embedded scripting language

Implementor’s Guide

November 2006

ITB CompuPhase

ii

“Java” is a trademark of Sun Microsystems, Inc.
“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.
“Linux” is a registered trademark of Linus Torvalds.

“CompuPhase” is a registered trademark of I'TB CompuPhase.

Copyright (©) 19972006, ITB CompuPhase; Eerste Industriestraat 19-21, 1401 VL
Bussum, The Netherlands (Pays Bas); telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The documentation is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. A
summary of this license is in appendix H. For more information on this licence, visit
http://creativecommons.org/licenses/by-sa/2.5/

or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

The information in this manual and the associated software are provided “as is”. There are no
guarantees, explicit or implied, that the software and the manual are accurate. Requests for corrections
and additions to the manual and the software can be directed to ITB CompuPhase at the above

address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11 points.

iii

Table of contents

INTRODUCTION ..o e e e e 1
THE COMPILER . . .ottt ettt et e e e e et e e e e e 4
THE ABSTRACT MACHINEttt ittt e e e et e e 6
Using the abstract machine 6
Calling “public” functions 17
EXTENSION MODULESttt ittt ettt et e e et 24
WIIting “Wrappers”t 27
Dynamically loadable extension modules 35
Error checking in native functions......... i 36
Customizing the native function dispatcher............... 37
FUNCTION REFERENCEttt ettt e et e e 41
Error codes. ... 64
APPENDICES . « vttt ettt ettt et e e et e e e e e 66
A: Building the compiler..... 66
B: Building the Abstract Machine............ 71
C: Using CMakeot e 86
D: Abstract Machine design and reference.................. 88
E: Debugging support 106
F: Code generation notes ...t 110
G: Adding a garbage collector i 114
H: License. ..o e 122

iv ; Table of contents

Introduction

“PAWN” is a simple, typeless, 32-bit extension language with a C-like syntax. The
language and features are described in the companion booklet with the sub-title
“The Language”. This “Implementor’s Guide” discusses how to embed the PAWN
scripting language in a host application.

The PAWN toolkit consists of two major parts: the compiler takes a script and
converts it to P-code (or “bytecode”), which is subsequently executed on an ab-
stract machine (or “virtual machine”). PAWN itself is written mostly in the C
programming language (there are a few files in assembler) and it has been ported
to Microsoft Windows, Linux, PlayStation 2 and the XBox. When embedding
PAWN in host applications that are not written in C or CT, I suggest that you
use the AMX DLLs under Microsoft Windows.

1

There is a short chapter on the compiler. Most applications execute the compiler
as a standalone utility with the appropriate options. Even when you link the
compiler into the host program, its API is still based on options as if they were
specified on the command line.

The abstract machine is a function library. The chapter devoted to it contains
several examples for embedding the abstract machine in a host application, in
addition to a reference to all API functions.

Appendices, finally, give compiling instructions for various platforms and back-
ground information —amongst others the debugger interface and the instruction

set.
H

The PAWN language and toolset was designed to be an extension language for
applications —as opposed to many other scripting languages that primarily aim
at the command shell of the operating system. Being an extension language, the
tools an libraries of the PAWN toolset must be integrated with the product.

The two main parts of the PAWN toolset are the compiler and the abstract ma-
chine. The compiler may either be linked into the host application, or it may
be a separate process that is launched from the host application. For perfor-
mance reasons, the abstract machine is always embedded (linked-in) inside the
host application.

2 3 Introduction

A [Host application\
Implicit
include
file

"Launch"
\ g |
S
User's : P-code Abstract
- Compiler
script ﬁ- (*.amx) m— Machine
/ Native

functions

I
User's

include \]

file(s)

The PAWN compiler takes a series of text files containing the code for the user
script and definitions of the environment /the host application. One of the include
files is implicit: the PAWN compiler will automatically include it in any user script,
but it will fail silently if that file is not present. The default name for that implicit
include file (or “prefix file”) is “DEFAULT.INC”. You can override this name with
a command line option to the PAWN compiler.

For a host application, it is advised to create an implicit include file containing:

o all “application specific” constants;

o all native functions that the host application provides (or a core subset of these
native functions);

all overloaded operators (or a core subset of these);

all stock functions (or a core subset of these);

forward declarations of all public functions;

declarations of public variables (if used).

You will have to refer to the PAWN booklet “The Language” for writing the dec-
larations mentioned in the above list.

<
<
<
<

The rationale behind having these declarations in an implicitly included file is
that the definitions are now always available. This avoids errors, especially in
the case of overloaded operators and public functions. If the definition of an
overloaded operator is missing, in many cases the PAWN compiler will use the

Introduction 3 3

default operator without warning. If a user makes a mistake in the declaration of
a public function, the host application will not be able to call it, or it will pass
the wrong parameters. A forward declaration of the public function catches this
error, because the incorrect public function will not match the earlier declaration.

Apart from this implicit include file, the user can also write custom include files
and explicitly include these. In addition, a host application may supply additional
“system” include files that are not added to a project automatically and must be
included explicitly.

The next two chapters are on the PAWN compiler and the abstract machine re-
spectively. The most common set-up is the one where the compiler runs as a
separate process that is spawned from the host application.

Prefix file: 1

The compiler

The PAWN compiler is currently the only translator (or parser) that implements
the PAWN language. The PAWN compiler translates a text file with source code to
a binary file for an abstract machine. The output file format is in appendix D. The
usage of the PAWN compiler is described in the PAWN booklet “The Language”.

e Deployment / installation

In most operating systems, the compiler is a separate self-contained executable
program. It can run as is, but it will look for a configuration file in the same
directory as where the compiler is in itself, and it will locate (system) include files
in a specific directory. For the retail packages, the actual compiler is in a dynam-
ically loaded library. This library is called “libpawnc.so” or “libpawnc.d1ll”
(for Linux/Unix and “pawncc.exe” for Microsoft Windows respectively).

