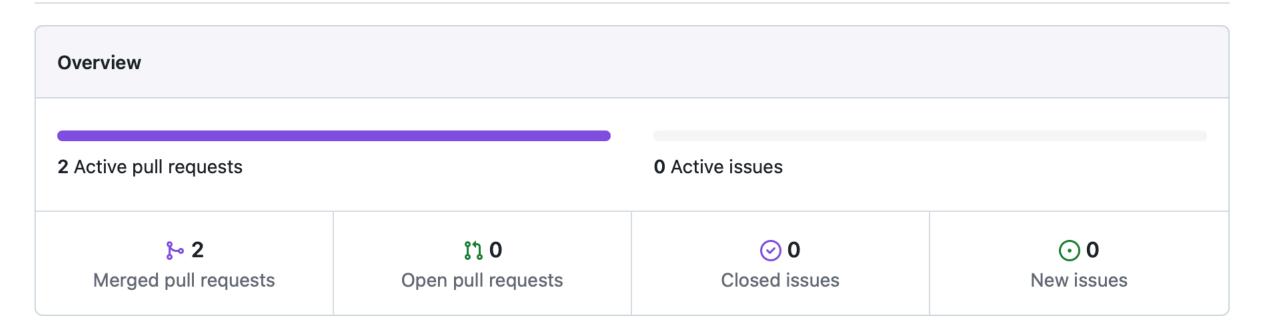


BIO392 Bioinformatics of Genome Variations

Survival Classifications



BIO392 HS 2023

Github Activity

September 3, 2023 – October 3, 2023

Period: 1 month ▼

Excluding merges, 19 authors have pushed 610 commits to master and 611 commits to all branches. On master, 299 files have changed and there have been 10,596 additions and 8,144 deletions.

♣ 2 Pull requests merged by 1 person

- Simplify wiggle #220 merged 2 weeks ago
- Update 2023 slides, copy exercises from 2022 #219 merged 2 weeks ago

BIO392 HS 2022

Github Activity

September 3, 2023 – October 3, 2023

Overview 2 Active pull requests O Active issues រូង 0 **}**⊸ 2 Follow Merged pull requests Open pull requests **Eric-Thiele** -O- Committed to this repository in the past week Excluding merges, 19 authors have pushed 610 commits to A Member of compbiozurich/bio392-2023 master and 611 commits to all branches. On master, 299 Member of CompbioZurich Solution Joined GitHub this month files have changed and there have been 10,596 additions and 8,144 deletions.

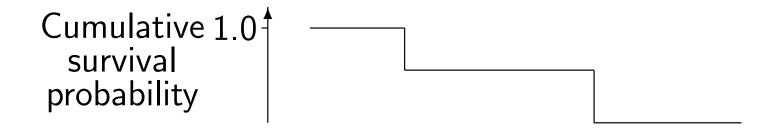
Period: 1 month ▼

_____ ⊱ 2 Pull requests merged by 1 person

- Simplify wiggle #220 merged 2 weeks ago
- Update 2023 slides, copy exercises from 2022 #219 merged 2 weeks ago

Survival

Kaplan-Meier Analysis of Survival Based on Conditional Probabilities


The Kaplan-Meier Method

- The most common method of estimating the survival function.
- A non-parametric method.
- ▶ Divides time into small intervals where the intervals are defined by the unique times of failure (death).
- ▶ Based on conditional probabilities as we are interested in the probability a subject surviving the next time interval given that they have survived so far.

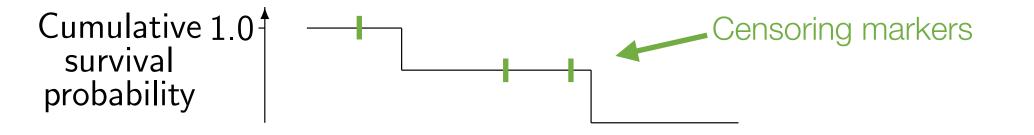
Kaplan-Meier estimators (km-na)

Kaplan-Meier method illustrated

(\bullet = failure and \times = censored):

- Steps caused by multiplying by (1-1/49) and (1-1/46) respectively
- Late entry can also be dealt with

Kaplan-Meier estimators (km-na)

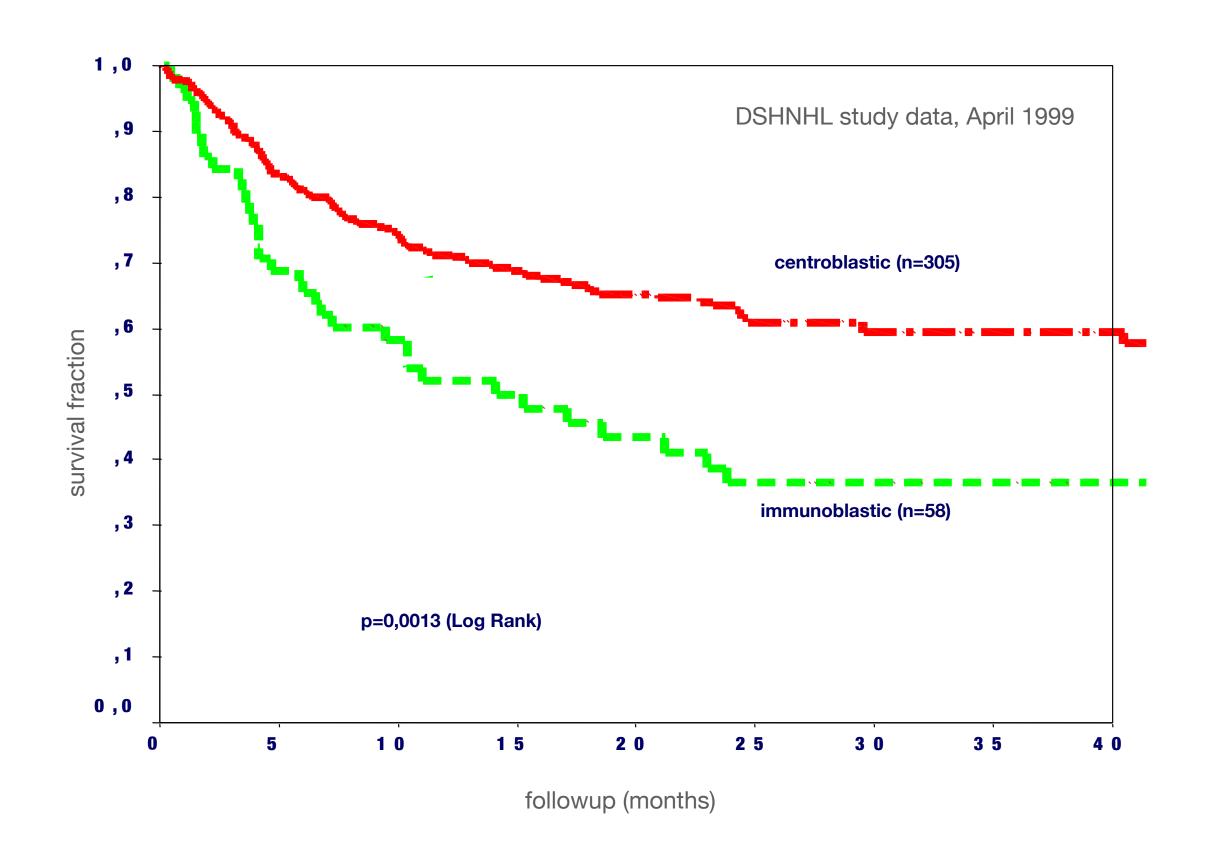

The Kaplan-Meier Method

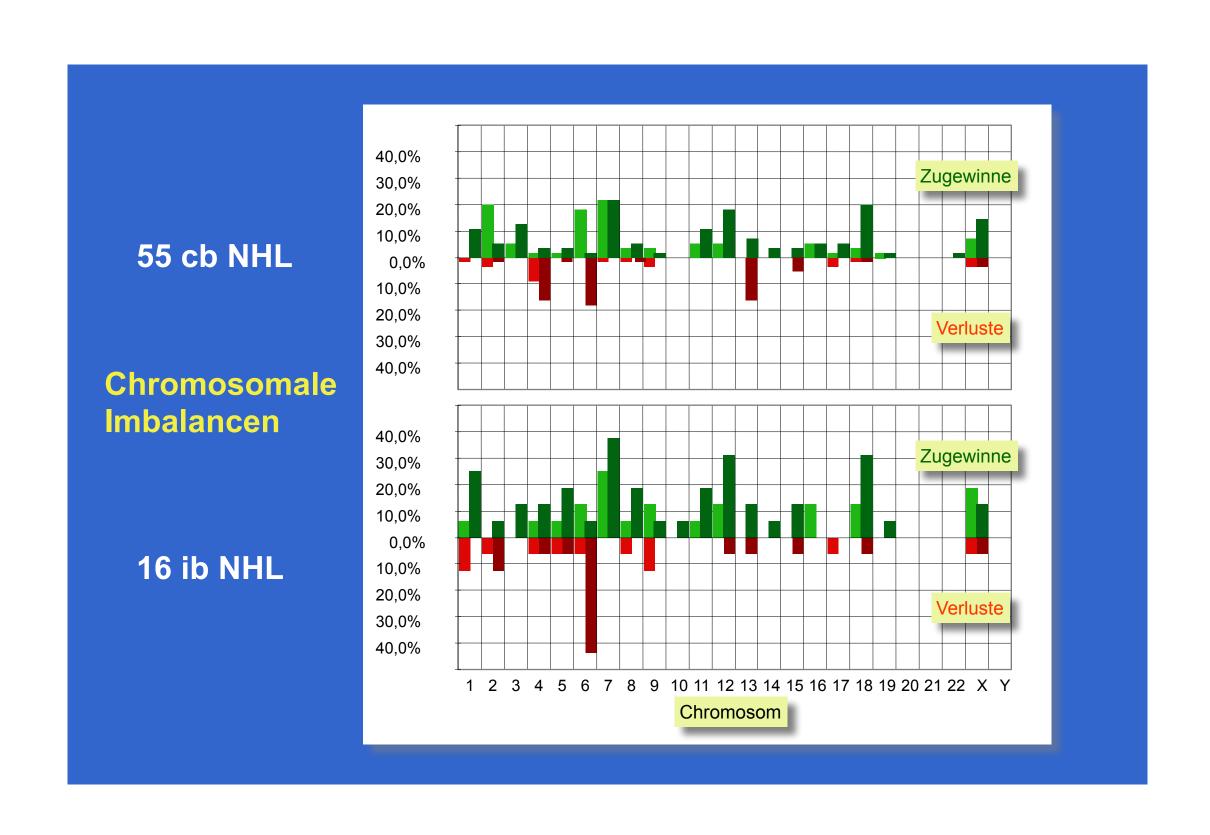
- The most common method of estimating the survival function.
- A non-parametric method.
- ▶ Divides time into small intervals where the intervals are defined by the unique times of failure (death).
- Based on conditional probabilities as we are interested in the probability a subject surviving the next time interval given that they have survived so far.

