
Interplanetary Consensus (IPC)∗

ConsensusLab†

Abstract

Totally ordering transactions constitutes a significant scalability bottleneck standing in
the way of massive adoption of blockchain systems, as all participants need to replicate and
execute sequentially every single transaction. Layer 2 (L2) protocols aim at resolving this
scalability limitation by off-loading state and processing to a loosely coupled sub-system.

We present Interplanetary Consensus (IPC), a new blockchain architecture design that
enhances the scaling capabilities of L2+ protocols. Users of IPC can dynamically spawn
new blockchain subsystems (subnets) as children of any existing subnet. IPC is based on
the design principles of on-demand horizontal scaling. Child subnets leverage the security
of their parent subnets by periodically checkpointing their state in the parent’s state. IPC
provides native communication across subnets within the IPC framework.

We believe that IPC addresses several issues with existing L2 approaches, including lim-
ited throughput capacity, isolation from each other, centralized components, or monolithic
architectures. In the following, we introduce the overall system architecture, native func-
tionality, and design decisions of our reference implementation for child subnets based on
the BFT Trantor consensus protocol, with Filecoin as rootnet.

1 Introduction

Consensus, or establishing total order across transactions, poses a major scalability bottleneck in
blockchain networks [60], such as Bitcoin [48], Ethereum [63], or Filecoin [7]. In short, the main
challenge with consensus is that it requires all replicas (sometimes called nodes, validators, or
miners) to process all transactions. Regardless of the specific consensus protocol implementation
used, even if we use the most scalable and efficient consensus protocol theoretically feasible, this
makes blockchain performance limited to that of a single replica at best.

This observation makes it practically impossible to process all transactions pertaining to
a use case that a particular blockchain network aims at addressing on its base network, also
often denoted as mainnet or a Layer-1 (L1) network. For instance, if we put all monetary
transactions of the entire world on a single L1, every replica of this L1 would need to process all
transactions in the world, which seems infeasible and certainly limits us only to vertical scaling
of the replicas. Even if this was somehow possible, the hardware requirements for such replicas
would be prohibitive, which would hamper decentralization of a blockchain system [61] and, in
particular, the ability of people to participate.

In the last few years, this has been well understood by decentralized systems designers and
the quest for decentralized system scalability has moved to Layer 2 (L2) and beyond. Here,
roughly, an L2 network is a network that anchors certain critical information in an L1 but
processes transactions off L1, according to its proper protocol. At the same time an L1 ideally
remains umodified, for security and governance reasons. Prominent examples of L2s started

∗https://ipc.space
†https://consensuslab.world

1

https://ipc.space
https://consensuslab.world


with the Lightning Network (LN) payment channels [51] that serve today as the main L2 for
Bitcoin transactions.

After LN, the number of L2 scalability solutions exploded to the extent that it became
challenging to even track their number and to navigate the area. For instance, [38] gives an
academic overview of state-of-the-art as of 2020 with over 160 references, while [43] offers an
informal yet often updated overview of Ethereum scaling proposals listing more than 20 inde-
pendent efforts which are being deployed as production networks. Other blockchain ecosystems
have their own scaling approaches, e.g., Cosmos, Avalanche or the Internet Computer.

There are several glaring issues with existing approaches, of which we list just a few:

• bi-lateral payment and state channels, e.g., in LN, require an L1 transaction to open (and
another to close) a channel between every two parties that wish to transact. This poses a
scalability challenge which is arguably possible to address to a certain extent by multi-hop
payment routing, yet some challenges remain, notably when it comes to generalization of
multi-hop payment channels to general state (smart contract) processing;

• existing L2 scaling solutions are often deployed in isolation. As a result, interoperability
relies either on custom bridges across L2s, or using different protocols to transfer assets
and state between different L2s with the help of a common L1, which hampers security
and/or usability.

• many L2 scaling designs are fundamentally limited in data throughput capacity of an L1
they are building on (e.g., so-called roll-up L2 solutions which publish transaction data
on their L1);

• many L2 scaling efforts have, in their current designs, centralized components (e.g., se-
quencers [59]) whose decentralization is non-obvious.

With Interplanetary Consensus (IPC), we take up a challenging task of hitting a sweet design
spot of L2+ scaling, addressing the above issues. With IPC, we aim at a blockchain scaling
architecture that provides considerable performance, decentralization and security, which are
known to be conflicting goals [30], while aiming at usability at relatively short time scales. In
a nutshell, IPC is based on the following design principles.

Web-scale on-demand horizontal scalability. IPC allows L2+ networks, called Subnets,
to be spawned on-demand in a permissionless way. Anyone can spawn a subnet and define
rules for joining and leaving a subnet (which allows for both permissionless and permissioned
membership of subnets).

The basic idea behind subnets in IPC is that they are dynamically deployed, separate and
loosely coupled blockchain subsystems, which can communicate seamlessly among each other
with augmented security compared to stand-alone blockchain systems thanks to a to hierarchical
subnet communication structure used in IPC.

Subnets are meant to be used in different ways. For instance, subnets can host different
(sets of) applications, or can be used to shard a single application.

L2+ child subnets leverage security of their parent subnets. IPC is organized in a
hierarchical fashion, where each subnet, except for one that we call the rootnet, is associated
with exactly one other subnet called its parent. Conversely, one parent can have arbitrarily
many subnets, called children, associated with it.

This yields a tree structure of subnets, in which child subnets periodically checkpoint critical
information, e.g., their state, or membership information, to their parent subnet. Checkpointed

2



history of a child subnet cannot be reverted even if there is a trust assumption violation in a
child subnet, as long as a parent subnet operates as expected. Checkpoints are propagated in a
recursive way all the way to the rootnet (L1), which makes child subnets benefit from security
of their ancestor subnets.

This tree of subnets expresses a hierarchy of trust. All components of a subnet and all
Participants using it are assumed to fully trust their parent; in the IPC trust model, this is
accomplished by having each participant in a subnet either run a full node in said subnet and
all its ancestor subnets, or it trusts some other participant which runs a full node. Note that,
in general, trust in all components of the parent subnet is not required, but the parent system
as a whole is always assumed to be correct (for some definition of correctness specific to the
parent subnet) by its child.

Lightweight communication across subnets and IPC hierarchy. Conceptually, IPC
has built-in interoperability across subnets leveraging the IPC tree hierarchy, without relying on
custom bridges across subnets. This feature, which appears unique to IPC, allows Participants
of the IPC framework to seamlessly communicate with other subnets belonging to the same
IPC tree.

Communication across subnets in IPC is facilitated by two actors (equivalent to smart-
contracts in Ethereum terminology): the IPC Gateway Actor (IGW) and the IPC Subnet Actor
(ISA), as well as a lightweight process we call the IPC agent which submits the transactions
involved in inter-subnet interaction. Concretely, IPC agents read the replicated state of one
subnet and submit transactions on its behalf to another subnet. Participants running those
IPC agents get rewarded for such mediation.

The IPC architecture directly provides several primitives for cross-subnet interaction, such
as:

1. Transfer of funds between accounts residing in different subnets.

2. Saving checkpoints (snapshots) of a child subnet’s replicated state in the replicated state
of its parent.

3. Submitting transactions to a subnet by the application logic of another subnet.

Out-of the box support for decentralized subnets. IPC has been designed to avoid
centralization points, unless users explicitly want to deploy single-replica subnets. IPC runs
decentralized consensus (total-order broadcast) protocols across replicas belonging to individual
subnets.

Configurable consensus protocols and governance rules for subnets. In IPC, both
consensus (total-order) protocols and the rules for value deposits and withdrawals from subnets
can be customized. Customizable consensus in IPC allows for use of low latency and high
throughput protocols at the leaves of IPC hierarchy.

Our implementation. Our implementation of a subnet node, called Eudico1 is a fork of
the Lotus Filecoin L1 node2. Eudico modularises Lotus in a way which allows for pluggable
consensus protocols based on theMir framework for developing distributed protocols3 which our

1https://github.com/consensus-shipyard/lotus/
2https://github.com/filecoin-project/lotus
3https://github.com/filecoin-project/mir

3

https://github.com/consensus-shipyard/lotus/
https://github.com/filecoin-project/lotus
https://github.com/filecoin-project/mir


group also developed. Currently, Eudico features implementation of a modern Byzantine fault-
tolerant (BFT) protocol, that we call Trantor4. Trantor is a multi-leader BFT protocol which
draws inspiration from recently proposed high-throughput BFT consensus protocols, namely
ISS [57] and Narwahl [32]. Additionally, Eudico also supports Filecoin’s Expected Consensus
and Nakamoto’s Proof-of-Work, and the Mir framework allows pluggability of other consensus
protocols. In addition to Eudico, we are also currently exploring plugging subnets based on
Tendermint Core5 into IPC.

Outline. In the rest of this document, we describe IPC in detail. Section 2 introduces a
sample use case of IPC that we use throughout as a running example. In Section 3 we define
preliminary concepts and assumptions used by IPC. Sections 4 and 5 respectively describe IPC’s
functionality in terms of the interaction between a parent and a child subnet and summarize
the high-level implementation of the two actors IPC uses to enable this interaction. We discuss
related work in Section 6. Finally, our implementation of IPC and its deviations from the
general design are laid out in Section 7.

2 Example Use Case: On-Line Gaming Platform

To better understand how IPC works and how it is useful, let us imagine an example application
of a distributed on-line gaming platform. Consider a platform where registered players meet
and play games against each other, while the platform maintains player rankings. Tournaments
can be organized as well, where each participant pays a participation fee and the winner(s)
obtain prize money (both in form of coins). We now describe how IPC could be used to build
this hypothetical application in a fully distributed fashion.

Rootnet with all users’ funds (L1). The rootnet is used as a financial settlement layer.
Most users’ coins are on accounts residing in the rootnet’s replicated state. A robust established
blockchain system like Filecoin could be a reasonable candidate for use as the rootnet. Its rela-
tively higher latency and lower throughput (that is often the price for security and robustness)
is not a practical issue, as users will rarely interact directly with it.

Gaming platform as a subnet (L2). The functionality of the gaming platform (such as
maintaining score boards, recommending opponents to players, or organizing tournaments) is
implemented as a distributed application on a dedicated subnet. This subnet uses a significantly
faster BFT-style consensus protocol (such as Trantor) since the application needs to be respon-
sive for the sake of user experience, and deals, in general, with fewer funds than the rootnet
(only as much as users dedicate to playing). The replicas constituting this subnet are run by
gaming clubs or even some (not necessarily all) individual players (who do not necessarily trust
each other, e.g. to not manipulate the score boards). To have a replica in the L2 subnet, the
club (or the player) needs to lock a certain amount of funds as collateral that can be slashed
by the system if the replica misbehaves.

Individual games (L3). For each individual game, a new child of the L2 subnet is created
(Section 4.1) and acts as a (distributed) game server. Since not much is usually at stake in a
single game and only few players are involved, the whole L3 subnet may even be implemented
by a single server the players trust. However, this decision is completely up to the players

4https://github.com/filecoin-project/mir/tree/main/pkg/systems/trantor
5https://github.com/tendermint/tendermint/

4

https://github.com/filecoin-project/mir/tree/main/pkg/systems/trantor
https://github.com/tendermint/tendermint/


and they may choose a different implementation of the L3 subnet when starting the game
(by submitting the corresponding transactions to the L2 subnet). When the game finishes,
its result is automatically reported to the L2 subnet (Section 4.5), which updates the players’
ratings accordingly, and the L3 subnet is disposed of (Section 4.6).

Player accounts. Each player has an account on the L2 subnet where they deposit funds
(Section 4.2) from the rootnet by submitting a corresponding L1 transaction6. They use these
funds to pay transaction fees on the L2 subnet and tournament registration fees. A player
can transfer funds back to their L1 account through a withdraw operation (Section 4.3) by
submitting an L2 transaction.

Tournaments. Tournaments can be organized using the platform, where each player registers
by submitting a corresponding L2 transaction. When the tournament finishes, the winner
receives the prize money (obtained through the registration fees) on their L2 account. One can
also easily imagine that only part of the collected fees transforms to the prize, while the rest
can remain in the platform and be used for other purposes, such as rewarding the owners of the
replicas running the subnet hosting the platform (i.e., the L2 subnet). To stretch the example
even further, one could imagine a tournament being implemented as an L3 subnet, while the
tournament’s individual games are its children (L4).

This simple use case utilizes most of IPC’s features. Throughout the rest of the document, we
will use the on-line gaming platform as a running example when describing IPC’s functionality
in more detail.

3 Preliminaries

Basic abstractions. A subnet consists of multiple replicas, yet we abstract a subnet as a
single entity which maintains an abstraction of replicated state (of which each replica maintains
a copy and that all replicas agree on) that can only be modified through transactions sub-
mitted either by users or by an IPC agent. A sequence of transactions can be batched into a
block to amortize the ordering overhead. We further abstract away the concrete mechanism of
transaction submission and execution, as it is specific to the implementation of each particular
subnet.

For example, the replicated state of a subnet representing a game of chess would consist of
the players’ identities, a flag indicating which player’s turn it is, and positions of the individual
pieces on the board, while players’ moves would be performed by submitting transactions to
the subnet.

Interaction between subnets. In IPC, the replicated state (or, simply, state) of one subnet
often needs to react to changes in the state of another subnet. E.g., after a game hosted in a
subnet finishes, the implementation of the game logic might need to update the involved players’
rankings in its parent subnet based on the result of the game. As the state of every subnet
evolves independently of the state of other subnets, IPC establishes a protocol for interaction
between the states of different subnets.

At the basis of the protocol, IPC relies on Proofs of Finality (PoF s). In a nutshell, a PoF
is data that proves that a subnet irreversibly reached a certain replicated state. Regardless of
the approach to finality that the ordering protocol of a subnet uses (e.g., immediate finality for

6We call a transaction submitted to the L1 subnet an “L1 transaction”.

5



classic BFT protocols [37], or probabilistic finality in PoW-based systems [48]), a PoF serves
to convince the verifier that the replicated state the PoF refers to will not be rolled back. This
helps IPC establish the partial ordering between the states of two subnets.

For example, for a subnet using a BFT-style ordering protocol, a quorum of signatures
produced by its replicas can constitute a PoF . To prove the finality of the state of a subnet
based on a longest-chain-style protocol, a PoF might consist of signatures of a committee of
processes considering the state deep enough (for some parametrized notion of “deep enough”) in
the chain. This committee can be, for example, a quorum of replicas of the very subnet that is
to verify the PoF . If the verifying subnet itself is a longest-chain one, a PoF can be as simple as
a hash of the proving subnet’s block, with every replica of the verifying subnet deciding locally
about the PoF ’s validity (potentially leading to forks in the worst case).

If a PoF is associated with subnet A’s replicated state at block height hA, and the PoF is
included in subnet B’s replicated state at block height hB, then subnet B’s replicated logic will
consider all A’s state changes up to hA to have occurred at B’s height hB. (Unless, of course,
another PoF ’ of h′A has been included by B at h′B, in which case B consideres only the state
changes between h′A and hA to have occured at hB).

In the following, for some representation of a subnet’s replicated state (e.g., its full serializa-
tion or a handle that can be used to retrieve it in a content-addressable way, such as an IPFS
content identifier (CID)), we denote by PoF (state) the proof that a subnet reached state. We
also denote by PoF (tx ) the proof that a subnet reached a state in which transaction tx already
has been applied to the replicated state.

Naming subnets. We assign each subnet a name that is unique among all the children of
the same parent. Similarly to the notation used in a file system, the name of a child subnet is
always prefixed by the name of its parent. For example, subnets P/C and P/D would both be
children of subnet P.

Representing value. For each pair of subnets in a parent-child relationship, we assume that
there exists a notion of value (measured in coins) common to both subnets.7 We represent this
value by associating some number of coins (also referred to as funds) with accounts and actors
in a subnet’s replicated state. The number of coins associated with an account is the account’s
balance. Each user is assumed to have an account in each subnet the user interacts with. All
the transactions spending coins from an account must be signed by the corresponding user’s
private key. For ease of presentation, we do not explicitly include these signatures in the further
description of IPC.

We also assume that the submission, ordering, and application of transactions is associated
with a cost (known as transaction fees, or gas). Each subnet client (user wallet or IPC agent)
submitting a transaction to a subnet must have an account in that subnet, from which this cost
is deducted. If the funds are insufficient, the subnet may fail to execute the transaction.

Note that the operation of IPC requires the submission and processing of transactions that
are not easily attributed to a concrete user. This is the case with transactions that an IPC
agent submits on behalf of a whole subnet.

Notation. We refer to an account a in the replicated state of subnet S as S.a. To denote a
function of an actor in the replicated state of a subnet, we write Subnet.Actor.Function. E.g.,
the IPC Gateway Actor (IGA) function CreateChild in subnet P is denoted P.IGA.CreateChild.

7One can easily generalize the design to decouple the use of value between a parent and its child, but we stick
with using the same kind of value in both subnets for simplicity.

6



We also use this notation for a transaction tx submitted to subnet P that invokes the function,
e.g., tx = P.IGA.CreateChild (P/C, params).

Trust model. IPC can be deployed in an adversarial environment, where some participants
might be malicious (Byzantine) and actively try to subvert the system. For each subnet, the
assumptions under which the subnet’s implementation is guaranteed to operate correctly may
differ. While some may rely on honest participants controlling a certain fraction of the overall
involved resource such as computing power, storage capacity, or staked collateral, others may
depend on a simple majority of honest replicas. In case of a violation of these assumptions,
there are no guarantees about the replicated state of the affected subnet. The users of a subnet
must bear this risk and choose the subnets to use accordingly.

IPC as a system is based on two fundamental principles:

1. Hierarchical trust : Whatever is part of the replicated state of a subnet is considered a
ground truth by all children of that subnet. For example, if a child subnet’s membership
(i.e., set of replicas) is maintained in the state of its parent (as is the case for IPC-native
PoS-based subnets, see Section 4.7), long-range attacks within the child subnet can be
easily ruled out. If a parent subnet fails as a whole, there are no guarantees about the
correct behavior of its children. However, if the parent stops being available, the child
subnet can continue to work, albeit disconnected from the rest of the IPC hierarchy until
the parent becomes available.

2. Subnet firewall property : In case a whole subnet fails (e.g., if the underlying assumptions
made by the protocol it is based on are violated), at most as many coins can be impacted
by the failure (e.g., double-spent or permanently lost) as have been deposited to the subnet
from its parent. That is, a user is able to manage the risk of using a potentially non-robust
subnet through the amount of funds they deposit and/or accept to receive in it.

The above principles enable child subnets to “inherit” some of their parents’ robustness
through checkpointing, where a child subnet regularly includes its replicated state (or a reference
to it) in its parent’s replicated state. In case the child subnet fails, there exists a record of the
evolution of its state in the parent. This enables participants (e.g., former users of the failed
subnet) to agree on picking up an older version of the child subnet’s state from before the
occurrence of the failure and, say, use that version as the initial state of a new, more robust
subnet.

We envision subnets higher up in the hierarchy to be more robust than their descendants, in
the sense that it should be harder / less probable to violate the assumptions their correctness is
based on. For example, a robust public system such as Filecoin, backed by a substantial amount
of resources, can serve as a the rootnet, while its descendant subnets, where less is at stake in
case of a failure of the whole subnet, can more easily sacrifice a part of their robustness, e.g.,
for the sake of performance.

IPC actors. For inter-subnet communication, IPC relies on two special types of actors: the
IPC Gateway Actor (IGA) and the IPC Subnet Actor (ISA). In a nutshell, their functions are
as follows.

1. The IGA is an actor that contains all IPC-related information and logic associated with a
subnet that needs to be replicated in the subnet itself. Each subnet contains exactly one
IGA. We describe the IGA in detail in Section 5.1

7



2. The ISA is the IGA’s parent-side counterpart, i.e., it is an actor in a parent subnet’s
replicated state, containing all the data and logic associated with a particular child subnet
– we say the ISA “governs” that child subnet. A subnet contains as many IPC Subnet
Actors as the number of its children. We refer to the ISA governing child subnet C as
ISAC. We describe the ISA in detail in Section 5.2.

IPC agent. The IPC agent is a process that mediates the communication between a parent
and a child. It has access to the replicated states of both subnets and acts as a client of both
subnets. When the replicated state of subnet A indicates the need to communicate with subnet
B, the IPC agent constructs a PoF for A’s replicated state and submits it as a transaction to B.

IPC does not prescribe who must run an IPC agent, nor how the PoF is to be constructed,
nor which IPC agent must submit the transaction with the PoF . All this is specific to the
implementation of the subnets involved. The IPC agents may run a protocol for choosing which
of them submit(s) the transaction, or even resort to a simplistic approach where each IPC agent
submits an identical transaction. In our reference implementation (Section 7), for example, we
construct the PoF directly in the verifying subnet’s (B’s) replicated state, using one IPC agent
per replica of the proving subnet (A). When describing the functionality of IPC and referring to
“the IPC agent” submitting a PoF , we assume such a subnet-specific mechanism for choosing
one (or multiple) IPC agent(s) to perform the actual submission.

The interaction between subnets through IPC agents is depicted in Fig. 1.

Figure 1: The basic IPC components and their interfaces in an example with one parent and 2
child subnets (A and B).

Incentives. In general, submitting transactions (and their subsequent execution by the sub-
net) is associated with a cost (often referred to as “gas”). We refer to the cost associated with a

8



transaction as the transaction fee, measured in coins. A participant running an IPC agent is not
necessarily interested in participating in such a costly protocol without incentives. Moreover,
the replicas of a subnet might need to cooperate with IPC agents during the construction of
Proofs of Finality. Even though certain deviations from the protocol can be detected and penal-
ized (see Section 4.7.3), participants running subnet replicas might also need positive incentives
to participate in the creation of a PoF .

The key to providing incentives for IPC agents and replicas is that the ISA and the IGA

can, as actors, hold funds that their logic can distribute among other accounts or actors on
their respective subnets. Thus, the actors can be configured to reimburse an account associated
with the IPC agent submitting a transaction (potentially adding an extra reward), as well as
to reward or penalize accounts.

The source of funding for the IGA and / or ISA is subnet-specific. For example, a subnet’s
implementation can require a certain part of each transaction fee to be sent to the subnet’s IGA.
An ISA can be funded, for example, through transfers (withdrawals) of funds from the child
subnet, or by charging fees for propagating cross-net transactions.

To incentivize the replicas of a subnet to collaborate with an IPC agent on the creation
of Proofs of Finality, a similar mechanism can be deployed. For example, a valid PoF would
include metadata, where the replicas that participated in its creation could insert an address
to receive a reward when the PoF is accepted.

Example 1. Our gaming platform from Section 2 could use the following approach. Each replica
of the L2 subnet running the gaming platform is registered in the IGA of the subnet itself and
has an associated account controlled by the participant operating the replica. (Such a participant
could be, for example, a local club of players who bought a server and are paying for internet
connection.) The L2 subnet is configured to pay a small fee to the IGA for each transaction
executed by the subnet. The IGA periodically (e.g., every 1000 blocks) re-distributes a part of
the collected fees to the accounts associated with the replicas.

Each participant also controls an account in the rootnet (L1) and operates an IPC agent
(e.g., running on the same machine as the replica) to mediate the interactions between L1 and
L2 (e.g., periodic checkpointing of L1’s state to L2). The definition of ISAL2 requires a valid
PoF to contain a withdrawal transaction transferring a certain amount of funds (e.g., from the
IGA in L2) to the L1 account associated with the IPC agent submitting the PoF. This way, the
participant operating the IPC agent has an incentive to submit the PoF. To prevent too many
or repeated submissions, the ISAL2 adjusts the reward based on the most recent PoF already
submitted.

4 IPC parent-child interactions

We now focus on the interaction between two subnets in a parent-child relation, which is the
basic building block of the recursive IPC hierarchy. The IPC interface exposes the following
functionalities:

1. Creating child subnets in the IPC hierarchy.
E.g., when starting a new game on the gaming platform.

2. Depositing funds from an account in a subnet to an account in its child.
E.g., when a player tops up the balance of their account on the gaming platform.

3. Withdrawing funds from an account in a subnet to an account in its parent.
E.g., when a player withdraws money they won in a tournament.

9



4. Checkpointing a subnet’s replicated state in the replicated state of its parent.
E.g., after every 100 blocks of transactions applied to the gaming platform’s subnet.

5. Invoking actor functions across subnets, i.e., the replicated logic of one subnet acting as
a client of another subnet.
E.g., when a game finishes and players’ rankings are automatically updated.

6. Removing child subnets from the IPC hierarchy.
E.g., when a game fihishes, rankings have been updated, and the state of the game can be
disposed of.

7. Managing proof-of-stake subnets, exposing functions for adding and removing replicas,
managing the associated collateral, and slashing of provably misbehaving replicas.
E.g., when mutually distrusting players play together.

In the following, we describe each functionality in detail, introducing the functions of the IGA

and ISA through which this functionality is exposed and the patterns in which the users and
the IPC agent invoke them via transactions.

4.1 Creating a child subnet

To create child subnets, the IGA exposes the following function.

IGA.CreateChild(subnetName)

Any user or actor of a subnet P can create a new child subnet P/C by

1. creating a new instance of the IPC Subnet Actor ISAC and

2. submitting a transaction P.IGA.CreateChild (C).

The new actor ISAC must be configured with all the subnet-specific parameters relevant for
governing the new subnet. These would usually include the used consensus protocol, rules for
joining the subnet, definitions and evaluation logic for PoM s and PoF s, and slashing policies.
From the perspective of the IPC hierarchy, the subnet is considered created as soon as ISAC is
created. The subnet itself need not necessarily be operational at this moment, as the parent
subnet always has a passive role when it comes to interacting with it.

Example 2. Imagine that a player wants to create a game subnet to play against 3 opponents,
such that each player will run their own replica in the game subnet (i.e., their own copy of the
game server). As an incentive for honest behavior, the player decides that the child subnet will
be PoS-based (see Section 4.7), where each replica must be backed by a minimal collateral of 10
coins that would be slashed (and, say, redistributed to the other players) if the replica is caught
misbehaving (see Section 4.7.3).

To achieve this, the player creates a subnet actor governing a child subnet that allows a
replica to join only if at least 10 coins of collateral are associated with it, and stops accepting
new collateral after 4 replicas (the player and 3 opponents) reach the threshold of 10 coins.
The player then registers the new subnet through a P.IGA.CreateChild transaction, starts their
own replica of the game server (we assume the game server is implemented such that it can be
replicated and run as a subnet) and waits for other players’s replicas to join (see Section 4.7.1).

Note that, since the subnet actor is created by the user, its initial state and logic can be
configured arbitrarily. For example, the ISA could easily be configured with other admission
policies (only players with a game ranking within a defined range) or slashing policies (penalize
misbehaving replicas by the backing player loosing not just coins, but also their position in a
game-specific ranking system).

10



4.2 Depositing funds

A deposit is a transfer of funds from an account in the parent subnet to an account in the child
subnet. The following functions are exposed by the IPC actors to enable deposits.

ISA.Deposit(amount, account)

IGA.MintDeposited(amount, account, PoF)

The amount is the amount of funds to be deposited, account is the destination account in the
child subnet, and PoF is a proof of finality proving that ISA.Deposit (amount, account) has
been applied to the parent subnet’s replicated state and that state is final (i.e., cannot be rolled
back).

Depositing amount coins from an account P.a in the parent subnet P to an account P/C.b in
the child subnet P/C involves the following steps.

1. The owner of P.a submits, using their wallet, a transaction
tx = P.ISAC.Deposit (amount, b).

2. P orders and executes tx, transferring amount coins from a to ISAC.

3. When P’s replicated state that includes tx becomes final (for some subnet-specific defini-
tion of finality provable to P/C.IGA, which contains the PoF verification logic), the IPC
agent constructs a PoF (tx ).

4. The IPC agent submits a transaction8

tx’ = P/C.IGA.MintDeposited (amount, b, PoF (tx )).

5. P/C orders and executes tx’, which results in minting amount new coins and adding them
to the balance of P/C.b.

After all the above steps are performed, the newly minted amount of coins at the child is
backed by the analogous locked amount at P.ISAC. However, those coins can effectively only
be used by the owner of P/C.b, since P.ISAC will not transfer its coins within P until they are
burned in P/C during a withdrawal operation (see below).

Example 3. Imagine that a player wants to start using the gaming platform (running on the
subnet P/C), but only has funds in an account P.a in the parent subnet. To be able to join games
(L3) that require a collateral (as in Example 2), the player decides to fund their account P/C.b
(L2) with 20 coins. Thus, the player submits a P.ISAC.Deposit(20, b) transaction, starts an
IPC agent process that performs steps 3 and 4 above, and waits until the funds appear on P/C.b.

4.3 Withdrawals

A withdrawal is a transfer of funds from an account in the child subnet to an account in the
parent subnet. The following functions are exposed by the IPC actors to enable withdrawals.

IGA.Withdraw(amount, account)

ISA.ReleaseWithdrawn(amount, account, PoF)

8In a practical implementation, instead of submitting a separate transaction for each deposit, the IPC agent
may submit multiple deposits batched in a single transaction, with a single PoF proving the finality of the child
state in which all the corresponding funds have been transfered to ISAC. This optimizes both performance and
cost (transaction fees).

11



The amount is the amount of funds to be withdrawn, account is the destination account in the
parent subnet to which the withdrawn funds are to be credited, and PoF is a proof of finality
proving that IGA.Withdraw (amount, account) has been applied to the child subnet’s replicated
state and that state is final (i.e., cannot be rolled back).

Withdrawing amount coins from an account P/C.b in the child subnet P/C to an account P.a
in the parent subnet P involves the following steps.

1. The owner of P/C.b submits, using their wallet, a transaction
tx = P/C.IGA.Withdraw (amount, a).

2. P/C orders and executes tx, burning amount coins from b.

3. When P/C’s replicated state that includes tx becomes final (for some subnet-specific defi-
nition of finality provable to P.ISAC), the IPC agent constructs a PoF (tx ).

4. The IPC agent submits a transaction9

tx’ = P.ISAC.ReleaseWithdrawn (amount, a, PoF (tx )).

5. P orders and executes tx’, which results in P.ISAC transferring amount coins to account
P.a.

The above procedure ensures that the locked amount at the parent is not released until the
child has already burned the minted amount of coins. The P.ISAC actor ensures (by verifying
the associated PoF ) that the coins have been burned in P/C before releasing the corresponding
amount back into circulation in P.

Example 4. A player might want to stop using the gaming platform and withdraw all the
funds back to the parent subnet, in order to spend them on something else. They still have 20
coins on their account P/C.b that they want to transfer back to P.a. The player performs the
withdrawal by submitting a transaction P/C.IGA.Withdraw(20, a), starts an IPC agent process
to perform the necessary inter-subnet communication, and waits until the coins arrive at P.a.
(The player might need to spend a part of the 20 coins on fees for both the Withdraw and the
ReleaseWithdrawn transactions.)

4.4 Checkpointing

Checkpointing is a method for a parent subnet to keep a record of the evolution of its child
subnet’s replicated state by including snapshots of the child’s replicated state (called check-
points) in the parent’s replicated state. If, for some reason, the child subnet misbehaves as
a whole (e.g., by a majority of its replicas being taken over by an adversary), agreement can
be reached in the parent subnet about how to proceed. For example, which checkpoint should
be considered the last valid one, and potentially used as the initial checkpoint (equivalent in
concept to a ”genesis block”) for a new sanitized subnet. The following function is exposed by
the ISA to enable checkpointing.

ISA.Checkpoint(snapshot,PoF)

A checkpoint can be triggered by predefined events (e.g., periodically, after a number of
state updates, triggered by a specific user or set of users, etc.). The IPC agent is configured

9Like with deposits, withdrawals can also be batched for better performance and lower cost. Our implementa-
tion applies this optimization to both deposits and withdrawals, further combined with checkpoints (see Section 7).

12



with the (subnet-specific) checkpoint trigger, monitors the child subnet’s replicated state, and
takes the appropriate action when the trigger condition is satisfied by the child subnet’s state.
A checkpoint of subnet P/C to its parent P is created as follows:

1. When the predefined checkpoint trigger is met in the replicated state of P/C, the IPC
agent retrieves the corresponding snapshot of P/C’s replicated state (state) from the child
subnet and constructs the proof of its finality PoF (state).

2. The IPC agent submits a transaction
tx = P.ISAC.Checkpoint (state, PoF (state)).

3. P orders and executes tx, which results in P.ISAC including state (i.e., the checkpoint of
P/C’s replicated state) in its own actor state.

4.5 Propagating cross-net transactions

Cross-net transactions are a means of interaction between actors located on different subnets.
Unlike a ”standard” transaction issued and submitted to a subnet by a user’s wallet, a cross-net
transaction is issued by actors of another subnet.

Since those actors themselves are not processes (but mere parts of a subnet’s replicated
state), they cannot directly submit transactions to other subnets. IPC therefore provides a
mechanism to propagate these transactions between subnets using the following functions of
the IGA.

IGA.Dispatch(tx, src, dest)

IGA.Propagate(tx, src, dest, PoF)

In a nutshell, if an actor’s logic in subnet S1 produces a transaction for a different subnet S2,
it calls S1.IGA.Dispatch, which saves the transaction in S1’s IGA buffer that we call the postbox.
IPC agents, monitoring the postbox, then iteratively submit the transaction to the appropriate
next subnet along the path from S1 to S2 using IGA.Propagate.

Since, in general, we only rely on an IPC agent to be able to submit transactions to the parent
or children of a subnet whose state it observes, an IPC agent only propagates the transaction
to the parent or child, depending on which is next along the shortest path from S1 to S2 in
the IPC hierarchy. After such “one hop“, the transaction is again placed in the postbox of the
parent / child, and the process repeats until the transaction reaches its destination subnet.

More concretely, we illustrate the propagation of a cross-net transaction using an example
where an actor in subnet P/A is sending a cross-net transaction tx to its ”sibling” subnet P/B. tx
is first propagated from P/A to its parent P, which, in turn, propagates it to its other child P/B.
We use the function IGA.Dispatch in a subnet to announce that the transaction is ready to be
propagated and the function IGA.Propagate to notify a subnet about a cross-net transaction
to be passed on (or delivered, if the destination has been reached).

1. An actor P/A.ActorA constructs a transaction
tx = P/B.ActorB.SomeFunction (someParams)

2. P/A.ActorA invokes the funcion P/A.IGA.Dispatch (tx, P/A, P/B) (note that no additional
transactions are necessary here).

3. The implementation of P/A.IGA.Dispatch adds tx along with the routing metadata to a
P/A.IGA.postbox.

13



4. Let stateA be the state of subnet P/A where tx is already included in P/A.IGA.postbox.
When the IPC agent responsible for the interaction between P/A and P detects that stateA
is final, it constructs a PoF (stateA) and submits a transaction
txA = P.IGA.Propagate (tx, P/A, P/B, PoF (stateA)).

5. Subnet P orders and executes txA, verifying PoF (stateA) and (internally) invoking P.IGA.Dispatch (tx,
P/A, P/B). This, in turn, adds tx along with its routing metadata to P.IGA.postbox.

