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Evolution and significance of microbiomes

McFall-Ngai, et al., PNAS 2013
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McFall-Ngai et al., PNAS, 2013; Venn et al., Science, 2014 

Single organism-centric view

Holobiont view

13 mio years

Microorganisms
• originated some 3.8 billion years ago
• drive biogeochemical cycles of elements (C, N, P, S, etc.)

• transform energy and biomass

Significance (examples):
• biogeochemistry: e.g., photosynthesis by microbes, carbon fixation/export, nitrogen 

fixation
• health: help us digest food, provide essential 

vitamins, prime the immune system

From the origin of life to today
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Holobiont view

13 mio years
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Describing microbial communities – Example 1

5

GRAPHIC: V. ALTOUNIAN/SCIENCE

Routy et al., Gopalakrishnan et al., and Matson et al. Science 2018

Gut microbial community compositions

• can alter efficacy of treatments

→ Enrichment of specific microbial taxa influence 

the response to cancer immunotherapy
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GRAPHIC: V. ALTOUNIAN/SCIENCE

Describing microbial communities – Example 1

Gut microbial community compositions

• can alter efficacy of treatments

→ Enrichment of specific microbial taxa influence 

the response to cancer immunotherapy

• can be indicative for diseases

→ Statistical models of fecal microbiota composition 

can predict colorectal cancer

6

Routy et al., Gopalakrishnan et al., and Matson et al., Science 2018

Zeller et al., MSB, 2014; Wirbel et al., Nat Med, 2019

Test

True positive rate of colorectal cancer prediction
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Describing microbial communities – Example 2

Ocean microbial community compositions

• reveal previously unknown organisms and 

genes (left bottom)

→ implying novel taxa, enzymes and functions

• similarities between communities not determined 

by geography (right top)

→ but strongly driven by temperature (bottom right)

7

Sunagawa et al., Science, 2015

Paoli et al., Nature, 2022
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Overview

Microbial community structure

• microbial taxonomy and operational taxonomic units

• quantification of microbial community members

• diversity within a microbial community

Differences between microbial communities

• taxonomic differences between microbial communities

• differentially abundant features (e.g., taxa, genes, functions)

Working with microbial community genes and genomes

• reconstruction of microbial community genomes

• gene functional differences between microbial communities

22.10.202
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Review: microbial taxonomy

▪ Microbiologist have adopted the concept of taxonomic ranks:

Domain/Kingdom, Phylum, Class, Order, Family, Genus, Species

9

▪ Phenotypic characteristics

• morphology, physiology/metabolism, ecology, 

exchange of genetic material

▪ Molecular characteristics

• DNA-DNA hybridization

• DNA sequences of individual genes 

(e.g., 16S rRNA gene) or complete genomes

22.10.202
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→Today, DNA sequencing and computational comparison is the method of choice to 

classify microbial organisms and to study their evolutionary relatedness
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▪ 16S rRNA

• encoded in genomes of all bacteria and archaea 

conserved function as integral part of the protein 

synthesis machinery

• similar mutation rate: → molecular clock 

10
Hanson et al., Nat Rev Microbiol, 2012

30S small subunit of ribosomes in prokaryotes

22.10.202
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The 16S rRNA gene
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16S rRNA-based Operational Taxonomic Units (OTUs)

▪ 16S rRNA

• encoded in genomes of all bacteria and archaea 

conserved function as integral part of the protein 

synthesis machinery

• similar mutation rate: → molecular clock 

▪ Used as proxy for phylogenetic relatedness 

▪ Owing to lack of prokaryotic species definition, 

97% sequence similarity is often used to define 

‘species’-like: 

“Operational Taxonomic Units” (OTUs)

11
Hanson et al., Nat Rev Microbiol, 2012

<97%>=97%

Identity of 16S rRNA gene sequences

→ 1 OTU → 2 OTUs

3%

22.10.202
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DNA 
extraction

Microbial community Metagenome

PCR-amplification 
of 16S rRNA gene

Who is
there?

Amplicon
sequencing

A C G C TC T G AG C G G TA AG C T C TA AG T CA CA CT G

A C G C TC TG AG C G G TA AG C T C TA A G T CA CA CT G

A C G C TC TG AG CG G TA AG C A C TA AG T CA CA CT G

A C G C TC TG AG CG G TA AG C A C TA AG T CA CA CT G

A C G C TC TG AG CG G TA AG C A C TA AG T CA CA CT G

A C G C TC G G AG CG G T T T G C A C TA A G T CA G A C T G

A C G C TC G G AG CG G T T T G C A C TA AG T CA G A C T G

A C G C TC G G AG CG G T T T G C A C TA AG T CA G A C T G

16S rRNA amplicons

Amplification of 16S rRNA gene fragments by PCR
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Quantification of OTU abundances

All amplicons are aligned to best matching OTU and counted

The result is an OTU count table, summarizing read counts for each OTU for each sample:

A C G C TC TG AG C G G TA AG C T C TA AG T CA CA CT G

A C G C TC TG AG C G G TA AG C T C TA A G T CA CA CT G

A C G C TC TG AG CG G TA AG C A C TA AG T CA CA CT G

A C G C TC TG AG CG G TA AG C A C TA AG T CA CA CT G

A C G C TC TG AG CG G TA AG C A C TA AG T CA CA CT G

A C G C TC G G AG CG G T T T G C A C TA AG T CA G A C T G

A C G C TC G G AG CG G T T T G C A C TA AG T CA G A C T G

A C G C TC G G AG CG G T T T G C A C TA AG T CA G A C T G

OTU2

OTU1

OTU3

Data analysis / interpretation: diversity, community dissimilarity, 

sample classification

22.10.202
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In-class task 1: alpha diversity

Assume 4 different samples (A-D), each with 100 reads sequenced

In pairs, please discuss:

Q1: What are the factors that influence the differences between samples? 

How could the differences be formally described (i.e., measured in quantitative terms)?

Q2: How may the number of reads per sample impact the results? 

What measures can be taken to account for this effect?

14
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𝐻𝑚𝑎𝑥
′ = −෍

𝑖=1

𝑅
1

𝑅
𝑙𝑛
1

𝑅
= ln𝑅

In-class task 1: alpha diversity

Shannon’s diversity index (H’)

R = richness

pi = the proportion of the i-th OTU,

where ni = the number individuals of the i-th OTU

and n = total number of individuals, that is: 
pi = ni / n

Pielou’s evenness (J’)

where   

that is, every species is equally likely

15
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Summary

Microbial community composition
• Microbial taxonomy, ASVs and operational taxonomic units (OTUs): definitions and clustering

• Counting OTUs: taxonomic profiling

• Diversity within a microbial community: alpha diversity

22.10.202
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alpha diversity

Shannon diversity index

Function of:

- Richness (number of detected OTUs)

- Evenness (frequency distribution of detected OTUs)

Normalization/rarefaction
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Overview of the Metagenomics part

Microbial community structure

• microbial taxonomy and operational taxonomic units

• quantification of microbial community members

• diversity within a microbial community

Differences between microbial communities

• taxonomic differences between microbial communities

• differentially abundant features (e.g., taxa, genes, functions)

Working with microbial community genes and genomes

• reconstruction of microbial community genomes

• gene functional differences between microbial communities

22.10.202
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Microbiome-wide association studies are analogous to GWAS

Analogous to GWAS, the microbiome can be linked to:

• groups of individuals and/or health states

• differential response to drugs (or nutrition)

• organismal development (or disease progression)

• differences between body sites

Examples:

• asymptomatic individuals vs colorectal cancer patients

• cardiatic drug digoxin inactivation by Eggerthella lenta

• Bifidobacterium spp. decrease with age

• body-site specific taxa

Wang and Jia, NRM, 2016
22.10.202
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Microbiome-wide association studies are analogous to GWAS

• Microbial community DNA is extracted from 

samples and randomly sheared into fragments

• DNA fragments are “repaired” and used to 

prepare sequencing libraries

• Libraries are subjected to high throughput 

sequencing

Wang and Jia, NRM, 2016
22.10.202
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Microbiome-wide association studies are analogous to GWAS

• DNA sequencing reads are analyzed to quantify 

the abundance of taxa, genes or functions (or to 

generalize: “features”)

• Abundance tables are analyzed to determine 

differentially abundant features, e.g., between 

groups of samples, to identify biomarkers

• Machine learning is used to classify samples 

and/or to identify relationships between the 

microbiome and clinical/environmental phenotypes

Samples
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Wang and Jia, NRM, 2016
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→ A basic requirement is to quantify the differences between samples
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(OTUs / Genes)
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N samples

Within sample analysis

Between sample analysis

21

How many of which OTUs/genes are found in a sample?

How similar are the OTUs/gene compositions between samples?

1
2
3
4
5

1
2
3
4
5

1   2   3   4   5

alpha-diversity
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In-class task 2: beta diversity

→ In pairs, please discuss how pairwise similarities of 

samples A, B, C, and D could be quantified?

→ Both qualitative differences vs quantitative differences can be taken into account.

22
22.10.202
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In-class task 2: beta diversity

Example: Jaccard index/dissimilarity

Jaccard index: J = a / (a + b + c)

where
a = # of species shared

b= # of species unique to sample 1

c= # of species unique to sample 2

Jaccard distance / dissimilarity: D = 1 - J

23
22.10.202
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Mini-quiz

What is / are limitation(s) of the Jaccard index?

a) Differences in the evenness between two samples are not accounted for

b) Differences in the abundance of OTUs shared between samples are not accounted for

c) Differences in the abundance of OTUs not shared between two samples are not accounted for

d) All of the above

24
22.10.202
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→ Note: For Jaccard distance, only presence/absence of species are considered
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Other distance (dissimilarity) measures

ai = abundance of taxon i in sample a, and

ci = abundance of taxon i in sample c

25
22.10.202
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▪ For 2 (xy) or 3 (xyz) variables, data can be easily visualized in two or three dimensional space

▪ For multi (n>3) dimensional data, distances can be ‘projected’ into lower dimensional space

Hierarchical clustering Linkage algorithms 

Visualize dissimilarities between microbial communities

single complete average

26
22.10.202

4



||

BIO390 - Metagenomics

Visualize dissimilarities between microbial communities

▪ For 2 (xy) or 3 (xyz) variables, data can be easily visualized in two or three dimensional space

▪ For multi (n>3) dimensional data, distances can be ‘projected’ into lower dimensional space

Hierarchical clustering Non-metric dimensional Principal component or coordinate 

scaling (NMDS) analysis (PCA or PCoA)

27
22.10.202
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Generalization and notation

Matrix m x n
where element xi,j is in row i and column j, and 

max(i) = n and max(j) = m

▪ Feature data x (or observations, predictors):

▪ i: rows → feature, j: columns → samples

▪ xi denotes the vector for the i-th feature

▪ xij denotes i-th feature in j-th sample

▪ Label data y (or dependent variable, response)

▪ vector of length m

▪ Example: labels for y are 1=healthy, 2=diseased

m columns, j increases

n
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x1,1 x1,2 x1,3 […] x1,m

x2,1 x2,2 […]

x3,1 […]

[…]

xn,1

y1 y2 y3 y4 ym label data

Label binary binary

y1=healthy 1 h

y2=healthy 1 h

y3=diseased 2 d

y4=healthy 1 h
[…] […] […]

28
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Determine differentially abundant features

Hypothesis testing: could an observed 

difference also be observed by chance?

Question 1: in a clinical trial, you observe 

differences in the taxonomic composition of stool 

samples from healthy vs. diseased individuals. 

Assuming it to be a true effect, what do you 

expect from sampling additional individuals?

a) The fold change (effect size) of differentially 

abundant taxa to become larger

b) The p-value associated with these changes to 
decrease

c) The confidence interval around the fold 
change to increase
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Sullivan and Feinn, J Grad Med Educ., 2012 29
22.10.202

4



||

Concept Course in Bioinformatics

Determine differentially abundant features

Question 2: the likelihood of observing 

significantly different features between samples 

by chance increases with the number of features 

for which a test is performed. What measures can 

be taken to correct for errors introduced by such 

multiple comparisons?

a) Correct the p-value according to the 

number of tests performed

b) Repeat the test multiple times to reduce 

the error

c) Reduce the number of features that are 

tested

→ label-agnostic modifications to matrix

Hypothesis testing: could an observed 

difference also be observed by chance?
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Quantitative differences between microbial communities

