{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# 河床変動の応用-混合粒径の河床変動" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ " - 実際の川の河床材料は分布を持っている." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "hide_input": true, "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import IFrame\n", "IFrame(\"https://en.wikipedia.org/wiki/Bed_load#/media/File:Thalweg_sediment_campbell_creek.jpg\",width=800,height=350)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ " - 先程のモデルを混合粒径モデルに拡張する.\n", " - 河床変動と同時に表層河床材料の粒度分布の変化を計算する\n", " \n", "\\begin{align}\n", " (1-\\lambda)\\frac{\\partial A_{b}}{\\partial t}+\\frac{\\partial }{\\partial x} \\sum_{i=1}^n ( Q_{bi}P_i) &= 0 \\\\\n", " Q_{bi} = { \\rm func} (\\tau_{*i} )\n", "\\end{align}\n", "\n", "\\begin{align}\n", " \\frac{\\partial P_i}{\\partial t} &= - \\frac{1}{E_d B}\\left(\\frac{\\partial A_{bi}}{\\partial t} + P_{si}\\frac{\\partial A_b}{\\partial t}\\right) \n", "\\end{align}\n", "\n", "ここに,$P_i$は河床の表層(交換層)の各粒度の含有率" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "
\n", "\n", "
\n", "「移動床流れの水理学」より引用" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ " - ここで,$\\tau_{*i}$がポイントとなる.\n", " - 平均粒径より大きい粒径は動きやすく(突出効果),小さい粒径は動きにくくなる(遮蔽効果)影響を考慮して設定する.\n", " - いくつかの経験則が提案されているが,エギアザロフの式が有名.\n", " \n", " \n", "
\n", " \n", "
" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ " - 計算例\n", " * ダム堆砂のイメージ\n", " * 河床勾配1/200,上流端からの供給土砂量を0" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "hide_input": true, "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import IFrame\n", "IFrame(\"fig/case3.html\",width=800,height=350)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ " - 参考例:混合粒径の影響を考慮しない計算例\n", " * 前の事例と同じ計算例" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "hide_input": true, "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import IFrame\n", "IFrame(\"fig/case3d.html\",width=800,height=350)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ " - 流砂の主材料が平均粒径より小さいため本来は遮蔽効果が働く。それがないため土砂移動速度が速くなる。" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.10" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }