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Map of classical machine learning methods

. Dimension
RS reduction

Machine learning

Classification Clustering
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Map of classical machine learning methods

Supervised Unsupervised
learns on data with labels learns on data without labels

. Dimension
RS reduction

Continuous

Machine learning

Classification Clustering

Discrete/Categorical

04.10.2024 4



Map of classical machine learning methods

Target

v

(]
y - 00
@%8 % oo
9 reduction

Machine learning

.oo' ° CC))OO -:o' °
() '.|' ) ()() () ""
e o0° © 00° o oeo®

04.10.2024



Map of classical machine learning methods

Supervised Unsupervised
learns on data with labels learns on data without labels

: Dimension
RS reduction

Automatize decisions
* Primary diagnosis
* Choice of treatment

Predict future

» Understand data structure

Machine learning » Visualize data in 2D/3D
- Treatment response
- Side effects e _ » Detect hidden features
Classification Clustering
Detect the most “important”

features

g ? 3 * S
: % o°, oo ®© o0®

04.10.2024
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Types of input data in molecular biology and genetics

Type of data:

Genomic:
— Variants common in general population (SNPs)
— Rare variants
— Single nucleotide variants, SNV (a.k.a. mutations)
— Structural aberrations (e.g., translocations, amplifications)

— Copy number profiles

Transcriptomic:

— RNA-seq (or expression microarrays) — bulk and single cell
— mi-RNA

Epigenetic:

— DNA methylation (sequencing or methylation arrays)

— Histone modifications (ChIP-seq) and open chromatin (ATAC-seq, DHS-seq)

Proteomic:
— RPPA (bulk), CyTOF (single cell)

Context:

Common diseases (Alzheimer,
asthma, hypertension,...)

Genetic syndromes (Down

syndrome, CHARGE syndrome, ...

Cancer

Type of samples:
Blood samples
Saliva samples
Tissue samples
Maternal blood samples

)



Omics data are high dimensional

Mutations Structural Copy MRNA MiRNA DNA

(SNVs) variants number expression expression methylation
alterations

3M-100M ~10-10K ~1-1000 ~10-25K ~25K ~1000 27K-28M

+ sometimes these data is complemented with
proteomics data (expression of hundreds of proteins)

Full —omics dataset millions of observations per patient:

Great challenge to avoid over-fitting and perform feature selection!



Map of classical machine learning methods
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Map of machine learning methods

Unsupervised

learns on data without labels

A

o _ 0 g

Machine learning

Classification Clustering

o ©
Dimension % ©
Regression e >

04.10.2024
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Examples: Dimension reduction and clustering

tSNE
pre-EMT neural tube -
* Single cell transcriptomics: NC N\ .z~ ‘,/‘.5‘: . premigratory
ok o o 5% P90 Lt &3
development, cell type /ézé-‘; AL f@gﬂx\
i ~ IR S R T Y o
heterogeneity and cancer , 'g,,@" P SN T, K
Py T~ =~ b b, s e o ase e 2F
2“7?:‘ TR A L LT 7% sensory
e A2 ”“w v -.;A"\sensory i vi’;,:,w
i neurons G
delaminating «° * 45 autonomic ok

NC u% ¥y migratory
AUtONOMIC et @ by ,‘!..,.-;: progenitors
nervous system i

(3
mesenchyme ™

Spatiotemporal structure of cell fate decisions in murine
neural crest. Soldatov et al., Science 364, 971 (2019)



Examples: Dimension reduction and clustering

* Single cell transcriptomics:

development, cell type
heterogeneity and cancer

Malignant cells

Non-malignant cells

3

b

.

2

tSNE2

NK,_=> T

-
\
J’//’//.". o.\
< A S RE
7 L
s T P - ‘.:."Q’.'°*|

-~ ey _hé‘/
T-cells ,*ﬁ-—;.

’g"o-ﬂ

P, s g ™

_ —e— ~ _Macrophages

-t a,ﬂ&

CAFs Endo

N /.ﬁ\
s
O
\.‘QI

\
\
@ I

- B cells

tSNE1

® Mel53 Mel60

tSNE1

Mel74 @ Mel79 @ Mel81 Mel88 @ Mel94
® Mel58 Mel72 @ Mel78 @ Mel80 Mel84 @ Mel89

Clusters called by DBScan

Dissecting the multicellular ecosystem of metastatic
melanoma by single-cell RNA-seq. Tirosh et al. Science. 2016

Apr 8;352(6282):189-96.
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Examples: Dimension reduction and clustering

Bronchoalveolar lavage fluid macrophages from patients with varying severity of
COVID-19 and from healthy people:

. . . . e Group 1 FCNZ1N classic M1-like macrophages

¢ Slngle CE” transcrlptomlcs. e Group 2 FCN1°SPP1*classic M1-like macrophages
e Group 3 SPP1* M2-like macrophages
d eve I 0 p me nt’ CEl I type ® Group 4 FABP4* alveolar macrophages

heterogeneity and cancer

UMAP_2

Severe cases: Presence of proinflammatory monocyte-derived macrophages

Single-cell landscape of bronchoalveolar immune cells in
patients with COVID-19. Liao et al., Nature Medicine. 2020
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Examples: Dimension reduction and clustering

e Bulk transcriptomics and

epigenetics (cancer)

Glioblastoma Embryonal

Glio-neuronal

Ependymal

Reference cohort (91 classes)

mm 1 ETMR 1 CHGL
e 1 MB, WNT 1 LGG, SEGA
= 2 MB, G3 w 2 LGG, PA PF
2 MB, G4 £ 2 LGG, PAMID
= 2 MB,SHHCHLAD 5 5 ANA PA
2 MB, SHH INF 5 5 HGNET, MN1
mmm 2 ATRT, MYC £ 5 IHG
W 2 ATRT, SHH 4] 4 LGG, MYB
s 2 ATRT, TYR 4 LGG, PA/GG ST
= 2 CNS NB, FOXR2 PXA
w5 HGNET, BCOR
1 SCHW
1 DMG, K27 1 SCHW, MEL
e 2 GBM, G34
=== 2 GBM, MES 2 PTPR, A
e 2 GBM, ATK | = 2 PTPR. B
2 GBM, RTK II g 2 PINT,PBB
e 2 GBM, RTK Il g 4 PINT,PB A
mmm 2 GBM, MID 3 PINT, PPT
e 2 GBM, MYCN
w1 CHORDM
= 1 CN 1 EWS
mmm 1 DLGNT 1 HMB
w1 LIPN == 4 MNG
= 1 LGG, DIG/DIA 7 mmm 3 SFT HMPC
mmm 1 LGG, DNT o = mmm 5 EFT, CIC
e 1 LGG, RGNT =3
w1 RETB 8 . 1 MELAN
mmm 2 ENB, A S mmm 1 MELCYT
= 2 ENB, B °
s 2 PGG, nC = 2 mmm 3 PLEX, AD
= 4 LGG, GG % mmm 3 PLEX, PED A
o mmm 3 PLEX, PEDB
1 GPH, ADM
1 CPH, PAP = 3 AIDH
EEm 1 PITAD, ACH 3 AIDH, HG
w1 PITAD, FSH LH N 3 0 IDH
w1 PITAD, PRL £
1 PITAD,STHSPA &
1 PITAD, TSH & mmm 1 LYMPHO
B 2 PITAD, STHDNSA T 1 PLASMA
w2 PITAD, STH DNS B %
4 PITUI, SCO,GCT & ADENGPIT
mmm 1 EPN, RELA - WM
W 2 EPN, YAP - CEBM
mmm 2 EPN, PF A g mmm HEMI
. 2 EPN PF B C mmm  HYPTHAL
'y o
mmm 2 EPN, SPINE o INFLAM
mmm 4 EPN, MPE EEm  PINEAL
mmm 4 SUBEPN, PF mmm PONS
mmm 4 SUBEPN, SPINE REACT

4 SUBEPN, ST

Relation to WHO entities (category):

1 Equivalent 3 Not equivalent (combining grades)

2 Subclass 4 Not equivalent (combining entites)
5 Not recognized by WHO

t-SNE dimensionality reduction (2,801 samples)

B WNT s7H Dns 87TAP
. STH DNS A
£ TSH x.\.PRL FSH LH
’ STHSPAS Ao AIDH oo
ADENOPIT ACTH
ENB, A :
RETB A IDH, HG
ENB, B
MB, G3 PINT, PB A
@ﬁﬂ- PINT,PBB  PINT,PPT # ATRT, TYR
| -
. PINEAL
PLEX. AD ?:E'ATRT, SHH
CPH, ADM PGG. nC : o]
[ J ‘s
MB, G4 CPH, PAP o Plex pED A ATRT, MYC
PLEX, PED B
S sHorom PITUL SCO, GCT
HMPC “ ' PTPR, A
MNG !_ﬂ‘ SCHW INFLAM PTPR, B
EFT CIC)- 2 s CHGL
' n‘LGG PAMID % EPN, MPE
MELCYT HMB 10 -
pLasMAS ¢ pXA 5 \i?; LGG,PAPF W EPN, SPINE %
v
MELAN . 5 EPN, RELA
DMG. K27 - 71. 5 2 Lee, ReNT .
L&) LYMPHO ANAPA 43 EPN. YAP «ffy EPN,PFB
CNS NB, FOXR2 GBM 3t . LGG.DNT
GBM, MID"\.RTK' GBM, MYCN F @ SUBEPN, PF
GBM. RTK Il GBM, MES Control ~ SUBEPN, ST
. ] a .
L HGNET, MN1 CN
GBM, G34 b EBM
GBM. RTK Il © MB, SHH CHL AD
’ LIPN » i?
1 LGG, DIG/DIA Ld MB, SHH INF
2 SCHW, MEL HGNET, BCOR
3 SUBEPN, SPINE .
4 LGG, MYB 4
5 HG !ﬂ",
6 LGG, PA/GG ST B, P A
7 LGG, GG
8 DLGNT EmR
9 LGG, SEGA

10 Control REACT

DNA methylation-based classification of central nervous
system tumours. Capper et al. Nature 2018
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Examples: Dimension reduction and clustering

e Bulk transcriptomics: Effect of
mutations

Transcript profiles of 1484 single gene deletions of Saccharomyces cerevisiae (baker's yeast)

‘ | Ribonuclease H2 (2/2) o Unknown, 26 (cell cycle)
Ste11-SteS0 (2/2) pd3L (10/1
Telomere cap (3/6) ‘C .. IFI i 0
Sir2-3-4 (3/3) | -~
ESCRT | (2/3) § Elongalor (69)
ESCAT Il (3/3)
® 2
| Unknown, 46 (TOR)
Q | Ric1-Rgp1 (2/2)
(v | Pep3-Peps (212) Unknown, 13 (mitochondria)
A 1 HOPS (2/6)
@ | unknown, 32 (lipiss, heatshock) L&)
§ 6-phosphofructokinase (2/2)
) oG 5P |ISW1 (2/4)
CAF-1 (33)
v, HDA (3/3)
R - 4 HAT-A4 (2/8)
» ‘? l.%?l‘.’?!f?f?’, ..... HIR (2/4)
: - ... SAGA (6/12)
s o | Sum1-Rim1 (212)
Srb-mediator (813) | g D [prack sinsioere: 7 Sro-mediator (4/13)
TF complex (4/4) : i ¢ | Srb-mediator (3/13)
s u . ! RNA polymerase Il (2/3)
Sac3-Thpt (272) || QJ
/ d i RSC (5/15)
Protein kinase CK2 (34) 88
S (2'4)I 9 .. ® oo _ SAGA (6/12)
[ e B i
Swri (78) ... .o o Hoedood) Set3C (57)
N NuA4 (4/6) ubpdBres 22) | | 4 Cdc73-(PaH (3/5)
< RSC (5115} | > 1‘, I?,"ng'g}'s‘s's’(m) | COMPASS (87)
: ee Brei-Lget (272
3 inada (67) " f] ANA Pol | (2/4) s et

Exosome, RNase (2/4)

UMAP1 Putative complex (2/2)
Preribosome, large subunit (2/3)

Preribosome, small subunt (2/2)

Efg1-Bud22 (2/2)

Dimensionality reduction by UMAP to visualize physical and
genetic interactions. Michael W. Dorrity et al., Nature Comm.
2020

15



Examples: Dimension reduction and clustering

* Population genetics

”»‘“RU
7, - R
\ . T T
H o TEH

IT
CH

RO R0
\
1171 T { GR
T, T G
| T
- I i @ TR
\‘f TIT ’ GR TR
1TPT 7
T IT
i 2 ‘

Mr 1T

i

ST
Lagd} |
TGH T
CH

«Genes mirror geography within Europe» Novembre et al, Nature, 2008
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Methods for dimension reduction

Most widely used methods:

Principal component analysis (PCA)
t-distributed Stochastic Neighbor Embedding (tSNE) — check!
Uniform Manifold Approximation and Projection (UMAP) — check!

s THCA

PCA t-SNE

UMAP

17


https://distill.pub/2016/misread-tsne/
https://pair-code.github.io/understanding-umap/#:~:text=In%20the%20simplest%20sense%2C%20UMAP,behind%20them%20is%20remarkably%20simple.

Hands-on: gene expression data from several cancer types

* https://github.com/Boevalab/Teaching

* Input: The Cancer Genome Atlas (TCGA) mRNA expression data

SISO £ https//portal.gdc.cancer.gov/

\| |H EABISNS;:;N;;::;?TIWTE QOOCE ©Projects 48 Exploration 4 Analysis & Repository

Harmonized Cancer Datasets
Genomic Data Commons Data Portal

Get Started by Exploring.

§] Projects &% | Exploration @ Analysis & Repository

Q e.g. BRAF, Breast, TCGA-BLCA, TCGA-A5-A0G2

Data Portal Summary  pataRelease 23.0 - April 07, 2020

PROJECTS PRIMARY SITES CASES

Ciea & 67 & 83,709

FILES GENES MUTATIONS

[9559,345 £ 22,872 # 3,142,246

Q Quick Search Manage Sets

* = L o8

# Login = Cart [

i1 GDC Apps
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Principal component analysis (PCA)

From https://liorpachter.wordpress.com/2014/05/26/what-is-principal-component-analysis/

240

220

200
1

180

140

40

60

PCA: an orthogonal linear transformation that transforms the data to a new coordinate system such that the
greatest variance by some scalar projection of the data comes to lie on the first coordinate (called the first
principal component), the second greatest variance on the second coordinate, and so on.

04.10.2024
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Principal component analysis (PCA)

The first principal component:

the line that maximizes the variance (the
average of the squared distances from the
projected points (red dots) to the origin “0”).

The second principal component is calculated
in the same way, with the condition that it is
perpendicular to the first principal component
and that it accounts for the next highest
variance.

Etc.

From https://builtin.com/data-science/step-step-explanation-principal-component-analysis

04.10.2024

20


https://builtin.com/data-science/step-step-explanation-principal-component-analysis

Principal component analysis (PCA)

e Given n points in RP, principal components analysis consists of choosing a dimension k < p and then finding the
affine space of dimension k with the property that the squared distance of the points to their orthogonal
projection onto the space is minimized.

04.10.2024 21



Feature 2

Principal component analysis (PCA)

Generally, one standardizes the data along each dimension before applying PCA.

PCA: an orthogonal linear transformation

PCA

PC2
a

Feature 1 PC1

04.10.2024

22



Feature 2

Principal component analysis (PCA)

Generally, one standardizes the data along each dimension before applying PCA.

Q: How will look the PCA transformation of a PCA? (1) the same

PCA _

4

Feature 1

(2) the “ball”

04.10.2024 23




Principal component analysis (PCA)

* PCA: an orthogonal linear transformation that transforms the data to a new coordinate system such that the
greatest variance by some scalar projection of the data comes to lie on the first coordinate (called the first
principal component), the second greatest variance on the second coordinate, and so on.

240
1

220

Given n points in RP, principal components analysis consists of
choosing a dimension k < p and then finding the affine space of
dimension k with the property that the squared distance of the
points to their orthogonal projection onto the space is minimized.

200
1

From https://liorpachter.wordpress.com/2014/05/26/what-is-principal-component-analysis/ 2



Principal component analysis (PCA)

 PCAis a deterministic method, the only parameter one can choose is k for how many principal components to

keep.

e Choosing k based on the proportion of the variance explained.

Proportion of variance

explained (%)

g

8

8

&

8

=

= oo AR LSRR

Cumulative variance

Contribution to variance

.

1 2 3 4 2 <] [ g 8

PCs

Ak
Zi/li
A, is k" eigenvalue.
k

Var_explained; =

, Where

25



Let’'s go to the Jupiter Notebook to see the result of PCA on out toy data

set

* https://github.com/Boevalab/Teaching

* Input: The Cancer Genome Atlas (TCGA) mRNA expression data

PC2

200

150

100

-100

PCA of TCGA expression dataset

o BLCA
BRCA ° _ 0%
@ CESC ' P
o EScCA
HNSC
KIRC
KIRP :
UHC o @

ov o
© SKCM
°g @ STAD
p THCA
UCE® .

-150 -100 -50 0 50 100 150 200
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t-distributed Stochastic Neighbor Embedding (tSNE)

e tSNE: nonlinear dimensionality reduction technique, converts similarities between data points to joint
probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-
dimensional embedding and the high-dimensional data.

i CD4+ T Cells
i CD14+ Monocytes
£ \57"» Cytotoxic CDB T Cells
:}»}K\{(_(- @ B-Cells
25 v ?t;'czlf'me“s Cell population Markers % of cells
® FOGRAA+ Monocyies CD4+ T Cells CD8A-|IL7R+|CD3D+  34.3%
o & @ Dendritic Cells CD14+ Monocytes CD14+|LYZ+ 20.9%
- :f* ol CD8+ Cytotoxic TCells CD8A+|GZMB+|CD3D+ 12.9
ool fx» BCells MS4A1+ 12.59
: IL7+/CD8+T Cells CD8A+|IL7R+|CD3D+ 9.0%
NK Cells NKG7+|GNLY+ 4.7%
FCGR3A+ Monocytes FCGR3A+| MS4A7+ 2.5%
-25 Dendritic Cells FCER1A+ 1.8%
Megakaryocytes PPBP+ 1.3%
%0 5 %
t-SNE-1
[ ]

t-SNE has a cost function that is not convey, i.e., with different initializations we can get different results.


http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

t-distributed Stochastic Neighbor Embedding (tSNE)

tSNE method’s the most important parameter:
— Perplexity, scikit-learn recommended range: [5, 50], default: 30

LY iy . * “» L] P

Bk - g &

X L L]

W. .
L] { - y

& L
w
bt T
Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50
Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

From https://distill.pub/2016/misread-tsne/

i

Perplexity: 100
Step: 5,000

28



t-distributed Stochastic Neighbor Embedding (tSNE)

tSNE method’s particularities:

e Cluster sizes in a t-SNE plot mean nothing

: , v
el
e * . &
-.' -
1_2&’-
s - b
& -
. -X,
g
Original Perplexity: 2 Perplexity: 5
Step: 5,000 Step: 5,000

From https://distill.pub/2016/misread-tsne/

Perplexity: 30
Step: 5,000

Perplexity: 50
Step: 5,000

Perplexity: 100
Step: 5,000
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t-distributed Stochastic Neighbor Embedding (tSNE)

tSNE method’s particularities:

e Distances between clusters might not mean anything

5 .
. > a\
‘% - ‘ '
Lo PPN A 1 20 B T X
& 7 - “
H 3 o O y o \ -
"- ‘.: 8
< ol
v
Originu[ Perplexity: 2 Perplexity: 5 Perplexity: 30
Step: 5,000 Step: 5,000 Step: 5,000

From https://distill.pub/2016/misread-tsne/

Perplexity: 50
Step: 5,000

&

Perplexity: 100
Step: 5,000

200 points/cluster
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t-distributed Stochastic Neighbor Embedding (tSNE)

tSNE method’s particularities:

e 00‘: > . -~ -
* W . 52 *. ‘- -
. » $ e
-,
w %
Original Perplexity: 2
Step: 5,000

Original Perplexity: 2

Step: 5,000

From https://distill.pub/2016/misread-tsne/

3 *

Perplexity: 5
Step: 5,000

Perplexity: 5
Step: 5,000

. -~
.
. ..
L3S0 e
*
.
. ..'. .. .
. .
& s J
.l ® oo
. 97 A
. :‘...- .\
%

Perplexity: 30

Step: 5,000

Perplexity: 30
Step: 5,000

Random noise does not always look random, and sometimes one can see some shapes

.
I B L
o © o ¢
oo 0% .
- % %o o - 99 @
s B el e RIS, -
..\0. = .‘“,'. ‘: = 87 2% atee
- "..'o 3 -, } "
!...- ‘e e
Perplexity: 50 Perplexity: 100
Step: 5,000 Step: 5,000
" f',
( - -.-l 't ‘ .l :- ~
Lot ) ~
X >t "'* t.v). o
- -~ .o *. .'
A "‘tf- %“;
~.- \4 . "’.' s A
e
-'I- R Nt 3
.ﬁ‘. ' \ P:oo e
.’... % o® °
’ . ‘ > . . .

Perplexity: 50

Perplexity: 100
Step: 5,000

Step: 5,000
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What would you choose as the best value of perplexity in this example?

@ BLCA
@ CESC
o ESCA
HNSC
KIRC
o
SKCM
@ STAD
o HCA
@ UCEC
1-SNE for TCGA expression dataset SNE for TCGA expression dataset ~~t SNE for TCGA expression dataset +.SNE for TCGA expression dataset L-SNE for TCGA expression dataset
100 Bl o
p BR
) ™ ® e CEsC 2
- ( e o EscA [ > o
G @ > HNSC 4
N ® < o WRC S % ~ - y
® e KR > 2 o [
. t \ ToE N 2,
(I \ » 2 :cu - R by o ‘
-+ 2 o * |
-2 i . |
¢ 0
| % aal™ & W o .98 ; .
. b 3o A ) ° BLCA BLC) .
] ca 4 . BRCA BRCA BRCA ‘ L)
o CESC He ° o CESC 20 cesc CE: ¥
o ESCA 25 v e ESCA e ESCA
HNSC HNSC HNSC HNSC
) e KRC D KIRC
: KRP e KIRP
% UHC o « uHC
o ov o ov ov
SKeM SK & SKCM B SK
o STAD STAD STAD ST
o THCA THCA TH
® UCEC uc 20 UCEC ucH
-80
00 75 S0 2 ) » 0 ™ 100 5 2 o % © -8 5 “0 20 ° 2 © © @ -0 20 » © o ! ) »

Perplexity: 10 20 30 50 100

Cancer type abbreviations: https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations

Bladder

Breast

Cervical squamous cell
Esophagea

Head and Neck squamous cell
Kidney clear cell

Kidney papillary

Liver

Ovarian

Skin Cutaneous Melanoma
Stomach

Thyroid

Uterine Corpus Endometrial

g2949533
3oB2 833



Uniform Manifold Approximation and Projection (UMARP)

What is tSNE?
tSNE’s dead baby, tSNE’s dead

- ' »”
i N
\& -
.
S

From https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
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Uniform Manifold Approximation and Projection (UMARP)

UMAP: nonlinear dimensionality reduction technique. Idea is similar to tSNE, but

First introduced

Much faster

Not limited to the first 2-3 dimensions

Uses binary cross-entropy as a cost function instead of the KL-divergence

Better preserves global structure

Uses the number of nearest neighbors and min-dist correction instead of perplexity

-50

-100

PCA

-150

-100

PCA of TCGA expression dataset

o BLCA
BRCA
o CESC
® ESCA
HNSC
KIRC
KIRP

by Mcln

100 150

nes, L,

t

10 e BLCA
BRCA
e CESC
e ESCA
20 HNSC
KIRC
KIRP
LIHC
30 ov
SKCM
e STAD
e THCA
40 e UCEC

Healy, J, ArXiv e-

SNE for TCGA expression dataset

tSNE & »

e I

-10 0 0 20

prints 1802.0

-10

-15

3426, 2018

UMAP (default: min_dist=.1, n_neighbors=15) of TCGA expression dataset

<

UMAP

0

e BLCA
BRCA
e CESC
o ESCA
HNSC
KIRC
KIRP
LHC
v
SKCM
@ STAD
© THCA
@ LUCEC
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https://arxiv.org/abs/1802.03426

Uniform Manifold Approximation and Projection (UMARP)

UMAP’s the most important parameters:
min_dist, recommended range: [0.1, 1], default: 0.1

— Controls how tightly the embedding is allowed compress points together. Larger values ensure embedded
points are more evenly distributed, while smaller values allow the algorithm to optimise more accurately
with regard to local structure. Sensible values are in the range 0.001 to 0.5, with 0.1 being a reasonable
default.

n_neighbors, recommended range: [2, 100], default: 15

— Determines the number of neighboring points used in local approximations of manifold structure. Larger
values will result in more global structure being preserved at the loss of detailed local structure. In general,
this parameter should often be in the range 5 to 50, with a choice of 10 to 15 being a sensible default.

From https://distill.pub/2016/misread-tsne/
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What would you choose as the best value of min_dist and n_neighbors for
this example?

579428
]

)
579428

n_neighbors: 15

o BLCA  Bladder
BRCA Breast
@ CESC  Cervical squamous cell
ESCA  Esophageal
HNSC  Head and Neck squamous cell
. . KIRC  Kidney clear cell
n_neighbors: 50 KRP  Kidney papillary
LIHC Liver
o Ovarian
SKCM  Skin Cutaneous Melanoma
@ STAD  Stomach
@ THCA  Thyroid
@ UCEC Uterine Corpus Endometrial

(]

»

°
HNSC
KIRE
® KIRP 10
uHe
o
0 SKCM
e STAD 5
:. ® THCA
. e UcEC
: ’
0 e BCA
BRI
0 o CESC
o ESCA
‘ HNSC.
KIRC
KIRP
UHC
-10 o
SKGM
TH
uc
-

-

Min_dist: 0.1 0.5 1

Cancer type abbreviations: https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations 36



Take home message: dimensionality reduction

* One should often try different methods with different parameters to choose the one that fits the best to our
expectations from the data

* Random noise does not always look random, and sometimes one can see shapes

* Projections on the first n principal components can be used as input (instead of the original X) to other
dimension reduction methods such as tSNE to reduce execution time.
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Map of classical machine learning methods
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Map of classical machine learning methods

: Dimension
RERJTEESION reduction

Machine learning

Classification Clustering
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Clustering methods

MiniBatchKMea®A$finityPropagation MeanShift SpectralClustering Ward AgglomerativeClusteringDBSCAN OPTICS Birch GaussianMixture

e K-means

* Gaussian mixture models

e Spectral clustering

* Hierarchical clustering

From https://scikit-learn.org/stable/modules/clustering.htmi
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K-means

* k-means: aims to partition n observations into k clusters in which each observation belongs to the cluster with

the nearest mean (cluster centers)
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* k-means clustering tends to find clusters of comparable spatial extent

From https://en.wikipedia.org/wiki/K-means_clustering
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Gaussian mixture models (GMM)

GMM: probabilistic model that assumes all the data points are generated from a mixture of a finite number of
Gaussian distributions with unknown parameters

From https://scikit-learn.org/stable/modules/mixture.html
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Gaussian mixture models (GMM)

GMM: probabilistic model that assumes all the data points are generated from a mixture of a finite number of
Gaussian distributions with unknown parameters
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From http://primo.ai/index.php?title=Expectation%E2%80%93Maximization_(EM)_Clustering_using_Gaussian_Mixture_Models (GMM) 43



k-means clustering tends to find clusters of comparable spatial extent,
while the GMM expectation-maximization mechanism allows clusters to
have different shapes.

Different cluster analysis results on "mouse" data set:

Original Data k-Means Clustering EM Clustering
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S @80%8 o%)o
04 1 80 8 (@ 04 1 0.4 |
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03] 089 %C%@Og% 03] 0.3]
°% oo%
02| 02| 0.2]
+ x
o4\ .. . ol -, . .. ol . .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 0.7 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Also, GMMs support mixed membership

From https://en.wikipedia.org/wiki/K-means_ clustering



Spectral clustering: relies on the assumption that “close” points should
belong in the same cluster

» Spectral clustering: uses a standard clustering method (e.g., k-means) on relevant eigenvectors of a Laplacian
matrix L of symmetric data similarity matrix A. — can also use k-nearest neighbors graphs for construction of A.

. L:= D — A, where D is the diagonal matrix, such as D;; = X, 4;;.

K-Means Circles Spectral Circles

From https://towardsdatascience.com/spectral-clustering-aba2640c0d5b
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Hierarchical clustering

Hierarchical clustering: family of clustering algorithms that build nested clusters by merging or splitting them
successively. This hierarchy of clusters is represented as a tree (or dendrogram).

Hierarchical Clustering

= Agglomerative approach: This is a "bottom-up"
approach: each observation starts in its own cluster, and

pairs of clusters are merged as one moves up the
hierarchy.

.. . " |

= Divisive approach: This is a "top-down" approach: all Agglom
observations start in one cluster, and splits are
performed recursively as one moves down the hierarchy.

From https://www.saedsayad.com/clustering_hierarchical.htm



Hierarchical clustering: important parameters

You choose:

» Distance metric (between observations): Euclidean, Squared Euclidean, Manhattan, Maximum

* Linkage criterium (distance between sets of observations): g o o O
— “Ward” minimizes the sum of squared differences within all clusters (within-cluster variance). OO
It is a variance-minimizing approach and in this sense is similar to the k-means objective O
function but tackled with an agglomerative hierarchical approach. 4
— “Maximum” or “complete linkage” minimizes the maximum distance between observations of o
pairs of clusters. OO o
— “Average linkage” minimizes the average of the distances between all observations of pairs of

clusters.
— “Single linkage” minimizes the distance between the closest observations of pairs of clusters.

https://blog.tdwi.eu/hierarchical-clustering-in-python/ 082
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Hierarchical clustering: important parameters

e Linkage criterium (distance between sets of observations):

Single Linkage Average Linkage Complete Linkage Ward Linkage

single linkage

From https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
https://scikit-learn.org/stable/auto examples/cluster/plot digits linkage.html

“Ward” gives the most regular cluster sizes
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https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html

How to choose the best number of clusters k?

* Elbow method (for sum of squared distances to cluster centers)
— How find the “elbow”? By eye or https://github.com/arvkevi/kneed

Elbow Method For Optimal k

350

Elbow

Sum of squared distances
to cluster centers
g & B

2 4 6 8 10 12 14



How to choose the best number of clusters k?

Silhouette analysis

— Plots silhouette score: a measure of how close each point in one
cluster is to points in the neighboring clusters, in [-1, 1].

— Values near +1 indicate that the sample is far away from the
neighboring clusters. A value of O indicates that the sample is on
very close to the decision boundary between two neighboring
clusters and negative values indicate that those samples might
have been assigned to the wrong cluster.

Silhouette analysis for KMeans clustering on sa

The silhouette plot for the various clusters.

mple data with n_clusters = 2

The of the clustered data.

\ -

it values

Silhouette analysis for KMeans clustering on sa

mple data with n_clusters = 4

The of the clustered data.

The silhouette plot for the various clusters.

Silhouette analysis for KMeans clustering on sa

The silhouette plot for the various clusters.

mple data with n_clusters =5

The 1 of the clustered data.
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How to choose the best number of clusters k?

* Akaike information criterion (AIC) or Bayesian information criterion
(BIC)

— The BIC generally penalizes free parameters more strongly than
the AIC

850'
800}
750 »
700 »

650 L

4 5 6
n_components
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How to choose the best number of clusters k?

Elbow Method For Optimal k

* Elbow method

W
2
5 300

e Silhouette analysis

e BICand AIC

o
o
= 200
-1

150

€ 100

Let’s go to our hands on exercise to see how it works!
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Which value of k would you choose?
(Mini-batch k-means clustering method)

18 Elrow Method for Optimal k
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Cluster label

Which value of k would you choose?

Silhouette analysis for KMeans clustering on sample data with n_clusters = 8 Silhouette analysis for KMeans clustering on sample data with n_clusters = 12

The silhouette plot for the various clusters The visualization of the clustered data

The silhouette plot for the various clusters The visualization of the clustered data

: 2
15 ®
10 10
5 b 5
o~ 5 o~
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The silhouette coefficient values UMAP 1 The silhouette coefficient values UMAP 1
k —_— 8 UMAP (min_dist=1.0, n_neighbors=15) of TCGA expression dataset k p— 1 2
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3 o © HNSC Head and Neck squamous cell

KIRC  Kidney clear cell
KIRF  Kidney papillary
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@ STAD  Stomach
© THCA Thyroid
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Which value of k would you choose? (Gaussian mixture model)
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Which value of k would you choose? (Gaussian mixture model)

Best solution according to BIC: k=13 True labels

Gaussian mixt dels for clustering TCGA ion dataset
ALSSIAN MPEUre modsls for clustenng SXprEssion datase UMAP (min_dist=1.0, n_neighbors=15) of TCGA expression dataset
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NMI and ARI allows to see which clustering model is the best on our data set

When true labels are available (rarely the case though):

NMI = Normalized Mutual Information measure mutual dependence between the true and predicted labels

ARI = Adjusted rand index (can be also used as a measure of similarity between two clusterings)

___

Mini-batch k-means 0.7479 0.8102
Mini-batch k-means 19 0.7426 0.8179
Gaussian mixture model 13 0.7600 0.8479
Spectral clustering 13 0.8148 0.8671

Hierarchical clustering (linkage='ward’) 13 0.7394 0.8379
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Spectral clustering result (k=13)
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Spectral clustering of TCGA expression dataset
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Take home message: clustering

The choice of the clustering method should be advised by data structure
— Visualize the data first

— E.g, ellipsoids => GMM; sophisticated connected components => structural clustering

Choosing the number of clusters can be done using:
— Elbow method

— Silhouette method

— BICor AIC

Different methods for the estimation of the number of clusters provide different results

— E.g., BICis more conservative than AIC
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What we did not cover today

* Graph-based clustering methods (Leiden and Louvain algorithms, commonly used on scRNA-seq data)
* Topic models/LDA
* Autoencoder-based methods for dimensionality reduction

* Integration of different data types (e.g., clusters of clusters)
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Take home message

Dimensionality reduction can be used as a step prior to clustering
One usually tries different dimensionality reduction techniques to choose the one that fits the expectations

The choice of clustering method should match the data structure

61
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Map of classical machine learning methods
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Classification: Biological examples

 Prediction of risk groups

 Machine learning identifies interacting

genetic variants contributing to breast
cancer risk [...] Behravan et al., Sci Rep. 2018

n=1619
(KBCP, OBCS)

m= 125,041 (SNPs)
|

Front-end

f

; i AG GG|AG AA AA AA GG|GG|...

i AG GG|AG AA AA AA GG|AG ...

AG GG GG GG|....

Labeled input

Gradient tree
boosting

|

Adaptive iterative

SNP search

Back-end

Unlabeled input——

Predict breast cancer risk

Support vector

machine classifier

N
2

Case Control

Risk-predictive
interacting SNPs

Proposed breast cancer risk prediction approach
using identified risk-predictive interacting SNPs
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Classification: Biological examples

* Primary diagnosis

 DNA methylation-based classification of
central nervous system tumours. Capper et

al. Nature 2018
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Hands-on:
1. Primary cancer diagnosis from gene expression
2. Breast cancer patients’ stratification based on gene expression

* Input: The Cancer Genome Atlas (TCGA) mMRNA expression data

« =2 0 @ B https//portal.gdc.cancer.gov/ * = L e -

NATIONAL CANCER INSTITUTE
GDC Data Portal

Harmonized Cancer Datasets

Genomic Data Commons Data Portal

§) Projects 4% Exploration

Q e.g. BRAF, Breast, TCGA-BLCA, TCGA-A5-A0G2

Data Portal Summary  pataRelease 23.0 - April 07, 2020

PROJECTS PRIMARY SITES CASES

Cye4 & 67 & 83,709

FILES GENES MUTATIONS

[9559,345 § 22,872 # 3142246

https://github.com/Boevalab/Teaching or https://ml4h2023.jupyter.inf.ethz.ch/
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Hands-on:
1. Primary cancer diagnosis from gene expression
2. Breast cancer patients’ stratification based on gene expression

« TASK 1.
Given mMRNA expression, predict cancer type

0
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Hands-on;:

1. Primary cancer diagnosis from gene expression

2. Breast cancer patients’ stratification based on gene expression

« TASK 2:

Given mMRNA expression (and clinical data: stage, age), stratify patients
according to good and bad prognosis

O

Genel Gene2 --- Genep—
Z; X X ST
Loy Xy X,, ol X}p
Z, Xy Ky o HE

wo |

_-©

+ clinical stage + age

Aggressive
treatment to
be applied
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Standard approaches for classification

k Nearest Neighbors (k-NN)

Logistic Regression

Logistic Regression with L1+L2
(Elastic Net) penalty

Support Vector Machines
(SVM)

Naive Bayes (Gaussian)

Random Forest
AdaBoost

Gradient Tree Boosting
(gradient boosting

machine, GBM)

Multi-layer perceptron
(MLP)
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Hands-on:

1. Primary cancer diagnosis from gene expression
2. Breast cancer patients’ stratification based on gene expression

TASK 1.

TASK 2.

With
clinical

TASK 2.

Without
clinical
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Hands-on:
1. Primary cancer diagnosis from gene expression
2. Breast cancer patients’ stratification based on gene expression

True values, tumor classification task Best solution: Elastic net logistic regression
2 L Prediction
accuracy:
0.99
20 20
0 0
@ 2]
-20 -20
-40 -40
-60 -60
-60 -40 -20 0 20 40 60 60 40 =20 0 20 40 60
tSNE 1 tSNE 1
Validation set (colors correspond Elastic net on the validation set (colors

to true cancer types) correspond to predictions) 7



Hands-on;:

1. Primary cancer diagnosis from gene expression

2. Breast cancer patients’ stratification based on gene expression
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Take home message: Classification

* Linear and non-linear models can provide similar prediction accuracy (TASK1)

* Classification on imbalanced groups with low information content may fail (TASK2)
— Study your data first
— Check data summary
— Visualize your data
— Use the right evaluation metrics (e.g., precision and recall)

— Consider redesigning your task
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Map of classical machine learning methods

Target
4

. Dimension
> Regression :

Machine learning

Classification Clustering

04.10.2024 75



Regression: Biological examples

* Prediction of treatment efficiency / drug response

* Predicting drug response of tumors from
Integrated genomic profiles by deep neural
networks. Chiu et al., BMC Med. Genomic, 2019
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Regression: Biological examples

* Prediction of molecular/cellular properties (e.g.,
protein-DNA binding affinities)
* Predicting the sequence specificities of DNA- and

RNA-binding proteins by deep learning. Alipanahi et
al., Nature Biotech. 2015
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From Coons et al, iScience, 2019

Current batch Motif scans Features

Motif

detectors Aﬁiej Thresholds Weights
H

=1
Wy

Current model
parameters =

Parameter
updates

2
-

DeepBind model

7

2
(7 U
'ol/,&. 9@@

,‘ #l Neural network 3=’
’ L



Regression: Biological examples

. . . 100 L e % ‘R2=
* Age prediction from DNA methylation (e.g., ST
Blind test set: y = 0.8784x + 5.2178; R? = 0.9525 .'w 3
$

for forensics) "

« DNA methylation-based forensic age 0 W' '
prediction using artificial neural networks and h - bk
next generation sequencing. Vidaki et al.

fuagrs)

Predicter A~~

. . 40
Forensic Sci Int Genet. 2017 T
30 . 2 training set
20 s: ;" :: o « test set
y l;‘o »
10 “! gi N S y = 0.9051x + 4.0726; R? = 0.9637
0
0 20 40 60 80 100

True Age (years)
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Hands-on: Prediction of protein concentration based on mMRNA data (Breast cancer samples)

1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

TASK 1:

O

Genel Gene2 ---
Zl ‘lel ‘Xrl 2
Z, X, Xy
Z;z ‘Ynl ‘Ynl

Genep |

X

1p

X

2p

e

wo |

+ clinical stage + age

https://github.com/Boevalab/Teaching

High level of
HER2 protein

Low level of

HER?2 protein

The HER2 protein is coded by the ERBB2 gene,
frequently amplified in human breast cancer

=

Treatment with HER2
inhibitors: Herceptin
(trastuzumab) or
Tykerb (lapatinib)

Target variable (y): Reverse Phase Protein Array (RPPA) value of HER2 presence in tumor cells
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Hands-on: Prediction of protein concentration based on mMRNA data (Breast cancer samples)

1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

TASK 2:

O

Genel Gene2 - Genep |
Z, Xy Xy, o X, P
Z, Xy Xy, - »
Z;z ‘Y)zl ‘X‘HZ o ){’P

+ clinical stage + age

https://github.com/Boevalab/Teaching

High level of
P53 protein

Low level of
p53 protein

The p53 protein is coded by the TP53 gene, frequently
deleted, mutated or repressed in human cancers

=

Standard
chemotherapy, e.g.,
cisplatin

Target variable (y): Reverse Phase Protein Array (RPPA) value of p53 presence in tumor cells
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Classic regression models