Concretely, to set up the PAWN compiler on a system:

o Copy the program file for the compiler (typically “pawncc” for Linux/Unix and
“pawncc.exe” for Microsoft Windows) in a directory of your choice, and also
copy the library “libpawnc.so” or “libpawnc.d1l” if it exists.

¢ Optionally copy or create a configuration file, called “pawn.cfg”, in the same
directory.

¢ Add a subdirectory called “include” and copy the include files into that di-
rectory —especially add the “DEFAULT.INC” prefix file into that directory, if
applicable.* This “include” directory may either be below the directory in
which the compiler and pawn.cfg reside, or it may be at the same level as
the directory where the compile and pawn.cfg are. For example, if on a Win-
dows system pawncc.exe and libpawnc are in C:\Pawn\bin, then the com-
piler will look for include files in either the directory C:\Pawn\bin\include or
C:\Pawn\include.

e The configuration file

On platforms that support it (currently Microsoft DOS, Microsoft Windows and
Linux), the compiler reads the options in a “configuration file” on start-up. The

* For details on the prefix file, look up the compiler command line option =P in the PAWN booklet

“The Language”.

The compiler 3 5

configuration file must have the name “pawn.cfg” and it must reside in the same
directory as the compiler executable program and/or the compiler dynamically
loaded library.

In a sense, the configuration file is an implicit response file (see the PAWN booklet
“The Language” for details on response files). Options specified on the command
line may overrule those in the configuration file.

Errors

e Compiler errors

The error and warning messages produced by the compiler are described in the
companion PAWN booklet “The Language”.

e Run time errors

The function library that forms the abstract machine returns error codes. These —M ———

. e e 1e . . Run-time errors:
error codes encompass both errors for loading and initializing a binary file and g,
run-time errors due to programmer errors (bounds-checking).

Dynamically
loadable exten-
sion modules:
35

The abstract machine

The abstract machine is a C function library. There are several versions: one
that is written in ANSI C, and optimized versions that use GNU C extensions or
assembler subroutines.

e Deployment/ installation

The abstract machine is either linked into the host program, or it is implemented
as a loadable library (a DLL in Microsoft Windows, or a “shared library” in
Linux). No special considerations are required for redistributing the abstract
machine.

If you allow extension modules to be loaded dynamically, you may need to set an
environment variable in Linux/UNIX. These operating systems search for libraries
in a specific path, unless an explicit path is given for the library. In Linux/
UNIX, the abstract machine builds a specific path from the combination of the
environment variable “AMXLIB” and the library name. For example, if AMXLIB is
set to “/opt/Pawn/bin” and the module uses amxTime, the abstract machine will
load “/opt/Pawn/bin/amxTime.so”. The name of the environment variable is
configurable, —see page 74.

Using the abstract machine

To use the abstract machine:

1 initialize the abstract machine and load the compiled pseudo-code;

2 register all native functions that the host program provides, directly with
amx_Register or indirectly;

3 run the compiled script with amx_Exec;

4 and clean up the abstract machine and other resources.

The example (in C) below illustrates these steps:

int main(int argc, char *argv[])

{
extern AMX_NATIVE_INFO console_Natives[];
extern AMX_NATIVE_INFO core_Natives[];

AMX amx;
cell ret = 0;
int err;

if (argc '= 2)
PrintUsage (argv[0]);

Using the abstract machine 3 7

err = aux_LoadProgram(&amx, argv[1], NULL);
if (err != AMX_ERR_NONE)
ErrorExit(&amx, err);

amx_Register(&amx, console_Natives, -1);
err = amx_Register(&amx, core_Natives, -1);
if (err)

ErrorExit(&amx, err);

err = amx_Exec(&amx, &ret, AMX_EXEC_MAIN);
if (err)
ErrorExit(&amx, err);
printf ("%s returns %1d\n", argv[1], (long)ret);

aux_FreeProgram(&amx) ;
return 0;

}

The cell data type is defined in AMX.H, it usually is a 32-bit integer.

The program checks first whether a command line argument is present; if so, the
program assumes that it is the filename of a compiled PAWN script. The function
PrintUsage is discussed later in this chapter.

Function aux_LoadProgram allocates memory for the abstract machine, loads the
compiled pseudo-code and initializes the lot. This function is not part of the PAWN
core, just because of what it does: memory allocation and file 1/0. Therefore, the
function aux_LoadProgram is implemented in a separate source file and prefixed
with “aux_”, rather than “amx_” (“aux” stands for auxiliary). We will look at an
implementation of aux_LoadProgram below.

The program has declarations for two sets of native functions: console functions
from AMXCONS. C and core functions from AMXCORE. C. Both these sets are registered
with the abstract machine. Function amx_Register returns an error code if the
compiled script contains unresolved calls to native functions. Hence, only the
result of the last call to amx_Register needs to be checked.

The call to amx_Exec runs the compiled script and returns both an error code
and a program result code. Errors that can occur during amx_Exec are division
by zero, stack/heap collision and other common run-time errors, but a native
function or an assert instruction in the source code of the PAWN program may
also abort the PAWN script with an error code.

Once the script has finished running, aux_FreeProgram releases memory and
resources that were allocated for it. This, too, is an auxiliary function —see page
10 for an example implementation.

8 3 Using the abstract machine

The abstract machine API has no functions that read a compiled script from file
into memory; the host program must implement these. An example implementa-
tion that comes with the PAWN toolkit is aux_LoadProgram. This is a fairly large
function as it:

1 opens the file and checks/massages the header;

2 optionally allocates a memory block to hold the compiled pseudo-code (P-
code);

3 reads in the complete P-code file;
initializes the abstract machine and prepares the P-code for execution;

cleans up resources that it allocated in case an error occurs.

int aux_LoadProgram(AMX *amx, char *filename, void *memblock)
{

FILE *fp;

AMX_HEADER hdr;

int result, didalloc;

/* step 1: open the file, read and check the header */
if ((fp = fopen(filename, "rb")) == NULL)
return AMX_ERR_NOTFOUND;
fread(&hdr, sizeof hdr, 1, fp);
amx_Align16(&hdr.magic);
amx_Align32((uint32_t *)&hdr.size);
amx_Align32((uint32_t *)&hdr.stp);
if (hdr.magic != AMX_MAGIC) {
fclose(fp);
return AMX_ERR_FORMAT;
} /% if */