Kaplan-Meier estimators (km-na)

Kaplan-Meier method illustrated

(\bullet = failure and \times = censored):




- Steps caused by multiplying by (1-1/49) and (1-1/46) respectively
- Late entry can also be dealt with

Kaplan-Meier estimators (km-na)

Cancer CNVs Diagnostics Prognosis

Single-study CNV frequencies correspond to diagnostic subsets

Kaplan-Meier Plots to Visualize Differential Risk

Multi-parametric "risk scores" in CLL Prognosis

Leukemia (2020) 34:1038–1051 https://doi.org/10.1038/s41375-020-0727-y

ARTICLE

Chronic lymphocytic leukemia

Prognostic model for newly diagnosed CLL patients in Binet stage A: results of the multicenter, prospective CLL1 trial of the German CLL study group

Manuela A. Hoechstetter¹ · Raymonde Busch² · Barbara Eichhorst³ · Andreas Bühler⁴ · Dirk Winkler⁴ · Jasmin Bahlo³ · Sandra Robrecht³ · Michael J. Eckart⁵ · Ursula Vehling-Kaiser⁶ · Georg Jacobs⁷ · Ulrich Jäger⁸ · Hans Jürgen Hurtz⁹ · Georg Hopfinger¹⁰ · Frank Hartmann¹¹ · Harald Fuss¹² · Wolfgang Abenhardt¹³ · Ilona Blau¹⁴ · Werner Freier¹⁵ · Lothar Müller¹⁶ · Maria Goebeler¹⁷ · Clemens Wendtner^{1,3} · Kirsten Fischer³ · Carmen D. Herling³ · Michael Starck¹ · Martin Bentz¹⁸ · Bertold Emmerich¹⁹ · Hartmut Döhner²⁰ · Stephan Stilgenbauer²⁰ ·

	Univariate comparison	Hazard ratio [HR]	95% Confiden	ce Interval	P value	
			Lower	Upper		
COX regression OS	S					
Cytogenetic Hierarch	nical Type					
del(17p)	vs. not del(17p)/del(11q)	3.8	2.1	7.1	< 0.001	
del(11q)	vs. not del(17p)/del(11q)	2.0	1.2	3.5	0.008	
LDT						
<12 months	vs. ≥12 months	1.9	1.3	2.8	0.001	
Age, years						
>60	vs . ≤60	1.8	1.2	2.7	0.002	
B2M, mg/dL						
>3.5	vs. ≤3.5	2.0	1.2	3.1	0.004	
IGHV mutational sta	atus					
Unmutated	vs. mutated	2.4	1.6	3.6	< 0.001	
COX regression T	TFT					
Cytogenetic Hierarch	nical Type					
del(17p)	vs. not del(17p)/del(11q)	2.2	1.2	4.1	0.009	
del(11q)	vs. not del(17p)/del(11q)	2.0	1.3	3.0	0.001	
LDT	vs.	2.3	1.7	3.1	< 0.001	
Age, years						
>60	vs . ≤60	1.3	1.0	1.7	0.037	
B2M, mg/dL						
>3.5	vs . ≤3.5	1.5	1.0	2.3	0.049	
IGHV mutational sta	atus					
Unmutated	vs. mutated	4.4	3.2	5.9	< 0.001	

Table 2b Allocation of risk score points to the distinctive factors of the CLL1-PM

	HR (95% CI)	Р	Allocated risk score points
Characteristics			
Del(17p)	3.8 (2.1–7.1)	< 0.001	3.5
Unmutated IGHV	2.4 (1.6–3.6)	< 0.001	2.5
Del(11q)	2.0 (1.2–3.5)	0.008	2.5
Beta2-MG >3.5 mg/L	2.0 (1.2–3.1)	0.004	2.5
LDT<12 months	1.9 (1.3–2.8)	0.001	1.5
Age >60 years	1.8 (1.2–2.7)	0.002	1.5