6. Analogously to step 4, the IPC agent submits a transaction
txP = P/B.IGA.Propagate (tx, P/A, P/B, PoF (stateP)), where stateP is the state of P with
tx already included in P.IGA.postbox.

7. Upon ordering and executing txP, P/B.IGA.Propagate verifies PoF (stateP). Detecting that
the destination is the own subnet, the implementation of P/B.IGA.Propagate executes tx
instead of propagating it.

Example 5. In our gaming example, imagine that a game (running in its own subnet that is a
child of the gaming platform’s subnet) has finished and the ranking of the involved players needs
to be updated. The game server is implemented as an actor on the game’s own subnet, while
the gaming platform (storing the player ranking tables) is an actor of its parent. To update the
ranking, the game actor would use a cross-net transaction to inform the platform actor about
the results of the game and the platform actor would update the rankings accordingly.

4.6 Removing a child subnet

To remove child subnets, the IGA exposes the following function.

IGA.ToRemove()

IGA.RemoveChild(subnetName,PoF)

The function IGA.ToRemove () marks the subnet to be removed in the IGA of the subnet, while
IGA.RemoveChild (subnetName,PoF ) effectively deregisters the subnet from the IPC hierarchy.
Removing a child subnet P/C from the IPC hierarchy is performed in the following steps:

1. A replica of P/C submits a transaction tx=P/C.IGA.ToRemove (). The validity of this
transaction to be included in the subnet’s replicated state is subnet-specific, and may
require coordination among the replicas to validate the removal of the subnet, as well as
additional parameters to the function.

2. When P/C’s replicated state that includes tx becomes final, the IPC agent constructs a
PoF (tx ).

3. The IPC agent submits a transaction
tx’ = P.IGA.RemoveChild (P/C, PoF (tx )).

4. P orders and executes tx’, which results in P.IGA deregistering P/C from the IPC hierarchy.

As the deposited funds are in the ISA, the subnet can still keep operating for all accounts
to withdraw their funds back at the parent.

14



4.7 Proof-of-stake subnets

In order to disincentivize replicas of a subnet from misbehaving, IPC provides a mechanism
for conditioning a replica’s participation in the child subnet on collateral in a proof-of-stake
fashion. To this end, the ISA can associate each replica of the child subnet with a collateral.
Replicas must transfer this collateral to the ISA, and the ISA only releases the collateral back
once the corresponding replica stops participating in the subnet. The way in which the collateral
associated with replicas impacts the functioning of the child is subnet-specific.

If a child replica provably misbehaves, the proof of such misbehavior can be submitted as
a transaction to the ISA (invoking its Slash function). The ISA then decreases the amount of
collateral associated with the offending replica in accordance with its (subnet-specific) slashing
policy.

Note that collateral is different from funds deposited for use in the child subnet. Unlike the
deposited funds, collateral is not made available in the child subnet and stays in the parent’s
ISA until the associated replica stops participating in the subnet, either by leaving or by being
slashed.

The advantage of this approach is that a child subnet can leverage funds in the parent subnet
to serve as collateral. In case of provable misbehavior even of replicas that have gained complete
power over the child subnet (e.g., by having staked most of the collateral), those replicas can
still be slashed at the parent. It also prevents long-range [27] and similar attacks by maintaining
membership information (sometimes also referred to as power table) of the child subnet at the
parent. The membership saved in the ISA’s state defines the ground truth about what replicas
the child subnet should consist of, as well as their relative voting power (proportional to the
staked collateral) in the underlying ordering protocol. The child subnet observes the state of
the ISA in the parent and, when the membership information changes, reconfigures accordingly.

Since we expect PoS-based child subnets to become very common, IPC provides the following
native functionality for managing PoS-based subnets:

• Manipulate the membership by staking and releasing collateral associated with replicas

• Slashing, where IPC permanently removes / redistributes a part of the collateral associated
with a provably misbehaving replica (e.g., one that sends conflicting messages in the
ordering protocol)

Example 2 provides a concrete case of where and how PoS-based subnets can be used.

4.7.1 Staking collateral

To increase a replica’s collateral in a PoS-based subnet, IPC uses the following functions.

ISA.StakeCollateral(account, replica, amount)

IGA.UpdateMembership(membership, PoF)

Concretely, to increase the amount of collateral associated with a replica in subnet P/C,
collateral must be staked for replica in the parent P’s IPC Subnet Actor P.ISAC. Let the the
account from which the collateral is transfered to P.ISAC be P.a. (Any user with sufficient
account balance, i.e. at least amount and the transaction fee, can perform this operation.)

The child subnet, holding its own local copy of the target membership, is then informed
(through an IPC agent) about the membership change and reconfigures to reflect it. Note that
it is required for the child subnet to hold a copy of the membership in its replicated state, so

15



that all its replicas observe it in a consistent way. In fact, the child subnet replicated state
contains two versions of membership information:

• The target membership, which is a local copy of the membership stored in P.ISAC and des-
ignates the desired membership of the child subnet to which the subnet must reconfigure.

• The current membership, which is the actual membership currently being used by the
subnet to order and execute transactions. Since the process of reconfiguration to a new
membership is usually not immediate, the current membership may ”lag behind” the
target membership.

The whole staking procedure is as follows.

1. The owner of P.a submits the transaction
tx = P.ISAC.StakeCollateral (P.a, replica, amount).

2. After ordering tx, P.ISAC increases the collateral associated with replica by amount, which
is deducted from the submitting user’s account in P. If no collateral has been previously
associated with replica, this effectively translates in replica joining the subnet.

3. The IPC agent, upon detecting the updated membership in P.ISAC through the application
of tx, constructs a PoF (tx ) and submits the transaction
tx’ = P/C.IGA.UpdateMembership (membership, PoF (tx )).

4. Upon ordering tx’ and successfully verifying PoF (tx ), P/C.IGA updates its target mem-
bership.

5. Subnet P/C reconfigures (the reconfiguration procedure is specific to the implementation
of the subnet and its ordering protocol) to use the new membership as its current mem-
bership.