• Describing quantitative differences between microbial community compositions:

• can identify taxa (or other features) as disease markers

31

healthy adenoma colorectal cancer

Taxonomic profiles of stool samples

22.10.202

4

O
T

U
s
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Zeller et al., MSB, 2014
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Quantitative differences between microbial communities

• Describing quantitative differences between microbial community compositions:

• and be used to make predictions (classify) new samples, e.g. by machine learning

32

True positive rate (FPR=8%)

Colorectal cancer prediction by microbiota analysis of stool samples

22.10.202

4



||

BIO390 - Metagenomics

Summary – Part II

• Dissimilarities of microbial community compositions (beta diversity) can be 

quantified by different diversity indices

• Microbiome wide association studies aim at identifying relationships between 

microbiome features (taxa, genes, functions) and phenotypes

• Statistical testing can reveal differentially abundant features (potential 

biomarkers) between groups of samples

33
22.10.202
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Overview of the Metagenomics part

Microbial community structure

• microbial taxonomy and operational taxonomic units

• quantification of microbial community members

• diversity within a microbial community

Differences between microbial communities

• taxonomic differences between microbial communities

• differentially abundant features (e.g., taxa, genes, functions)

Working with microbial community genes and genomes

• reconstruction of microbial community genomes

• gene functional differences between microbial communities

22.10.202
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Shotgun
sequencing

Metagenomic reads

DNA 
extraction

Microbial community Metagenome

Assembly

Reconstructed 
draft genomesSame gene

from all genomes

All genes 
from all genomes

Gene
prediction

Genome
reconstruction

Metagenomic contigs

What can they 
do?

Who can do what?

PCR-amplification 
of 16S rRNA gene

Who is
there?

Amplicon
sequencing

Sequencing microbial community DNA
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Modified from astrobiomike.github.io
22.10.202
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Microbial community

DNA

extraction

Library 

preparation

contigs
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Background: added value of metagenomics

Microbial isolate genome sequences
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→However, most bacteria and archaea have 

not been isolated and sequenced.
Metagenomics provides access, in principle, to all genomic 

information within a microbial community. This allows us to 

ask: “what can they do?”, in addition to: “who is there?”.

Microbial community
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Modified after astrobiomike.github.io

DNA extraction

▪ Sufficiently high quality and quantity needed

22.10.202

4

Microbial community

DNA

extraction

Library 

preparation

Contaminants:
- e.g., phenol, carbohydrates, EDTA

Protein:
- tyrosine and tryptophan

→ DNA quality:
- 260/280 ratio

- 260/230 ratio

38
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Modified after astrobiomike.github.io; https://teichlab.github.io/scg_lib_structs/methods_html/Illumina.html

DNA extraction / library preparation

• Sufficiently high quality and quantity needed

• Extracted DNA is sheared into smaller fragments (inserts)

• Illumina: ~300-600 bp; PacBio: ~20 kbp; ONT: no limit

22.10.202
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Microbial community

DNA

extraction

Library 

preparation

39
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Modified after astrobiomike.github.io; https://teichlab.github.io/scg_lib_structs/methods_html/Illumina.html

DNA extraction / library preparation

▪ Sufficiently high quality and quantity needed

▪ Extracted DNA is sheared into smaller fragments (inserts)

▪ Illumina: ~300-600 bp; PacBio: ~20 kbp; ONT: no limit

22.10.202
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Microbial community

DNA

extraction

Library 

preparation

40
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Modified after astrobiomike.github.io

Microbial community

DNA

extraction

Library 

preparation

22.10.202
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Storage of DNA sequence information

▪ National Center for Biotechnology Information (NCBI)

▪ European Nucleotide Archive (ENA)

▪ DNA Data Bank of Japan (DDBJ)
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Modified after astrobiomike.github.io and Compeau, Pevzner and Tesler, Nat Biotechnol, 2011
22.10.202
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DNA

extraction

Library 

preparation

contigs
contigs

assembly
Assembly of reads into contigs

• Traditionally, all-by-all alignemts and 

shortest “path” through reads = contig

• Today, reads are reduced to k-mers to 

find shortest paths through all k-mers

Contig:

k=3

graph of k-1
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Modified after astrobiomike.github.io
22.10.202

4
43

DNA

extraction

Library 

preparation

contigs
contigs

assembly
Assembly of reads into contigs

• Traditionally, all-by-all alignemts and 

shortest “path” through reads = contig

• Today, reads are reduced to k-mers to 

find shortest paths through all k-mers

• Metagenomic de-novo assemblies 

produce many fragments of genomes 

(i.e., contigs from different genomes)
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Modified after astrobiomike.github.io
22.10.202
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DNA

extraction

Library 

preparation

contigs
contigs

assembly
Assembly of reads into contigs

• Traditionally, all-by-all alignemts and 

shortest “path” through reads = contig

• Today, reads are reduced to k-mers to 

find shortest paths through all k-mers

• Metagenomic de-novo assemblies 

produce many fragments of genomes 

(i.e., contigs from different genomes)

→ How do we group (bin) these contigs to 

recover the original genomes they 

originated from?
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Modified after astrobiomike.github.io
22.10.202
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Microbial community

DNA

extraction

Library 

preparation

contigs

Quality of MAGs

▪ How do we assess if:

▪ a) contigs were binned correctly?

→ contamination

▪ b) all contigs of a genome were identified?

→ completeness

Quality of metagenome-assembled genomes
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Binning contigs into metagenome-assembled genomes

After Kang et al., PeerJ, 2015

From contigs to metagenome-

assembled genomes (MAGs)

Distance matrices between contigs of the 

same sample based on (next slides):

a) Tetranucleotide frequencies (TNFs)

b) Abundances of contigs within and across
samples

Identify clusters of highly correlated contigs:

→ metagenome-assembled genomes (MAGs)

22.10.202
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S1 S2 S3 S4

contigs
S1 S2 S3 S4

T
N

F

(S1 → S4)

(for each sample)
align reads to contigs

contig abundancesTNFs

MAGs:

Generate genomic bins or 

Metagenome-assembled genomes

A
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C1
C2
C3

C4
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TNF is constant within a genome and different between genomes 

f

1 256
Contig 1

f

1 256

f

1 256
Contig 2

Contig 5

small distance –

high likelihood for 

same genomic origin

large distance –

low likelihood for 

same genomic origin

22.10.202
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Tetranucleotide (k=4) frequencies

[ATGC]4 = 256 possible combinations

Teeling et al., Environ Microbiol, 2004
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Beispiel 200 ProbenContig abundances within and across samples

→ Contigs with high abundance correlations 

across samples are likely of same genome origin

S1 S2 S3 S4 Sn

C1 5 5 5 5

C2 10 15 15 10

C3 10 5 5 10

C4 10 10 10 15

C5 5 5 5 5

C6 10 15 15 10

C7 10 10 10 15

C8 10 5 5 10

Cn

22.10.202
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C1

C2

C3

C4

→ Contigs with similar abundance within

samples may be of same genome origin
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Insights by reconstructing microbial community genomes

Hug et al., Nat. Microbiol., 2016; Zaremba-Niedzwiedzka et al., Nature, 2017; Martijn et al., Nature, 2018

Tree of life

Candidate phyla radiation

discovered by metagenomics

All eukaryotes

Two domains of life?

Eukaryotes

Archaea

Mitochondrial origin 

not within Rickettsiales?

Mitochondria

Rickettsiales

α
-P

ro
te

o
b
a

c
te

ri
a
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Genome annotation – protein coding genes

Gene prediction

• Identify protein-coding (and non-coding) sequences in a (meta)genome

• Ab initio - using only the genomic DNA sequence

• most simple approach: find (large) open reading frames (ORFs)

• search for signals (specific sequences, codon usage, GC content) of protein coding 

regions 

22.10.202
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Genome annotation – protein coding genes

Example - Open Reading Frame (ORF) finding

• Sequence has 6 possible translations from nucleotide to amino acid sequence

• An ORF is a sufficiently large region between a start and a stop codon

…AGC TTT TCA TTC TGA CTG CAA CGG GCA ATA TGT CTC TGT GTG GAT TAA AAA AAG AGT GTC TGA TAG CAG C…

…A GCT TTT CAT TCT GAC TGC AAC GGG CAA TAT GTC TCT GTG TGG ATT AAA AAA AGA GTG TCT GAT AGC AGC…

…AG CTT TTC ATT CTG ACT GCA ACG GGC AAT ATG TCT CTG TGT GGA TTA AAA AAA GAG TGT CTG ATA GCA GC…

…G CTG CTA TCA GAC ACT CTT TTT TTA ATC CAC ACA GAG ACA TAT TGC CCG TTG CAG TCA GAA TGA AAA GCT…

…GCT GCT ATC AGA CAC TCT TTT TTT AAT CCA CAC AGA GAC ATA TTG CCC GTT GCA GTC AGA ATG AAA AGC T…

…GC TGC TAT CAG ACA CTC TTT TTT TAA TCC ACA CAG AGA CAT ATT GCC CGT TGC AGT CAG AAT GAA AAG CT…
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Genome annotation – protein coding genes

Prokaryotic gene structure

The 5’-UTR (untranslated region):

• from transcription start site to -1 bp of start codon

• contains ribosome binding site (RBS)
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Functional annotation of genes

Goal: assign to each gene its function

• Gene sequences can be searched against different 
databases that store information on known gene 

functions

• Widely used databases:

• Kyoto Encyclopedia of Genes and Genomes (KEGG)

• Cluster of Orthologous Groups (COG)

• Protein Family domains (Pfam)

• Comprehensive Antibiotic Resistance Database (CARD)

• Many more…

Gene 1 Gene 2

DB Identifier                                                       

Database 1: KEGG K00847

Database 2: COG COG1940

Database 3: Pfam PF00480

Search against database
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Functional annotation of genes: KEGG database

Pathways

CARBON METABOLISM

CARBON FIXATION

METHANE METABOLISM

[…]

Modules

M00009 – Citrate cycle (Krebs cycle)

[…]

After: Tatusov, Koonin, Lipman, Science, 1997

Gene families

K01647

K05942

K01681

K01682

[…]

Genes
Gene i in species y
Gene i+1 in species y+1

[…]

22.10.202

4
54

→Genes are members of gene families

→Gene families are members of modules

→Modules are members of pathways

Increasing granularity
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Example: KEGG database

Map of known metabolic reactions

▪ Nodes = compounds

▪ Connections = reactions 

catalyzed by known enzymes

▪ Enzymes grouped into KOs = 

KEGG orthologous groups

▪ Map divided into:

pathways and

modules

Kyoto Encyclopedia of Genes and Genomes
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Quantification of gene abundances

All metagenomic reads are aligned to best matching gene

The result is a gene count table, summarizing read counts for each gene for each sample

Gene count tables can be summarized into KO abundance tables

KO abundance tables can be summarized into Module abundance tables

Module abundance tables can be summarized into Pathway abundance tables

A C G C TC TG AG C G G TA AG C T C TA AG T CA CA CT G

A C G C TC TG AG C G G TA AG C T C TA A G T CA CA CT G

A C G C TC TG AG CG G TA AG C A C TA AG T CA CA CT G

A C G C TC TG AG CG G TA AG C A C TA AG T CA CA CT G

A C G C TC TG AG CG G TA AG C A C TA AG T CA CA CT G

A C G C TC G G AG CG G T T T G C A C TA AG T CA G A C T G

A C G C TC G G AG CG G T T T G C A C TA AG T CA G A C T G

A C G C TC G G AG CG G T T T G C A C TA AG T CA G A C T G

Gene 1
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Forslund, et al., Genome Research 2013, Bioassays 2014

Insights by quantifying microbial gene abundances

antibiotics classes
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Summary – Part III

▪ Metagenomic sequencing and genome reconstruction provides access to studying 

microbes in their natural environment where they live in complex communities

▪ Taxonomic annotation of a reconstructed genome provides information about its 

‘novelty’

▪ Prediction of genes and their annotation using different databases provides information 

about the functional capabilities of microorganisms 

▪ Genes can be grouped into higher functional levels and profiled to study gene 

functional differences between microbial communities
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