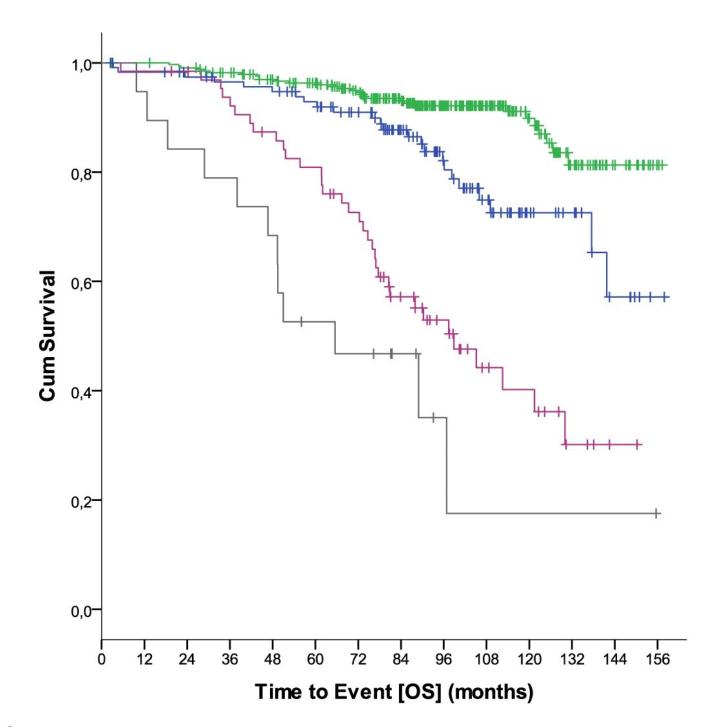

The assigned risk score points derived from the HR for OS of the individual factors.

Table 2c Patients and risk groups according to the CLL1 Prognostic Model (CLL1-PM). Patients and risk groups according to the CLL-IPI.

	Index score	Patients N (%)
Risk Groups accroding to the CLL1-PM		539
Very low	0.0–1.5	336 (62.3)
Low	2.0-4.0	119 (22.1)
High	4.5–6.5	65 (12.1)
Very high	7.0–14.0	19 (3.5)
Risk Groups according to the CLL-IPI		539
Low	0–1	360 (66.8)
Intermediate	2–3	141 (26.2)
High	4–6	33 (6.1)
Very high	7–10	5 (0.9)

OS overall survival, HR hazard ratio, Beta2-MG beta-2 microglobulin, IGHV immunoglobulin heavy-chain genes, LDT lymphocyte doubling time TTFT time-to-first treatment.

- "a novel prognostic model (CLL1-PM) developed to identify risk groups, separating patients with favorable from others with dismal prognosis"
- " findings would be useful to effectively stratify Binet stage A patients, particularly within the scope of clinical trials evaluating novel agents"

P < 0.001

Number at risk	0	12	24	36	48	60	72	84	96	108	120	132	144	156
Very low	336	335	331	322	306	294	262	215	160	113	68	33	15	2
Low	119	115	111	108	106	100	89	71	49	34	19	14	6	1
High	65	64	63	59	54	50	43	29	21	12	10	4	1	0
Very high	19	18	16	15	13	9	8	5	2	1	1	1	1	0

Discrimination: AIC=445

C-statistics, C = 0.739 (95% CI, 0.686 - 0.790)

Overall survival according to the CLL1-PM risk groups. The full analysis dataset is comprised of the dataset of 539 patients.

Kaplan-Meier Plots to Visualize Differential Risk

1.5

Multi-parametric "risk scores" in CLL Prognosis

Leukemia (2020) 34:1038–1051 https://doi.org/10.1038/s41375-020-0727-y

ARTICLE

hronic lymphocytic leukemia

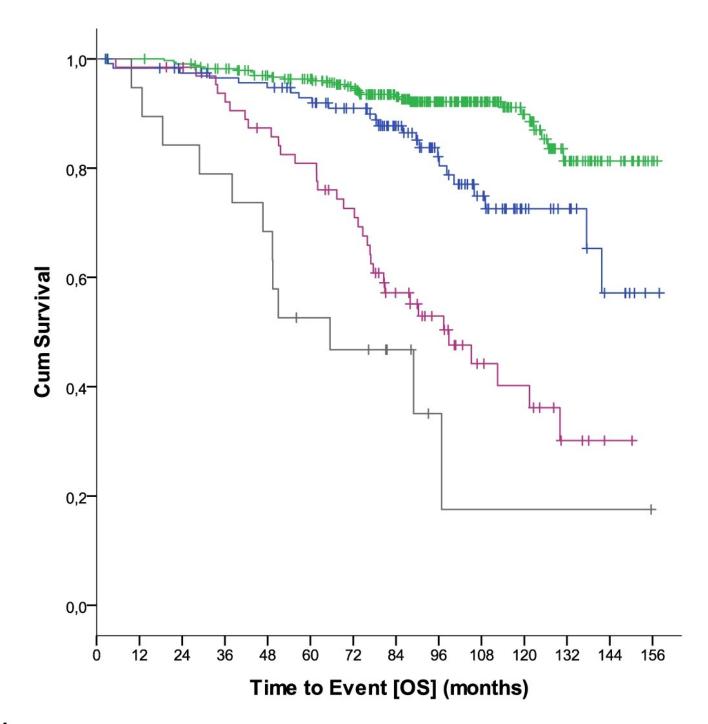
Prognostic model for newly diagnosed CLL patients in Binet stage A: results of the multicenter, prospective CLL1 trial of the German CLL study group