/* step 2: allocate the memblock if it is NULL */
didalloc = 0;
if (memblock == NULL) {
if ((memblock = malloc(hdr.stp)) == NULL) {
fclose(fp);
return AMX_ERR_MEMORY;
} /% if */
didalloc = 1;
/* after amx_Init(), amx->base points to the memory block */

} /% if */

/* step 3: read in the file */
rewind(£fp) ;

fread(memblock, 1, (size_t)hdr.size, fp);
fclose(fp);

/* step 4: initialize the abstract machine */
memset (amx, O, sizeof *amx);
result = amx_Init(amx, memblock);

Using the abstract machine 3 9

/* step 5: free the memory block on error, if it was allocated here */
if (result !'= AMX_ERR_NONE && didalloc) {

free(memblock) ;
amx->base = NULL; /* avoid a double free */
} /% if x/

return result;

Step 1: PAWN can run on both Little-Endian and Big-Endian architectures, but
it uses a single file format for its pseudo-code. The multi-byte fields in the header
of the file format are in Little Endian (or “Intel” format). When running on a
Big Endian CPU, function amx_Init adjusts all fields in the AMX_HEADER struc-
ture from Little Endian to Big Endian. The function aux_LoadProgram, however,
deals with a few header header fields before amx_Init has run, so it must per-
form the proper alignment ezplicitly on a Big Endian CPU, using the functions
amx_Alignl6 and amx_Align32. Calling these functions on a Little Endian ma-
chine does no harm.

The header of the compiled script contains a special number. We check this
“magic file” here immediately, because if we find a different value, all other fields
in the header will likely be mangled as well.

Step 2: The size of the binary image of the compiled script is not equal to the
total memory requirements —it lacks the memory requirements for the stack and
the heap. The “stp” (Stack Top) field in the header of the file format gives the
correct memory size.

With the above implementation of aux_LoadProgram, you can load the compiled
script either into a block of memory that you allocated earlier, or you can let
aux_LoadProgram allocate memory for you. The memblock argument must either
point to a memory block with an adequate size, or it must be NULL, in which case
the function allocates a block.

Step 3: The complete file must be read into the memory block, including the
header that we read near the function. After reading the file into memory, it can
be closed. As an aside, the the value of hdr.size is the same as the file length.

Step 4: It is important to clear the AMX structure before calling amx_Init, for
example using memset.

Step 5: amx_Init does a few checks on the header and it runs quickly through
the P-code to relocate jump and variable addresses and to check for invalid in-

10 3 Using the abstract machine

structions. If this verification step fails, we will want to free the memory block
that the function allocated, but only if the function allocated it.

Finally, for completeness, the functions aux_FreeProgram, ErrorExit and Print-
Usage are below:

int aux_FreeProgram(AMX *amx)
{
if (amx->base!=NULL) {
amx_Cleanup (amx) ;
free(amx->base) ;
memset (amx,0,sizeof (AMX));
} /% if %/
return AMX_ERR_NONE;
}

void ErrorExit(AMX *amx, int errorcode)

{
printf ("Run time error %d: \"%s\" on line %ld\n",
errorcode, aux_StrError(errorcode),

(amx != NULL) ? amx->curline : 0);

exit(1);

}

void PrintUsage(char *program)

{
printf ("Usage: %s <filename>\n", program);
exit(1);

}

¢ Controlling program execution

The code snippets presented above are enough to form an interpreter for PAWN
programs. A drawback, however, is that the PAWN program runs uncontrolled
once it is launched with amx_Exec. If the PAWN program enters an infinite loop,
for example, the only way to break out of it is to kill the complete interpreter —or
at least the thread that the interpreter runs in. Especially during development,
it is convenient to be able to abort a PAWN program that is running awry.

The abstract machine has a mechanism to monitor the execution of the pseudo-
code that goes under the name of a “debug hook”. The abstract machine calls
the debug hook, a function that the host application provides, at specific events,
such as the creation and destruction of variables and executing a new statement.
Obviously, the debug hook has an impact on the execution speed of the abstract
machine. To minimize the performance loss, the host application can enable the
debug hook “as needed” and keep it disabled when it is not needed.

Using the abstract machine 3 11

To install a debug hook, call amx_SetDebugHook. A debug hook function can
inspect the status of the abstract machine and browse through the symbolic in-
formation (and the source files) when it gets invoked. To set up a debug hook,
you would add a call to amx_SetDebugHook somewhere between amx_Init and
amx_Exec. In the PAWNRUN program laid out at page 6 (function main), you
could add the following line below the call to aux_LoadProgram:

err = amx_SetDebugHook(&amx, prun_Monitor);

The function amx_Monitor becomes the “debug hook” function that is attached
to the specified abstract machine. A minimal implementation of this function is
below:

int AMXAPI prun_Monitor (AMX *amx)
{
return abortflagged ? AMX_ERR_EXIT : AMX_ERR_NONE;

}

If the debug hook returns any code other than AMX_ERR_NONE, execution halts and
amx_Exec returns the specific error code. The code AMX_ERR_SLEEP is a special
case: it aborts execution in a way that it can be restarted by passing the special
“index” AMX_EXEC_CONT to function amx_Exec. The abstract machine calls the
debug hook just before executing a new statement (on a new line).

Exactly how the host program decides whether to continue running or to abort the
abstract machine is implementation dependent. This example uses a global vari-
able, abortflagged, that is set to a non-zero value —by some magical procedure—
if the abstract machine(s) must be aborted.

There exists a more or less portable way to achieve the “magic” referred to in the
previous paragraph. If you set up a signal function to set the abortflagged
variable to 1 on a SIGINT signal, you have an “ANSI C”-approved way to abort
an abstract machine. The snippet for the signal function appears below:

void sigabort(int sig)
{

abortflagged = 1;

signal(sig, sigabort); /* re-install the signal handler */
}

And somewhere, before calling amx_Exec, you add the line:

signal (SIGINT, sigabort);

Appendix D doc-

uments all op-
codes

12 3 Using the abstract machine

Debug hook functions allow you to monitor stack usage, profile execution speed
at the source line level and, well... write a debugger. Detailed information on
the debug hook is found in appendix E of this manual.

One caveat is that the debug hook depends on the presence of BREAK opcodes.
When a PAWN program is compiled without debug information, no BREAK opcodes
are present in the P-code and the debug hook will never get called. That renders
our monitor function ineffective. This is okay, though, because the user or the host
application has explicitly compiled without debugging checks to improve run-time
performance —by default the PAWN compiler has (minimal) debug information
enabled.

In your host application, you may want to check for debug information and, in its
absence, warn the user that some functionality may not be available. To verify
whether debug information is present, use the following snippet:

uint16_t flags;
amx_Flags (&amx, &flags);
if ((flags & AMX_FLAG_NOCHECKS) != 0) {
/* no BREAK opcodes are present, a debug hook will not run */

Code to handle the case of missing debug support

} /% if */

e A smarter “break-out’”’ hook

The debug hook described above has a major drawback: it makes the script run
more slowly, because the abstract machine calls the hook function repetitively.
In the normal situation (no “abort” is signalled), the hook function does nothing
—except take time.

An improvement is to run without debug hook normally, and to set up a debug
hook only after an abort signal break has already been detected. To this end, we
change the signal function to:

void sigabort(int sig)

{
/* install the debug hook procedure if this was not done already */
amx_SetDebugHook (global_amx, prun_Monitor);
signal(sig,sigabort); /* re-install the signal handler */

}

Using the abstract machine ; 13

If you use the debug hook only to check for a “break” or “abort” signal, there is
no need for a global variable that flags this request: de debug hook will only ever
be called when the user has already issued the break/abort request, so the debug
hook can just always return with an error code to cause the script to abort.

int AMXAPI prun_Monitor (AMX *amx)

{
return AMX_ERR_EXIT;

}

While the abortflagged global variable is was made redundant, I have introduced
a new global variable: global_amx. The standard signal function from ANSI
C does not provide for passing a “user value” via a parameter, so you have to
invent another way to make the abstract machine that you wish to abort known
to the signal function. In practice, your host application will likely have another
implementation for the signal function, such as an event procedure in a GUI.

e Monitoring stack/heap usage

A useful function that the debug hook can implement is to monitor how much
memory the compiled script uses at run-time —in other words, checking the max-
imum stack and heap usage. To this end, the example below extends the debug
“monitor” function of the previous sections, and adds another refinement at the
same time.

int AMXAPI amx_Monitor (AMX *amx)
{
int err;
unsigned short flags;
STACKINFO *stackinfo;

/* record the heap and stack usage */
err = amx_GetUserData(amx, AMX_USERTAG(’S’,’t’,’c’,’k’),
(void**)&stackinfo) ;
if (err == AMX_ERR_NONE) {
if (amx->stp - amx->stk > stackinfo->maxstack)
stackinfo->maxstack = amx->stp - amx->stk;
if (amx->hea - amx->hlw > stackinfo->maxheap)
stackinfo->maxstack = amx->stp - amx->stk;

} /% if */

/* check whether an "abort" was requested */
return abortflagged ? AMX_ERR_EXIT : AMX_ERR_NONE;

Appendix D cov-

ers the memory
layout

14 3 Using the abstract machine

This extended version of amx_Monitor still checks the abortflagged variable
(which is set on a Ctrl-C or Ctrl-Break signal), but at the same time it also
calculates the current stack and heap usage and records these in a structure. The
used stack space is the difference between the top-of-stack and the current stack
point; similarly, the heap usage is the difference between the current heap pointer
and the heap bottom. More interesting is that the function stores this maxima
of the calculated values in the variable stackinfo, which is a structure with the
following definition:

typedef struct tagSTACKINFO {
long maxstack, maxheap;
} STACKINFO;

The abstract machine allows a host application to set one or more “user values”.
In the current implementation of the abstract machine, up to four user values may
be used. To indicate which of the user values you want to access, it is convenient
to use the macro AMX_USERTAG with a four-letter identification string. In this
example, the identification characters are ‘S’,‘t’,‘c’,‘’k’.

The monitor function only retrieves a pointer to the stackinfo structure and
updates its fields. Elsewhere in the program, before the call to amx_Exec, the
following lines are present to initialize the variable and set its address as a user

value:

STACKINFO stackinfo;
memset (&stackinfo, 0, sizeof stackinfo);
err = amx_SetUserData(&amx, AMX_USERTAG(’S’,’t’,’c’,’k’), &stackinfo);

As you will probably want to monitor the stack usage from the start, the debug
hook has also to be set up before calling amx_Exec. Setting up the debug hook is
covered on page 10.

e Preparing for memory-hungry scripts

The core run-time files that build the abstract machine executor (AMX.C and
AMXEXEC.ASM) are specifically designed not to use dynamic memory or to rely
on a particular memory allocator.* The reasoning behind this design is that
the abstract machine executor is made to be linked into host applications and,
in practice, diverse host applications use dissimilar memory allocation schemes
—from instrumented versions of malloc to garbage collection algorithms.

* There are a few “violations” of this design: the “property” functions in AMXCORE.C call
“malloc”; that said, native functions are considered mon-core functions.

Using the abstract machine ; 15

The drawback of this design, however, is that the address range that a compiled
script runs in cannot easily grow: the executor itself cannot grow the memory
block because it knows nothing about the memory allocator that the host program
uses, and the host program will have to reach into the internals of the abstract
machine executor after it resizes the memory block. Already determining when to
grow the block is involved. Hence, the address range that a script can use should
be seen as “fixed” or static.

The problem is that the host application cannot foresee what kind of scripts users
will write and how much breathing room their scripts need. A user may set this
value him/herself with #pragma dynamic, but this involves guesswork and it is
not user friendly. When the host program also runs the compiler, it can set the
heap/stack size to a value that is large enough for every imaginable script, but
at the risk that expanding the memory footprint of the host program by this size
impacts the general performance of the complete system (read “causes excessive

swapping”).

Modern operating systems allow for an efficient solution for this dilemma: allocate
the memory address range without reserving the memory and subsequently reserve
(or “commit”) the memory on an as-needed basis. The code snippets in this
section are for the “Win32” family of Microsoft Windows, but the concept applies
to many operating systems that provide virtual memory.

int main(int argc,char *argv[])
{

size_t memsize;

void *program;

AMX amx;

cell ret = 0;

int err;

if (argc != 2 | | (memsize = aux_ProgramSize(argv[1])) == 0)
PrintUsage (argv[0]);

program = VirtualAlloc(NULL, memsize, MEM_RESERVE, PAGE_READWRITE);
if (program == NULL)
ErrorExit (NULL, AMX_ERR_MEMORY);

__try {

err = aux_LoadProgram(&amx, argv[1], program, NULL);
if (err)
ErrorExit(&amx, err);

amx_ConsoleInit (amx) ;
err = amx_Corelnit(amx);
if (err)

ErrorExit (&amx, err);

For “#pragma
dynamic” and
compiler options:
see the Pawn
booklet “The
Language”

16 3 Using the abstract machine

err = amx_Exec(&amx, &ret, AMX_EXEC_MAIN);
if (err)
ErrorExit(&amx, err);
if (ret !'= 0)
printf ("%s returns %1d\n", argv[i], (long)ret);

} __except (prun_CommitMemory(GetExceptionInformation(), program, memsize)){
/* nothing */
} /* try */

amx_ConsoleCleanup (&amx) ;
amx_CoreCleanup (&amx) ;

amx_Cleanup (&amx) ;

VirtualFree(program, memsize, MEM_DECOMMIT) ;
VirtualFree(program, O, MEM_RELEASE);

return 0;

The above main function is a variation of the one on page 6. Instead of using
malloc and free (indirectly through aux_LoadProgram and aux_FreeProgram),
it calls the Win32 functions VirtualAlloc and VirtualFree. The call to Virtu-
alAlloc reserves an address range, but does not “commit” the memory, meaning
that no memory is allocated at this point. Later, one may commit chunks of
memory inside this address range, with the advantage that one can now specify
the memory address that must be committed. At the end of the program, Vir-
tualFree must be called twice, as the function can only release memory in one
call if it has either been fully committed or fully decommitted. The first call to
VirtualFree decommits all committed memory.

When a program tries to access memory that is not committed, an “access vio-
lation” exception occurs. Function main catches exceptions and handles them in
the function below. Note that the function carefully checks whether it gets an
exception that it can handle. PAWN typically accesses elements in cells, so that
is the default size to commit (variable elemsize in the code snippet below), but
this size is adjusted if it would exceed the allocate memory range.

DWORD prun_CommitMemory(struct _EXCEPTION_POINTERS *ep, void *memaddr,
size_t memsize)
{
void *virtaddr;
int elemsize;

if (ep->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
return EXCEPTION_CONTINUE_SEARCH;

virtaddr = (void*)ep->ExceptionRecord->ExceptionInformation[1];
if (virtaddr < memaddr | | virtaddr >= ((char*)memaddr + memsize))
return EXCEPTION_CONTINUE_SEARCH;

Calling “public” functions ; 17

elemsize = sizeof(cell);
if ((char*)virtaddr + elemsize > (char*)memaddr + memsize)
elemsize = ((char*)memaddr + memsize) - (char*)virtaddr;

if (VirtualAlloc(virtaddr, elemsize, MEM_COMMIT, PAGE_READWRITE) == NULL)
return EXCEPTION_CONTINUE_SEARCH;

return EXCEPTION_CONTINUE_EXECUTION;
}

With these modifications, a host program (or a user) can now specify a size for the
stack and heap of a few megabytes when compiling a script file, and be assured
that only the memory that the program really uses is ever allocated. Microsoft
Windows commits memory blocks in “pages”, which are 4 kiB in size. That is,
although the above code commits only one cell (4 bytes), a range of 1024 cells
get committed.

A host program may choose to periodically decommit all memory for a running
script, in order to reduce the memory footprint of the script (this is not imple-
mented in the above code snippet).

Another change in main in comparison with the first implementation at page 6
is that it calls the functions amx_ConsolelInit and amx_CoreInit rather than
amx_Register directly. As is explained in the section on writing extension mod-
ules (an extension module is a native function library), it is proposed that an
extension module provides initialization and clean-up functions; the initialization
function registers the native functions.

Calling “public” functions

The implementations presented so far would only call the function main in a

compiled PAWN script. Many implementations require multiple entry points and

need to be able to pass input parameters to that entry point. We need two steps

to enable this:

¢ The script must provide one or more public functions.

¢ The host program must be adapted to locate the public function and pass its
index (and parameters) to amx_Exec.

To start with the latter step, the host program is adapted so that it finds a
particular public function by name. Function amx_Exec takes an index of a
public function as a parameter; the previous examples used the special constant
AMX_EXEC_MAIN to start with the “main” entry point. If you know the name of

Writing exten-
sion modules: 24
Init/Cleanup
functions: 25

18 3 Calling “public” functions

the public function, amx_FindPublic returns its index. For this purpose, include
the snippet below before the call to amx_Exec (it assumes that the name of the
public function is in the variable argv[2]):

err = amx_FindPublic(&amx, argv[2], &index);
if (err)
ErrorExit (&amx, err);

A public function may require input arguments. If so, these must be “pushed”
onto the AMX stack prior to calling amx_Exec. For a numeric parameter that is
passed by value, the sequence would be:

cell value = 123;

amx_Push(&amx, value);
amx_Exec(&amx, NULL, index);

Numeric (“passed-by-value”) parameters are removed automatically from the
stack when amx_Exec returns. When the parameter is a reference parameter
or an array (or a string), the memory needs to be explicitly freed after amx_Exec
returns —this gives the host application the ability to inspect the value(s) that
the script stored in these parameters. For example, to pass a string from argv [3]
in the host program to a public function in the abstract machine, use a snippet
like the following;:

cell amx_addr;
cell *phys_addr;

/* pass argv[3] as input */
amx_PushString(&amx, &amx_addr, &phys_addr, argv[3], 0, 0);
amx_Exec(&amx, NULL, index);

/* copy the (possibly changed) string out of the AMX (optional) */
char resultstring[128];
amx_StrLen(phys_addr, &length);
if (length < sizeof (resultstring))
amx_GetString(resultstring, phys_addr, O, UNLIMITED);

/* release the memory */
amx_Release(&amx, amx_addr);

The above snippet passes the string as an “unpacked” string, meaning that in the
script, every cell holds one character. The PAWN API (and the PAWN language
itself) support “wide characters” for Unicode applications. The above example
assumes a non-Unicode environment —in an Unicode environment the next-to-last
parameter to amx_SetString and amx_GetString should be non-zero.

In addition to storing the input argument on the stack, function amx_PushString
returns two addresses; here stored in amx_addr and phys_addr. The amx_addr

Calling “public” functions ; 19

variable contains the memory address relative to the abstract machine —this is
the address that must be passed to amx_Release to free the allocated memory.
The phys_addr variable is a pointer directly into the AMX stack that the host
program uses to inspect or copy data out of the abstract machine after amx_Exec
returns. In this example, the host program calls amx_GetString to store the
string that the script modified into a local variable.

If a public function has a variable argument list, all parameters in this list must
be passed by reference. That is, you have to follow the above procedure for
any argument that falls in the variable argument list of the public function. For
reference arguments, pass an array with a size of one cell.

Below is the complete main function of a run-time that allows you to execute
any public function and pass in a string. This program is, again, a modification
of the example program on page 6. It includes the calls to amx_FindPublic
and amx_PushString mentioned above, and it also shows how to pass one extra
parameter through amx_Exec.

int main(int argc,char *argv[])
{

size_t memsize;

void *program;

AMX amx;

int index, err;

cell amx_addr, *phys_addr;

char output[128];

if (argec !'= 4 || (memsize = prun_ProgramSize(argv[1])) == 0)
PrintUsage(argv[0]);

program = malloc(memsize);
if (program == NULL)
ErrorExit (NULL, AMX_ERR_MEMORY);

err = prun_LoadProgram(&amx, argv([1], program);
if (err)
ErrorExit(&amx, err);

amx_ConsoleInit (&amx) ;
err = amx_Corelnit(&amx);
if (err)

ErrorExit (&amx, err);

err = amx_FindPublic(&amx, argv[2], &index);
if (err)
ErrorExit (&amx, err);

err = amx_PushString(&amx, &amx_addr, &phys_addr, argv[3], 0, 0);
if (err)
ErrorExit(&amx, err);

See the Pawn
booklet “The
Language” for
details on vari-
able arguments

20 3 Calling “public” functions

err = amx_Exec(&amx, NULL, index);
if (err)
ErrorExit(&amx, err);

amx_GetString(output, phys_addr, O, UNLIMITED);
amx_Release(&amx, amx_addr);
printf ("%s returns \"%s\"\n", argv[1], output);

amx_ConsoleCleanup (&amx) ;
amx_CoreCleanup (&amx) ;
amx_Cleanup (&amx) ;
free(program) ;

return 0;

When the program returns from amx_Exec, the host program can inspect the re-
turned value(s) and free the allocated space. The program presented here uses
amx_GetString to retrieve the string that the public function (possibly) modi-
fied. The function amx_Release frees the memory allocated by amx_PushString.
When you pass in multiple string or array arguments to a public function, a single
call to amx_Release can free all allocated memory, see the function description
at page 58.

To demonstrate this program, we must also write a script that contains a public
function and that accepts a string parameter. Below is a variation of the “ROT13”
example script from the PAWN booklet “The Language”. The essential modifica-
tion is the keyword public that is prefixed to the function name “rot13” —and
the removal of the main function which has now become redundant.

public rot13(stringl[])
{
for (new index = 0; string[index]; index++)
if (’a’ <= string[index] <= ’z’)
string[index] = (stringlindex] - ’a’ + 13) 7 26 + ’a’
else if (’A’ <= stringl[index] <= ’Z’)
string[index] = (stringlindex] - ’A’ + 13) 7 26 + ’A’

With these modifications, and supposing that we have built the C program to an
executable with the name “pawnrun”, we can execute the script with:
pawnrun rotl3.amx rotl3 hello-world

Essentially the same procedure as outlined above applies to the passing of non-
string arrays to a public function:

1 pass the array to the abstract machine with amx_PushArray;

2 call the public function;

Calling “public” functions 3 21

3 optionally copy the array back, out of the abstract machine —using the “phys-
ical address” pointer that amx_PushArray returned;

4 free the memory block in the abstract machine with amx_Release, passing it
the “AMX address” pointer that amx_PushArray also returned.

The implementation of “pawnrun” that calls the ROT13 script (page 19) uses the
functions amx_SetString and amx_GetString to copy strings into and out of the
abstract machine. The reasons for using these functions has to do with the differ-
ence in memory layout of strings in C/C** versus PAWN. When passing arrays
of integers (cell-sized) or floating point values, you can just use the standard C
functions memmove and memcpy.