Ordinary Least Squares

Lasso (L1 penalty on model
coefficients)

Ridge (L2 penalty on model
coefficients)

Elastic Net (L1 and L2 penalty
on model coefficients)

=2

L1

1 J*’ &

p
L P 1o
=2 =

,J/ i
[ A TI[/ ! + A Z |.Bj|2
- =

. } p p
L P /fﬂy + /\-IZ |B;| + /‘\22 |BJ |2
: Jj=1 j=1

Random Forest
AdaBoost

Gradient Tree Boosting
(gradient boosting

machine, GBM)

Multi-layer perceptron
(MLP)
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Hands-on: Prediction of protein concentration based on mMRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)
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Spearman p (HER2,ERBB2) = 0.63
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Spearman p (p53,TP53) = 0.27
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Hands-on: Prediction of protein concentration based on mMRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)
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Random Forest predictions
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Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

FEATURE IMPORTANCE:
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EREB2 GRBET STARDSI PGAP3 MRPLASRUNDOKMNRDIITBECHT GAD1 WIPFZ TP53 TCTM1 SORBS1TCEALT XKRX AGR3 ESR1 FSIP1 IGJ TICE

Random Forest predictions



Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples)
1. Concentration of HER2 (coded by the ERBB2 gene)

2. Concentration of p53 (coded by the TP53 gene)

05
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03

oz

o1

oo

FEATURE IMPORTANCE:

~

chri7 v |chr17:39,644,374-39,754,484 o B <« » @ [ = 2 | gt =

p13.2 pi13.1 p12 pll.2 P11 qll.2 ql2 q!l.l q21.31 q21.33 q22 q23.1 q23.3 q24.2 q243 q25.1 q25.3

109 kb >
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! STARD3 | | PGAP3 I | ERBB2 I MIR4728 ’ GRB7 I

App! Immunohistochem Mol Morphol, 2017 Sep;25(8):553-558. doi: 10.1097/PAI.0000000000000349.

GRB7 Expression and Correlation With HER2 Amplification in Invasive Breast Carcinoma.

4 Author information

Abstract

Growth factor receptor-bound protein 7 (GRB7) gene is located adjacent to the HER2 gene on the 17q12-21 amplicon, is often coamplified
with HER2 in a subset of breast cancers, and has been implicated in resistance to anti-HER2 and antiestrogen therapy. This study
investigated the correlation of GRB7 expression by immunohistochemistry with HER2 expression, HER2 amplification, increased
chromosome 17 copy number, and other prognostic and predictive factors in invasive breast cancer, including histologic grade, pathologic
stage, and ER, PR, and p53 status. Paraffin-embedded samples of 188 invasive breast carcinomas with documented HER2, ER, and PR
testing were collected and divided into 3 groups: cases positive for HER2 overexpression/gene amplification (n=60), negative for HER2
overexpression (n=97), and cases with increased chromosome 17 copy number without HER2 amplification (n=31). GRB7 expression was
evaluated on all 188 cases. In addition, p53 immunohistochemistry was performed on 13 HER2+/GRB7+ cases and 39 HER2+/GRB7- cases.
GRB?7 expression correlated strongly with HER2 overexpression. GRB7 expression was present in 20/60 (33.33%) of HER2+ cases,
compared with 1/97 (1.03%) HER2- cases, and 1/31 (3.22%) increased chromosome 17 copy number cases (P<0.0001). In HER2+ cases,
GRB7 expression was found to correlate significantly with a greater degree of HER2 amplification. The mean+SEM HER2 copy number was
21.14+2.59 in GRB7+ cases, compared with 9.8+1.38 in GRB7- cases (P=0.0001). GRB7 expression correlated significantly with ER
negativity (P=0.012) and p53 positivity (P=0.03). GRB7 expression did not correlate with histologic grade, pathologic stage, or PR expression.
Our data shows that GRB7 expression in invasive breast cancer correlates with markers of a more aggressive phenotype, including HER2
overexpression, a greater degree of HER2 amplification, ER negativity, and p53 positivity.

PMID: 26945445 DOI: 10.1097/PAL.0000000000000349
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Hands-on: Prediction of protein concentration based on mRNA data (Breast cancer samples)

1. Concentration of HER2 (coded by the ERBB2 gene)
2. Concentration of p53 (coded by the TP53 gene)

FEATURE IMPORTANCE:
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Research Paper
SORBS1 suppresses tumor metastasis and improves the 00
sensitivity of cancer to chemotherapy drug )

Lele Song*?, Renxu Chang*?, Cheng Dai'?, Yanjun Wu'?, Jingyu Guo'?, Meiyan Qi*,
Wu Zhou?, Lixing Zhan*

“Silencing of SORBSH1 [...] attenuates chemical drug sensitivity especially that to 0.00
cisplatin, by inhibition of p53 in breast cancer cells.”
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Take home message: Regression

* Regularized methods generally work better
— Regularization may prevent over-fitting and select “important” features

* Regularized linear methods may provide accuracy similar to non-linear methods
* Neural networks do not always win

e Checking the feature importance may provide insights into biological mechanisms
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Selection of hyperparameters via cross validation

What we did not do today, but in real life we should do it:

Run after inner loop is done

Outer Loop Inner Loop

Test Dataset Training Dataset Test Dataset

Training Dataset
= &

W _ E r _W

I

B

Train model with best

training dataset and test the model
with the held back test data

v

[ 1 out of K scores ]

Nested cross validation

]
v

hyperparameters found from the
> YPErp <

Best hyperparameters
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Take home message

» Classification and regression are extremely widely used in biology and medicine to automatize decisions of
clinicians (diagnosis, choice of treatment) and predict treatment response and side effects

* The accuracy of predictions depends a lot on the information present in the data rather than on the ML method
used

— In our hands-on exercises the difference in accuracy between linear and non-linear methods varied between
0.5% and 15%

* There is no method that works the best in any situation

e Cross validation should be always applied to select the best hyperparameters

* Inreal life, one should compare a model built on omics data (+ clinical) with a model built using clinical variables
only
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