Manuela A. Hoechstetter¹ · Raymonde Busch² · Barbara Eichhorst³ · Andreas Bühler⁴ · Dirk Winkler⁴ · Jasmin Bahlo³ · Sandra Robrecht³ · Michael J. Eckart⁵ · Ursula Vehling-Kaiser⁶ · Georg Jacobsⁿ · Ulrich Jägerఠ · Hans Jürgen Hurtzゅ · Georg Hopfinger¹⁰ · Frank Hartmann¹¹ · Harald Fuss¹² · Wolfgang Abenhardt¹³ · Ilona Blau¹⁴ · Werner Freier¹⁵ · Lothar Müller¹⁶ · Maria Goebeler¹⁷ · Clemens Wendtner¹,₃ · Kirsten Fischer³ · Carmen D. Herling³ · Michael Starck¹ · Martin Bentz¹ఠ · Bertold Emmerich¹ゅ · Hartmut Döhner²⁰ · Stephan Stilgenbauer²⁰ ·

	Univariate comparison	Hazard ratio [HR]	95% Confiden	ce Interval	P value
			Lower	Upper	
COX regression O	S				
Cytogenetic Hierarc	hical Type				
del(17p)	vs. not del(17p)/del(11q)	3.8	2.1	7.1	< 0.001
del(11q)	vs. not del(17p)/del(11q)	2.0	1.2	3.5	0.008
LDT					
<12 months	vs. \ge 12 months	1.9	1.3	2.8	0.001
Age, years					
>60	vs . ≤60	1.8	1.2	2.7	0.002
B2M, mg/dL					
>3.5	vs . ≤3.5	2.0	1.2	3.1	0.004
IGHV mutational st	atus				
Unmutated	vs. mutated	2.4	1.6	3.6	< 0.001
COX regression T	FFT				
Cytogenetic Hierarc	hical Type				
del(17p)	vs. not del(17p)/del(11q)	2.2	1.2	4.1	0.009
del(11q)	vs. not del(17p)/del(11q)	2.0	1.3	3.0	0.001
LDT	vs.	2.3	1.7	3.1	< 0.001
Age, years					
>60	vs . ≤60	1.3	1.0	1.7	0.037
B2M, mg/dL					
>3.5	vs . ≤3.5	1.5	1.0	2.3	0.049
IGHV mutational st	atus				
Unmutated	vs. mutated	4.4	3.2	5.9	< 0.001

Table 2b Allocation of risk score po	oints to the distinctive factors of the C	CLL1-PM.	
	HR (95% CI)	P	Allocated risk score points
Characteristics			
Del(17p)	3.8 (2.1–7.1)	< 0.001	3.5
Immurated II-EV	74(15.45)	Z0.000	75
Del(11q)	2.0 (1.2–3.5)	0.008	2.5
Beta2-MG >3.5 mg/L	2.0 (1.2–3.1)	0.004	2.5
LDT<12 months	1.9 (1.3–2.8)	0.001	1.5

0.002


The assigned risk score points derived from the HR for OS of the individual factors.

1.8 (1.2–2.7)

	Index score	Patients N (%)
Risk Groups accroding to the CLL1-PM		539
Very low	0.0–1.5	336 (62.3)
Low	2.0-4.0	119 (22.1)
High	4.5–6.5	65 (12.1)
Very high	7.0–14.0	19 (3.5)
Risk Groups according to the CLL-IPI		539
Low	0–1	360 (66.8)
Intermediate	2–3	141 (26.2)
High	4–6	33 (6.1)
Very high	7–10	5 (0.9)

OS overall survival, HR hazard ratio, Beta2-MG beta-2 microglobulin, IGHV immunoglobulin heavy-chain genes, LDT lymphocyte doubling time TTFT time-to-first treatment.

- "a novel prognostic model (CLL1-PM) developed to identify risk groups, separating patients with favorable from others with dismal prognosis"
- " findings would be useful to effectively stratify Binet stage A patients, particularly within the scope of clinical trials evaluating novel agents"

P < 0.001

Number at risk	0	12	24	36	48	60	72	84	96	108	120	132	144	156
Very low	336	335	331	322	306	294	262	215	160	113	68	33	15	2
Low	119	115	111	108	106	100	89	71	49	34	19	14	6	1
High	65	64	63	59	54	50	43	29	21	12	10	4	1	0
Very high	19	18	16	15	13	9	8	5	2	1	1	1	1	0

Discrimination: AIC=445

C-statistics, C = 0.739 (95% CI, 0.686 - 0.790)

Overall survival according to the CLL1-PM risk groups. The full analysis dataset is comprised of the dataset of 539 patients.

Cancer Classifications & Parameters

NCIt | ICD-0 / WHO | TNM

ICD-03

World Health Organization

WHO International Classification of Diseases for Oncology, 3rd Edition (ICD-O-3)

 used in cancer registries for coding the site (topography) and the histology (morphology) of neoplasms, usually obtained from a pathology report

• mix of "biology" (i.e. tumor morphology) and "clinical" (i.e. tumor site)

→ 2 codes per cancer

"Adenocarcinoma" of the "Sigmoid colon"

8140/3

C18.7

"Retinoblastoma" of the "Retina"

9510/3

C69.2

- widely accepted by pathologists but limited clinical use (there more ICD-10 or SNOMED)
- no ontology & not (truly) hierarchical
- many entities difficult to remap if using only single code

NCIt

Neoplasm Classifications in the NCI Thesaurus

- NCI's core reference terminology and biomedical ontology are collected in the NCI Thesaurus (NCIt)
- individual codes for site-specific occurrences of "biological" diagnoses