For an example, imagine a host application that does some statistical processing
of lists of floating point numbers, and that allows users of the application to “cus-
tomize” the operation by providing an alternative implementation of key routines
in a PAWN script. In particular, the host application allows user to override the
“mean” calculation with a script that contains the public function CalculateMean
with the following signature:

public Float: CalculateMean(Float: values[], items)

This is what the host application does (I am showing only a snippet of code here,
rather than a complete implementation of a C/CT* function; refer to page 19 for
the context of this snippet):

float Mean; /* the variable holding the result of the calculation */
float Values[]; /* array with the numbers to get the mean of */

int Number; /* number of elements in "Values" */

AMX amx; /* the abstract machine, already initialized */

int index, err;
cell amx_addr;

err = amx_FindPublic(&amx, "CalculateMean", &index);
if (err != AMX_ERR_NONE) {
/* custom function not present, use a built-in function to
* calculate the mean
*/
Mean = CalculateStdMean(Values, Number);
} else {

/* 1. push the second argument to the public function first (arguments
* must be pushed in reverse order)
*/

amx_Push(&amx, Number);

22 3 Calling “public” functions

/* 2. allocate memory in the abstract machine; I pass NULL as
* the "physical address" pointer because the array is not
* copied back on return (see step 4) */

err = amx_PushArray(&amx, &amx_addr, NULL, Values, Number);

if (err == AMX_ERR_NONE) {

/* 3. call the public function with the "AMX address" */
err = amx_Exec(&amx, (cell*)&Mean, index);
if (err != AMX_ERR_NONE)
printf ("Run time error %d on line %1d\n", err, amx.curline);

/* 4. we could copy the array back here, but it is not very
* useful in this particular case */

/* 5. release memory in the abstract machine */
amx_Release(&amx, amx_addr);

} else {
printf ("Failed to allocate %d cells\n", Number);
Mean = 0.0;

} /*x if x/

} /% if */

This example may appear a rather abstract twist of mind: “what kind of alter-
native mean function can a user invent that is not absurd or fraudulent” —until
you dive into the subject and discover a full and complex world behind a simple
concept as “the mean”. The most well known and most frequently used kind
of average, which has become synonymous with the mean, is the “arithmetic av-
erage”:* the sum of all elements divided by the number of elements. It is well
known that the arithmetic average is sensitive to outliers, e.g. coming from noisy
data, and in such cases the “median” is often proposed as a stable alternative to
the (arithmetic) mean.

The median and the mean are the two extremities of the (arithmetic) “trimmed
mean”. The trimmed mean throws out the lowest and the highest few samples and
calculates the arithmetic average over the remainder. The number of discarded
samples is a parameter of the trimmed mean function: if you discard zero samples
what you get is the standard mean and if you discard all but one sample, the
remaining sample is the median.

The example implementation of a trimmed mean below discards only the top and
bottom samples. This particular configuration of the trimmed mean has become

* . . .
Other kinds are the geometric average, the harmonic average and the “root mean square”.

Calling “public” functions ; 23

known as the “Olympic mean”, referring to a similar procedure that has in the

past been used to establish the average performance of athletes.

#include <float>

public Float: CalculateMean(Float: values[], items)

{

/* return a "trimmed mean" by throwing out the minimum and
* the maximum value and calculating the mean over the remaining
* items

*/

assert items >= 3 /* should receive at least three elements */

new
new
new
for

Float: minimum = values[0]

Float: maximum = values[0]

Float: sum = 0.0

(new i = 0; i < items; i++)

{

if (minimum > values[i])
minimum = values[i]

else if (maximum < values[i])
maximum = values[i]

sum += values[i]

}

return (sum - minimum - maximum) / (items - 2)

}

This concludes handling array and string arguments to a public function by the
host application; what is left are reference arguments. This does not need an
in-depth discussion, however, because the host application can handle a reference
argument as an array argument with the size of one (1) cell.

24

Extension modules

An extension module provides a PAWN program with application-specific (“na-

tive”) functions. An native function is a function that is implemented in the host

application (as opposed to being implemented in the PAWN script) and it is typi-

cally implemented in a different programming language.* Creating an extension

module is a three-step process:

1 writing the native functions (in C);

2 making the functions known to the abstract machine;

3 writing an include file that declares the native functions for the PAWN pro-
grams.

e 1. Writing the native functions

Every native function must have the following prototype:

cell AMX_NATIVE_CALL func(AMX *amx, const cell *params);

The identifier “func” is a placeholder for a name of your choice. The AMX type
is a structure that holds all information on the current state of the abstract
machine (registers, stack, etc.); it is defined in the include file AMX.H. The symbol
AMX_NATIVE_CALL holds the calling convention for the function. The file AMX.H
defines it as an empty macro (so the default calling convention is used), but
some operating systems or environments require a different calling convention.
You can change the calling convention either by editing AMX.H or by defining the
AMX_NATIVE_CALL macro before including AMX .H. Common calling conventions are
_cdecl, _far _pascal and _stdcall.

The params argument points to an array that holds the parameter list of the
function. The value of params[0] is the number of bytes passed to the function
(divide by the size of a cell to get the number of parameters passed to the
function); params[1] is the first argument, and so forth.

For arguments that are passed by reference, function amx_GetAddr converts the
“abstract machine” address from the “params” array to a physical address. The
pointer that amx_GetAddr returns lets you access variables inside the abstract
machine directly. Function amx_GetAddr also verifies whether the input address
is a valid address.

* The native function interface is technically known as a “foreign function interface”, but this

manual uses the term “native function interface”.

FExtension modules ; 25

When a native function accepts a variable number of arguments, all arguments in
the “variable argument list” are passed to the native function by reference. Even
(literal) constants that are passed to the function are first stored on a temporary
location on the stack and then the address of that location is passed to the function
—the constant is thereby passed “by reference”.

Strings, like other arrays, are always passed by reference. However, neither packed
strings nor unpacked strings are universally compatible with C strings (on Big
Endian computers, packed strings are compatible with C strings). Therefore, the
abstract machine API provides two functions to convert C strings to and from
PAWN strings: amx_GetString and amx_SetString.

A native function may abort a program by calling amx_RaiseError with a non-
zero code. The non-zero code is what amx_Exec returns.

e 2. Linking the functions to the abstract machine

An application uses amx_Register to make any native functions known to the
abstract machine. Function amx_Register expects a list of AMX_NATIVE_INFO
structures. Each structure holds a pointer to the name of the native function and
a function pointer.

Below is a full example of a file that implements two simple native functions:
raising a value to a power and calculating the square root of a value. The list of
AMX_NATIVE_INFO structures is near the bottom of the example —it is wrapped
in an “initialization function” called amx_PowerInit.

