Spectral clustering result (k=13)

Best solution according to NMI True labels

Bladder

Breast

Cervical squamous cell

Esophageal

Head and Neck squamous cell

Kidney clear cell

Kidney papillary

Liver

Ovarian

Skin Cutaneous Melanoma

Stomach

Thyroid 

Uterine Corpus Endometrial



• The choice of the clustering method should be advised by data structure

− Visualize the data first

− E.g, ellipsoids => GMM; sophisticated connected components => structural clustering

• Choosing the number of clusters can be done using:

− Elbow method

− Silhouette method

− BIC or AIC

• Different methods for the estimation of the number of clusters provide different results

− E.g., BIC is more conservative than AIC

59

Take home message: clustering



• Graph-based clustering methods (Leiden and Louvain algorithms, commonly used on scRNA-seq data)

• Topic models/LDA

• Autoencoder-based methods for dimensionality reduction

• Integration of different data types (e.g., clusters of clusters)

60

What we did not cover today



• Dimensionality reduction can be used as a step prior to clustering

• One usually tries different dimensionality reduction techniques to choose the one that fits the expectations

• The choice of clustering method should match the data structure

61

Take home message
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Machine learning

Clustering?
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Classification: Biological examples

• Prediction of risk groups

• Machine learning identifies interacting 

genetic variants contributing to breast 

cancer risk […] Behravan et al., Sci Rep. 2018

• Primary diagnosis

• DNA methylation-based classification of 

central nervous system tumours. Capper et 

al. Nature 2018
Proposed breast cancer risk prediction approach 

using identified risk-predictive interacting SNPs



07.05.2020 65

Classification: Biological examples

• Prediction of risk groups

• Machine learning identifies interacting 

genetic variants contributing to breast 

cancer risk […] Behravan et al., Sci Rep. 2018

• Primary diagnosis

• DNA methylation-based classification of 

central nervous system tumours. Capper et 

al. Nature 2018



• Input: The Cancer Genome Atlas (TCGA) mRNA expression data

66

Hands-on: 
1. Primary cancer diagnosis from gene expression
2. Breast cancer patients’ stratification based on gene expression

https://github.com/BoevaLab/Teaching or https://ml4h2023.jupyter.inf.ethz.ch/

https://github.com/BoevaLab/Teaching
https://ml4h2023.jupyter.inf.ethz.ch/


• TASK 1:

Given mRNA expression, predict cancer type

67

Hands-on: 
1. Primary cancer diagnosis from gene expression
2. Breast cancer patients’ stratification based on gene expression

?
?

?

?



• TASK 2:

Given mRNA expression (and clinical data: stage, age), stratify patients 

according to good and bad prognosis

68

Hands-on: 
1. Primary cancer diagnosis from gene expression
2. Breast cancer patients’ stratification based on gene expression

?

+ clinical stage + age 

Aggressive 

treatment to 

be applied
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Standard approaches for classification

• Random Forest

• AdaBoost

• Gradient Tree Boosting 

(gradient boosting 

machine, GBM)

• Multi-layer perceptron 

(MLP)

• k Nearest Neighbors (k-NN)

• Logistic Regression

• Logistic Regression with L1+L2 

(Elastic Net) penalty

• Support Vector Machines 

(SVM)

• Naive Bayes (Gaussian)
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Hands-on: 
1. Primary cancer diagnosis from gene expression
2. Breast cancer patients’ stratification based on gene expression

TASK 1.

TASK 2.

With 

clinical 

TASK 2.

Without 

clinical

TASK 1.

TASK 2.

With 

clinical 

TASK 2.