1 code per cancer

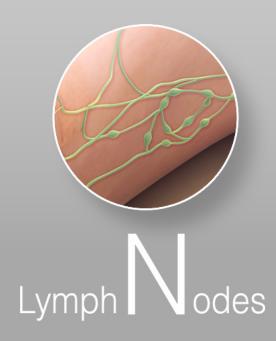
- ► NCIT:C43584 Rectosigmoid Adenocarcinoma
- ► NCIT:C7541 Retinoblastoma
- truly hierarchical ontology
- hierarchical system empowers "logical OR" queries
- terms can have multiple occurrences in diagnostic tree
- assignment of code to different groupings allows soft aggregation (e.g. a type of colorectal adenocarcinoma with all colon tumors or with all adenocarcinomas)


- ➤ NCIT:C3262: Neoplasm (116013 samples)
- ✓ NCIT:C3263: Neoplasm by Site (110893 samples)
 - > NCIT:C156482: Genitourinary System Neoplasm (16534 samples)
 - NCIT:C2910: Breast Neoplasm (15957 samples)
 - NCIT:C3010: Endocrine Neoplasm (3521 samples)
 - NCIT:C3030: Eye Neoplasm (280 samples)
 - ▼ NCIT:C3052: Digestive System Neoplasm (15289 samples)
 - NCIT:C172852: Digestive System Soft Tissue Neoplasm (99 samples)
 - NCIT:C27721: Digestive System Neuroendocrine Neoplasm (202 samples)
 - NCIT:C2877: Anal Neoplasm (61 samples)
 - NCIT:C3028: Esophageal Neoplasm (1865 samples)
 - ✓ NCIT:C3141: Intestinal Neoplasm (5723 samples)
 - ▼ NCIT:C2956: Colorectal Neoplasm (5579 samples)
 - NCIT:C2953: Colon Neoplasm (4666 samples)
 - NCIT:C3350: Rectal Neoplasm (527 samples)
 - NCIT:C4610: Benign Colorectal Neoplasm (181 samples)
 - ▼ NCIT:C4877: Rectosigmoid Neoplasm (240 samples)
 - ✓ NCIT:C7420: Malignant Rectosigmoid Neoplasm (240 samples)
 - ✓ NCIT:C7421: Rectosigmoid Carcinoma (240 samples)
 - ✓ NCIT:C43584: Rectosigmoid Adenocarcinoma (240 samples)
 - NCIT:C43592: Rectosigmoid Mucinous Adenoca... (18 samples)
 - ➤ NCIT:C4978: Malignant Colorectal Neoplasm (5398 samples)
 - ➤ NCIT:C96152: Colorectal Neuroendocrine Neoplasm (11 samples)
 - NCIT:C4432: Small Intestinal Neoplasm (66 samples)

TNM

A Classification for Clinical Cancer Stage Parameters

- most widely used cancer staging system
- T refers to the size and extent of the main tumor
- N refers to the the number / location of nearby lymph nodes that have cancer infiltration
- M refers to whether the cancer has metastasized
- not used for leukemias / lymphomas
 - Binet and Rai in CLL
 - proportion of blasts in bone marrow or blood in leukemias
 - Lugano classification in lymphomas
- other disease specific staging systems may (co-) exist
 - e.g. a stage II breast cancer is determined by size & nodal involvement


Tumor size

T2 -The tumor is greater than 3 cm

T3 – The tumor can be any size, but is near the airway or has spread to local areas such as the chest wall or diaphragm

T4 – The tumor is any size, but is located in the airway, or has invaded local structures such as the heart or the esophagus.

N0 – No lymph nodes are affected
N1 – The tumor has spread to nearby nodes
on the same side of the body
N2 – The tumor has spread to nodes further