/* This file implements two the native functions: power(value,exponent)
* and sqroot(value).
*/

#include "amx.h"

static cell n_power (AMX *amx, cell *params)
{
/* power (value, exponent);
* params[1]
* params[2]
*/
cell result = 1;
while (params[2]-- > 0)
result *= params[1];
return result;

}

value

exponent

See page 111 for
the memory lay-
out of arrays and
page 31 for an
example

Example pro-
gram that calls

amx_Register: 6

26 3 FExtension modules

static cell n_sqroot(AMX *amx, cell *params)
{
/* sqroot(value);
* params[1] = value
* This routine uses a simple successice approximation algorithm.
*/
cell div = params[1];
cell result = 1;
while (div > result) { /* end when div == result, or just below */
div = (div + result) / 2; /* take mean value as new divisor */
result = params[1] / div;
} /* while */
return div;

}

int amx_PowerInit (AMX *amx)
{
static AMX_NATIVE_INFO power_Natives[] = {
{ "power", n_power },
{ "sqroot", n_sqroot },
{0, 01} /* terminator */
};
return amx_Register (amx, power_Natives, -1);

}

int amx_PowerCleanup (AMX *amx)
{

return AMX_ERR_NONE;
}

In your application, you must add a call to amx_InitPower with the “amx” struc-
ture as a parameter, as shown below:

err = amx_InitPower (&amx) ;

The first example of “host applications” for the PAWN abstract machine called

amx_Register directly, referring to the external arrays core_Natives and con-

sole_Natives (being the native function tables). In many situations, the strategy

taken here (calling a function provided by the extension module to handle the na-

tive function registration) is preferable:

¢ Giving a function “external” scope is safer than doing so with a variable; as
opposed to functions, variables can be (accidentally) tampered with. Observe,
by the way, that only the functions amx_PowerInit and amx_PowerCleanup
have external scope in the above example.

¢ An extension module may require additional “start-up” code. Doing this in
the same routine that also registers the native functions makes sure that all
initialization steps occur, and in the correct order.

Writing “wrappers” ; 27

¢ An extension module may also require clean-up code. When all extension mod-
ules provide “initialization” and “clean-up” functions, the rules for adding an
extension module to the host application become universal. This is especially
so if there is a naming convention for these initialization and clean-up functions.
For this reason, even though the “power” extension module does not require
any clean-up, an empty clean-up function amx_PowerCleanup was added.

e 3. writing an include file for the native functions

The first step implements the native functions and the second step makes the
functions known to the abstract machine. Now the third step is to make the
native functions known to the PAWN compiler. To that end, one writes an include
file that contains the prototypes of the native functions and all constants that
may be useful in relation to the native functions.

#pragma library Power

native power(value, exponent)
native sqroot(value)

The #pragma library line is useful when you create a dynamically loadable
extension module, as described on page 35; it is not required for an extension
module that is statically linked to the host application.

Writing “wrappers”

The preceding sections described the implementation of a few functions that were
specially crafted as “native functions” for the PAWN abstract machine. It is com-
mon practice, however, that instead of writing new functions for PAWN, you will
make a set of existing C/C™™ functions available to PAWN. To “glue” the existing
functions to PAWN, you need to embed each function in a tiny new function with
the required “native function” signature. Such new functions are called wrapper
functions.

Wrapper functions also illustrate the issues in passing parameters across C/C*+—
PAWN boundaries, plus that they provide templates for writing any kind of native
functions.

e Pass-by-value, the simplest case

The PAWN toolset was designed to make the interface to native functions quick and
easy. To start with an example, I will make a wrapper for the function isalpha
from the standard C library. The prototype for isalpha is:

28 3 Writing “wrappers”

int isalpha(int c);

Wrapping isalpha into a native function, results in the code:

static cell n_isalpha(AMX *amx, const cell *params)
{

return ¢salpha((int)params[1]);
}

In addition to writing the above wrapper function, you must also still add it to a
table for amx_Register and add it to an include file for the PAWN compiler.

e Floating point

Wrapping functions like isalpha represent the simplest case: functions that take
parameters with an “integer” type and that return “void” or an integer type.
When either any of the parameters or the return type of the existing function are
a floating point type, these parameters must be cast to/from the “cell” type that
PAWN uses —but this cast must happen through a special macro. For example,
consider the function sin with the prototype:

double sin(double angle);

Its wrapper function is:

static cell n_sin(AMX *amx, const cell *params)
{
float r = sin(amx_ctof(params[1]));
return amx_ftoc(r);

}

The symbols amx_ctof and amx_ftoc are macros that cast a “cell” type into
“float” and vice versa, but in contrast to the standard type casts of C/C*™ they
do not change the bit representation of the value that is cast. A normal type cast,
therefore, changes the value* and what is needed is a cast that leaves the value
intact —which is what amx_ctof and amx_ftoc do.

* This behaviour is quite apparent in the cast from floating point to integer, which truncates the

value to its integral part.

Writing “wrappers” ; 29

e Strings

Wrapping functions that take string parameters is more involved, because the
memory layout of a string in the PAWN abstract machine is probably different than
that of C/C*+.T This means that strings must be converted between the native
(wrapper) function and the PAWN abstract machine. The standard C function
access has the prototype:

int access(const char *filename, int flags);

Its wrapper function is:

static cell n_access(AMX *amx, const cell *params)
{

int r = 0, length;

cell *cstr;

char *pname;

amx_GetAddr (amx, params[1], &cstr);

amx_StrLen(cstr, &length);

if ((pname = malloc(length + 1)) != NULL) {
amx_GetString(pname, cstr, 0, UNLIMITED);
r = access(pname, (int)params[2]);
free(pname) ;

} /% if x/

return r;

When the PAWN abstract machine passes an array to a native function, it passes
the base address of the array. This address, however, is relative to the data section
of the abstract machine; it is not a pointer that the native function (in C/C*1)
can use as is. The function amx_GetAddr translates an “abstract machine address”
(in params [1] in the above example) to a physical pointer for the host application
(i.e. cstr).