Without 

clinical

F1 score: harmonic mean of recall and precision

Time to train the model

Log10 seconds
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Hands-on: 
1. Primary cancer diagnosis from gene expression
2. Breast cancer patients’ stratification based on gene expression

Elastic net on the validation set (colors 

correspond to predictions)

Validation set (colors correspond 

to true cancer types)

Prediction 

accuracy: 

0.99

Best solution: Elastic net logistic regressionTrue values, tumor classification task
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Hands-on: 
1. Primary cancer diagnosis from gene expression
2. Breast cancer patients’ stratification based on gene expression

multi-layer perceptron 

on the validation set

Validation set (true 

colors)

fatality

Prediction 

accuracy: 

0.95



• Linear and non-linear models can provide similar prediction accuracy (TASK1)

• Classification on imbalanced groups with low information content may fail (TASK2)

− Study your data first 

− Check data summary

− Visualize your data

− Use the right evaluation metrics (e.g., precision and recall)

− Consider redesigning your task

73

Take home message: Classification
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Regression: Biological examples

• Prediction of treatment efficiency / drug response

• Predicting drug response of tumors from 

integrated genomic profiles by deep neural 

networks. Chiu et al., BMC Med. Genomic, 2019

• Prediction of molecular/cellular properties (e.g., 

protein-DNA binding affinities)

• Predicting the sequence specificities of DNA- and 

RNA-binding proteins by deep learning. Alipanahi et 

al., Nature Biotech. 2015

Sample-wise Pearson and Spearman correlation between 

imputed and predicted IC50 data of CCLE samples
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Regression: Biological examples

77

• Prediction of treatment efficiency / drug response

• Predicting drug response of tumors from 

integrated genomic profiles by deep neural 

networks. Chiu et al., BMC Med. Genomic, 2019

• Prediction of molecular/cellular properties (e.g., 

protein-DNA binding affinities)

• Predicting the sequence specificities of DNA- and 

RNA-binding proteins by deep learning. Alipanahi et 

al., Nature Biotech. 2015

DeepBind model

From Coons et al, iScience, 2019



Regression: Biological examples

78

• Age prediction from DNA methylation (e.g., 

for forensics)

• DNA methylation-based forensic age 

prediction using artificial neural networks and 

next generation sequencing. Vidaki et al. 

Forensic Sci Int Genet. 2017
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Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

?

+ clinical stage + age 

Treatment with HER2 

inhibitors: Herceptin 

(trastuzumab) or 

Tykerb (lapatinib)

High level of 

HER2 protein

Low level of 

HER2 protein

The HER2 protein is coded by the ERBB2 gene, 

frequently amplified in human breast cancer

Target variable (𝒚): Reverse Phase Protein Array (RPPA) value of HER2 presence in tumor cells

TASK 1:

https://github.com/BoevaLab/Teaching
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Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

?

+ clinical stage + age 

Standard 

chemotherapy, e.g., 

cisplatin

High level of 

p53 protein

Low level of 

p53 protein

The p53 protein is coded by the TP53 gene, frequently 

deleted, mutated or repressed in human cancers

Target variable (𝒚): Reverse Phase Protein Array (RPPA) value of p53 presence in tumor cells

TASK 2:

https://github.com/BoevaLab/Teaching
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Classic regression models

• Random Forest

• AdaBoost

• Gradient Tree Boosting 

(gradient boosting 

machine, GBM)

• Multi-layer perceptron 

(MLP)

• Ordinary Least Squares

• Lasso (L1 penalty on model 

coefficients)

• Ridge (L2 penalty on model 

coefficients)

• Elastic Net (L1 and L2 penalty 

on model coefficients)

2

2
21
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Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

Time (log10 sec) Sklearn accuracy score R2 Pearson correlation R Spearman correlation ρ

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝜌 (𝐻𝐸𝑅2, 𝐸𝑅𝐵𝐵2) = 0.63

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝜌 (𝑝53, 𝑇𝑃53) = 0.27
Coefficient of determination 𝑅2 = (1 −

𝑅𝑆𝑆

σ(𝑦𝑖−ത𝑦)2
)
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Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

Random Forest predictions

Spearman 

rho: 0.51

Spearman 

rho: 0.66
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Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

Random Forest predictions

FEATURE IMPORTANCE: 



97.05.2020Valentina Boeva

Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

FEATURE IMPORTANCE: 

Valentina Boeva 8507.05.2020
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Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

FEATURE IMPORTANCE: 

“ARF deletion [from p53 pathway] is correlated 

with overexpression of tectonic family member 

1 (TCTN1), a protein involved in a diverse 

range of cellular processes, including 

promotion of GBM cell proliferation”. 