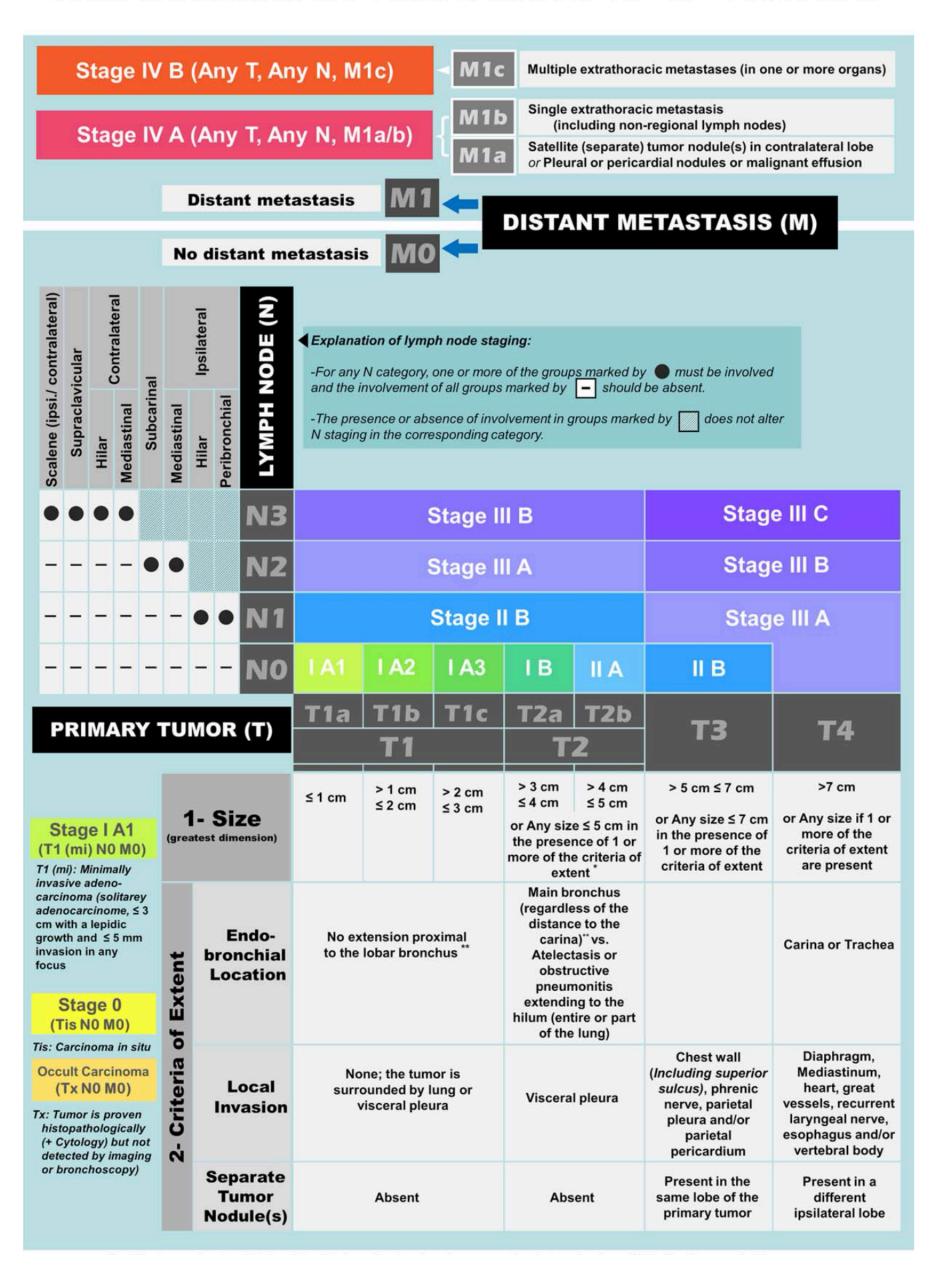
away but on the same side of the body

N3 – Cancer cells are present in lymph
nodes on the other side of the chest from the
tumor, or in nodes near the collarbone or
neck muscles

M0 – No metastases are presentM1 – The tumor has spread (metastasized) to other regions of the body or the other lung

Source: www.scientificanimations.com

Source: https://www.cancer.gov/about-cancer/diagnosis-staging/staging


TNM

A Classification for Clinical Cancer Stage Parameters

- most widely used cancer staging system
- T refers to the size and extent of the main tumor
- N refers to the the number / location of nearby lymph nodes that have cancer infiltration
- M refers to whether the cancer has metastasized
- not used for leukemias / lymphomas
 - Binet and Rai in CLL
 - proportion of blasts in bone marrow or blood in leukemias
 - Lugano classification in lymphomas
- other disease specific staging systems may (co-) exist
 - e.g. a stage II lung cancer is determined by size & nodal involvement

Source: https://www.cancer.gov/about-cancer/diagnosis-staging/staging

TNM STAGING OF LUNG CANCER - 8th EDITION

TNM

A Classification for Clinical Cancer Stage Parameters

- most widely used cancer staging system
- T refers to the size and extent of the main tumor
- N refers to the the number / location of nearby lymph nodes that have cancer infiltration
- M refers to whether the cancer has metastasized
- not used for leukemias / lymphomas
 - Binet and Rai in CLL
 - proportion of blasts in bone marrow or blood in leukemias
 - Lugano classification in lymphomas
- other disease specific staging systems may (co-) exist
 - e.g. a stage II lung cancer is determined by size & nodal involvement