“Silencing of SORBS1 […] attenuates chemical drug sensitivity especially that to 

cisplatin, by inhibition of p53 in breast cancer cells.”



• Regularized methods generally work better

− Regularization may prevent over-fitting and select “important” features

• Regularized linear methods may provide accuracy similar to non-linear methods

• Neural networks do not always win

• Checking the feature importance may provide insights into biological mechanisms 

87

Take home message: Regression



88

Selection of hyperparameters via cross validation

Nested cross validation

What we did not do today, but in real life we should do it:



• Classification and regression are extremely widely used in biology and medicine to automatize decisions of 
clinicians (diagnosis, choice of treatment) and predict treatment response and side effects

• The accuracy of predictions depends a lot on the information present in the data rather than on the ML method 
used

− In our hands-on exercises the difference in accuracy between linear and non-linear methods varied between 
0.5% and 15%

• There is no method that works the best in any situation

• Cross validation should be always applied to select the best hyperparameters

• In real life, one should compare a model built on omics data (+ clinical) with a model built using clinical variables 
only

89

Take home message



Professor Valentina Boeva

valentina.boeva@inf.ethz.ch

ETH Zurich

Dept of Computer Science

CAB F51.2

Universitatstrasse 6

8092 Zurich, Switerland

www.boevalab.com

Thank you for your attention!


	Slide 1: Machine Learning for Biological Use Cases
	Slide 2: Machine learning
	Slide 3: Map of classical machine learning methods
	Slide 4: Map of classical machine learning methods
	Slide 5: Map of classical machine learning methods
	Slide 6: Map of classical machine learning methods
	Slide 7: Types of input data in molecular biology and genetics
	Slide 8: Omics data are high dimensional
	Slide 9: Map of classical machine learning methods
	Slide 10: Map of machine learning methods
	Slide 11: Examples: Dimension reduction and clustering
	Slide 12: Examples: Dimension reduction and clustering
	Slide 13: Examples: Dimension reduction and clustering
	Slide 14: Examples: Dimension reduction and clustering
	Slide 15: Examples: Dimension reduction and clustering
	Slide 16: Examples: Dimension reduction and clustering
	Slide 17: Methods for dimension reduction
	Slide 18: Hands-on: gene expression data from several cancer types
	Slide 19: Principal component analysis (PCA) 
	Slide 20: Principal component analysis (PCA) 
	Slide 21: Principal component analysis (PCA) 
	Slide 22: Principal component analysis (PCA) 
	Slide 23: Principal component analysis (PCA) 
	Slide 24: Principal component analysis (PCA) 
	Slide 25: Principal component analysis (PCA) 
	Slide 26: Let’s go to the Jupiter Notebook to see the result of PCA on out toy data set
	Slide 27: t-distributed Stochastic Neighbor Embedding (tSNE)
	Slide 28: t-distributed Stochastic Neighbor Embedding (tSNE)
	Slide 29: t-distributed Stochastic Neighbor Embedding (tSNE)
	Slide 30: t-distributed Stochastic Neighbor Embedding (tSNE)
	Slide 31: t-distributed Stochastic Neighbor Embedding (tSNE)
	Slide 32: What would you choose as the best value of perplexity in this example?
	Slide 33: Uniform Manifold Approximation and Projection (UMAP)
	Slide 34: Uniform Manifold Approximation and Projection (UMAP)
	Slide 35: Uniform Manifold Approximation and Projection (UMAP)
	Slide 36: What would you choose as the best value of min_dist and n_neighbors  for this example?
	Slide 37: Take home message: dimensionality reduction
	Slide 38: Map of classical machine learning methods
	Slide 39: Map of classical machine learning methods
	Slide 40: Clustering methods
	Slide 41: K-means
	Slide 42: Gaussian mixture models (GMM)
	Slide 43: Gaussian mixture models (GMM)
	Slide 44: k-means clustering tends to find clusters of comparable spatial extent, while the GMM expectation-maximization mechanism allows clusters to have different shapes. 
	Slide 45: Spectral clustering: relies on the assumption that “close” points should belong in the same cluster
	Slide 46: Hierarchical clustering
	Slide 47: Hierarchical clustering: important parameters
	Slide 48: Hierarchical clustering: important parameters
	Slide 49: How to choose the best number of clusters k?
	Slide 50: How to choose the best number of clusters k?
	Slide 51: How to choose the best number of clusters k?
	Slide 52: How to choose the best number of clusters k?
	Slide 53: Which value of k would you choose?  (Mini-batch k-means clustering method)
	Slide 54: Which value of k would you choose?
	Slide 55: Which value of k would you choose? (Gaussian mixture model)
	Slide 56: Which value of k would you choose? (Gaussian mixture model)
	Slide 57: NMI and ARI allows to see which clustering model is the best on our data set 
	Slide 58: Spectral clustering result (k=13) 
	Slide 59: Take home message: clustering
	Slide 60: What we did not cover today
	Slide 61: Take home message
	Slide 62: Map of classical machine learning methods
	Slide 63: Map of classical machine learning methods
	Slide 64: Classification: Biological examples
	Slide 65: Classification: Biological examples
	Slide 66: Hands-on:  1. Primary cancer diagnosis from gene expression 2. Breast cancer patients’ stratification based on gene expression 
	Slide 67: Hands-on:  1. Primary cancer diagnosis from gene expression 2. Breast cancer patients’ stratification based on gene expression 
	Slide 68: Hands-on:  1. Primary cancer diagnosis from gene expression 2. Breast cancer patients’ stratification based on gene expression 
	Slide 69: Standard approaches for classification
	Slide 70: Hands-on:  1. Primary cancer diagnosis from gene expression 2. Breast cancer patients’ stratification based on gene expression 
	Slide 71: Hands-on:  1. Primary cancer diagnosis from gene expression 2. Breast cancer patients’ stratification based on gene expression 
	Slide 72: Hands-on:  1. Primary cancer diagnosis from gene expression 2. Breast cancer patients’ stratification based on gene expression 
	Slide 73: Take home message: Classification
	Slide 74: Map of classical machine learning methods
	Slide 75: Map of classical machine learning methods
	Slide 76: Regression: Biological examples
	Slide 77: Regression: Biological examples
	Slide 78: Regression: Biological examples
	Slide 79: Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples) 1. Concentration of HER2 (coded by the ERBB2 gene) 2. Concentration of p53 (coded by the TP53 gene)  
	Slide 80: Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples) 1. Concentration of HER2 (coded by the ERBB2 gene) 2. Concentration of p53 (coded by the TP53 gene)  
	Slide 81: Classic regression models
	Slide 82: Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples) 1. Concentration of HER2 (coded by the ERBB2 gene) 2. Concentration of p53 (coded by the TP53 gene)  
	Slide 83: Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples) 1. Concentration of HER2 (coded by the ERBB2 gene) 2. Concentration of p53 (coded by the TP53 gene)  
	Slide 84: Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples) 1. Concentration of HER2 (coded by the ERBB2 gene) 2. Concentration of p53 (coded by the TP53 gene)  
	Slide 85: Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples) 1. Concentration of HER2 (coded by the ERBB2 gene) 2. Concentration of p53 (coded by the TP53 gene)  
	Slide 86: Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples) 1. Concentration of HER2 (coded by the ERBB2 gene) 2. Concentration of p53 (coded by the TP53 gene)  
	Slide 87: Take home message: Regression
	Slide 88: Selection of hyperparameters via cross validation
	Slide 89: Take home message
	Slide 90