TNM has been "ontologized" into NCIt

T:C48698	Cancer TNM Finding Category	0
T:C133398	Postneoadjuvant Therapy Pathologic TNM Finding	1
T:C143081	Posttherapy Clinical TNM Finding	1
T:C48739	Pathologic TNM Finding	1
T:C48886	Pathologic Distant Metastasis TNM Finding	2
T:C48740	pM0 Stage Finding	3
T:C48741	pM1 Stage Finding	3
T:C48742	pM1a Stage Finding	4
		_
T:C48743	pM1b Stage Finding	4
T:C48744	pM1c Stage Finding	4
T:C48887	Pathologic Regional Lymph Nodes TNM Finding	2
T:C48745	pN0 Stage Finding	3
T:C48746	pN1 Stage Finding	3
T:C48747	pN1a Stage Finding	4
T:C48748	pN1b Stage Finding	4
T:C48749	pN1c Stage Finding	4
T:C48750	pN2 Stage Finding	3
T:C48751	pN2a Stage Finding	4
T:C48752	pN2b Stage Finding	4
T:C48753	pN2c Stage Finding	4
T:C48754	pN3 Stage Finding	3
T:C48755	pN3a Stage Finding	4
T:C48756	pN3b Stage Finding	4
		_
T:C48757	pN3c Stage Finding	4
T:C48888	Pathologic Primary Tumor TNM Finding	2
T:C48758	pT0 Stage Finding	3
T:C48759	pT1 Stage Finding	3
T:C48760	pT1a Stage Finding	4
T:C48761	pT1b Stage Finding	4
T:C48763	pT1c Stage Finding	4
T:C48764	pT2 Stage Finding	3
T:C48765	pT2a Stage Finding	4
T:C48766	pT2b Stage Finding	4
T:C48767	pT2c Stage Finding	4
T:C48768	pT3 Stage Finding	3
T:C48769	pT3a Stage Finding	4
T:C48770	pT3b Stage Finding	4
T:C48771	pT3c Stage Finding	4
T:C48772	pT4 Stage Finding	3
T:C48773	pT4a Stage Finding	4
T:C48774	pT4b Stage Finding	4
T:C48775	pT4c Stage Finding	4
T:C48776	pT4d Stage Finding	4
T:C48879	Generic TNM Finding	1
T:C48777	Cancer TNM Vessel Invasion Finding Category	2
T:C147091	Lymphovascular Invasion 0	3
T:C147092	Lymphovascular Invasion 1	3
T:C147093	Lymphovascular Invasion 9	3
T:C147094	Lymphovascular Invasion 2	3
T:C147095	Lymphovascular Invasion 3	3
T:C147096	Lymphovascular Invasion 4	3
T:C48883	Generic Distant Metastasis TNM Finding	2
T:C48699	M0 Stage Finding	3
		_
T:C95956	cM0 (i+) Stage Finding	4
T:C48700	M1 Stage Finding	3
T:C48701	M1a Stage Finding	4
T:C48702	M1b Stage Finding	4

CIT:C48704	MX Stage Finding	0
CIT:C48884	Generic Regional Lymph Nodes TNM Finding	1
CIT:C48705	N0 Stage Finding	1
CIT:C95921	N0 (i-) Stage Finding	1
CIT:C95922	N0 (i+) Stage Finding	2
CIT:C95923	N0 (mol-) Stage Finding	3
CIT:C95925	N0 (mol+) Stage Finding	3
CIT:C48706	N1 Stage Finding	4
CIT:C48707	N1a Stage Finding	4
CIT:C48708	N1b Stage Finding	4
CIT:C95929	N1bl Stage Finding	2
CIT:C95935	N1bII Stage Finding	3
	N1bIII Stage Finding	3
	N1bIV Stage Finding	4
	N1c Stage Finding	4
		_
	N1mi Stage Finding	4
	N3 Stage Finding	3
CIT:C48715	N3a Stage Finding	4
CIT:C48716	N3b Stage Finding	4
CIT:C48717	N3c Stage Finding	4
CIT:C48718	NX Stage Finding	3
CIT:C48786	N2 Stage Finding	4
CIT:C48711	N2a Stage Finding	4
CIT:C48712	N2b Stage Finding	4
CIT:C48713	N2c Stage Finding	2
CIT:C96026	N4 Stage Finding	3
CIT:C48885	Generic Primary Tumor TNM Finding	3
CIT:C106299	Any T	4
CIT:C132010	T5 Stage Finding	4
CIT:C48719	T0 Stage Finding	4
CIT:C48720	T1 Stage Finding	3
	T1a Stage Finding	4
	T1b Stage Finding	4
	T1c Stage Finding	4
	T1mi Stage Finding	3
	T2 Stage Finding	4
CIT:C148411	T2d Stage Finding	4
CIT:C48725	T2a Stage Finding	4
CIT:C48726	T2b Stage Finding	3
CIT:C48727	T2c Stage Finding	4
CIT:C48728	T3 Stage Finding	4
CIT:C148412	T3d Stage Finding	4
CIT:C48729	T3a Stage Finding	4
CIT:C48730	T3b Stage Finding	1
CIT:C48731	T3c Stage Finding	2
CIT:C48732	T4 Stage Finding	3
CIT:C48733	T4a Stage Finding	3
	T4b Stage Finding	3
	T4c Stage Finding	3
	T4d Stage Finding	3
	TX Stage Finding	3
	Tis Stage Finding	2
	Ta Stage Finding	3
	Recurrent Cancer TNM Finding	4
CIT:C48881	Clinical TNM Finding	3
CIT:C161009	Clinical Primary Tumor TNM Finding	4
CIT:C162609	Clinical Regional Lymph Nodes TNM Finding	4
	Olisiaal Distant Matartais TNM Finding	4
CIT:C162610	Clinical Distant Metastasis TNM Finding	4

Source: https://www.cancer.gov/about-cancer/diagnosis-staging/staging

Tasks

Survival analyses | Cancer classifications | Staging

- Familiarize yourself with the different concepts behind different disease clasification systems what are there use, advantages, problems? E.g. ICD-10, ICD-0, NCIt
 - you can use Progenetix to explore e.g. ontology mapping
- Learn to "read" Kaplan-Meier plots (preparation for explorative analyses later this week).
- Achieve a principal understanding of TNM codes & write some "translations"
 - T1N1M0: small tumor with regional lymph node involvement and no detected distant metastases