4.7.2 Releasing collateral

Releasing collateral works similarly (but inversely) to staking, with one significant difference.
Namely, once the child subnet P/C reconfigures to reflect the updated membership, the parent’s
IPC Subnet Actor P.ISAC does not release the staked funds until it is given a proof that the child
subnet P/C finished the (subnet-specific) reconfiguration procedure. The following functions are
involved in releasing collateral:

ISA.RequestCollateral(replica, amount, account)

IGA.UpdateMembership(membership, PoF)

ISA.ReleaseCollateral(membership, PoF)

Let P.a be an account that has staked collateral for a replica in a PoS-based subnet P/C.
The procedure for releasing collateral is as follows.

1. The owner of P.a submits the transaction
tx = P.ISAC.RequestCollateral (replica, amount, a),
where amount is the amount of funds the owner of P.a wants to reclaim.

2. After ordering tx and checking that P.a has indeed previously staked at least amount for
replica, P.ISAC decreases the collateral associated with replica by amount. Note that P.ISA
does not yet transfer amount back to P.a

16



3. The IPC agent, upon detecting the updated membership in P.ISAC through the application
of tx, constructs a PoF (tx ) and submits the transaction
tx’ = P/C.IGA.UpdateMembership (membership, PoF (tx )).

4. Upon ordering tx’ and successfully verifying PoF (tx ), P/C.IGA updates its target mem-
bership.

5. Subnet P/C reconfigures (the reconfiguration procedure is specific to the implementation
of the subnet and its ordering protocol) to use the new membership as its current mem-
bership.

6. The IPC agent detects that the current membership of P/C has changed. Let state be the
the replicated state of P/C where the current membership has already been updated.

7. The IPC agent constructs a PoF (state) and submits the transaction
tx” = P.ISAC.ReleaseCollateral (membership, PoF (state))

8. Upon ordering tx” and successfully verifying PoF (tx ), P.ISAC verifies that the received
membership reflects the requested change in the collateral of replica and, if this is the
case, transfers amount to P.a.

4.7.3 Slashing a misbehaving replica

Slashing is a penalty imposed on provably malicious replicas in PoS-based subnets. When a
replica of a child subnet provably misbehaves, IPC agents can report the misbehavior to its
parent subnet, which can take an appropriate (configured) action (e.g., confiscate a part of
the replica’s collateral). The definition of what constitutes a provable misbehavior is subnet-
specific. An example of such misbehavior is sending equivocating messages in the subnet’s
ordering protocol, such as two conflicting proposals for the same block height. IPC exposes the
following function to enable slashing:

ISA.Slash(replica, PoM)

Slashing a misbehaving replica of a PoS-based subnet P/C proceeds as follows:

1. The replica provably misbehaves, e.g., by sending two signed contradictory messages that
would not have been sent if replica strictly followed its prescribed distributed protocol.

2. An IPC agent is informed of this misbehavior, e.g., by the replicas that received the
contradictory messages, constructs a Proof of Misbehavior (PoM ) (e.g., a data structure
containing the two contradictory messages signed by replica), and submits the transaction
tx = P.ISAC.Slash (replica, PoM )

3. Upon ordering tx, P.ISAC evaluates the PoM against replica and adapts its associated
collateral accordingly, resulting in a new membership for P/C.

4. Updating the membership of P/C and subsequent reconfiguration proceeds exactly as in
Section 4.7.1, from Item 3 on.

Example 6. Imagine the setting from Example 2, where a player creates a PoS-based subnet for
a game of 4 players with a minimal collateral of 10 coins. Suppose that one of the players makes
a move in the game, but later realizes that it would be beneficial to revert that move. What is

17



more, the majority of other players would also benefit from the game state being reverted to the
state just before the move occurred. Those players might collude and agree off-band to revert
their replicas of the game server to an older state, and propose (in the child’s ordering protocol)
a different transaction to be ordered instead of the one containing the original game move.

However, the system (concretely, the IPC Subnet Actor) is configured such that the initial
proposal of the original transaction, together with the new proposal of the “replacement” trans-
action (both signed by the proposing replica), constitute a PoM that can be verified by the ISA.
Any honest player that locally logs all proposals can thus submit a P.ISA.Slash transaction, with
the offending replica and the PoM as arguments, receiving (in the parent subnet) a part of the
collateral associated with the offending replica. Moreover, if the child subnet’s protocol allows
to prove that a replica supported (in some protocol-specific way – imagine signed PBFT prepare
messages) more than one proposal for the same block height, the other colluding replicas can
also be slashed.

5 IPC Actors

This section describes the state and functions of the two IPC actors: the IGA and the ISA.

5.1 IPC Gateway Actor (IGA)

The IGA is an actor that exists in every subnet in the IPC hierarchy and contains all information
and logic the subnet itself needs to hold in order to be part of IPC. The functionality of the
IGA described in Section 4 is summarized in Algorithm 1. The IGA holds:

• The names of its own, its parent’s and its children’s subnets

• The predicate used to evaluate the validity of Proofs of Finality. This predicate will be
applied to PoF s from both the parent subnet and the child subnets. It is specific to the
subnets (and the protocols they use) involved in interactions with this subnet.

• The postbox storing all the outgoing cross-net transactions, along with their routing
metadata (original source and ultimate destination subnets). We model the postbox as an
infinitely growing set, from which the appropriate IPC agents select only those elements
that need to be submitted to other subnets. A garbage-collection mechanism for deleting
delivered outgoing cross-net transactions from the sender subnet’s state is out of the scope
of this document. One can imagine, however, a garbage-collection mechanism based on
acknowledgments (that are themselves cross-net transactions).

• In a PoS-based subnet whose membership is managed by its parent, the IGA also contains
the target membership that the subnet must reconfigure to (if the subnet is not using
it yet). This membership is the subnet’s local copy of the membership stored in its
corresponding IPC Subnet Actor in the parent. It must be part of the subnet’s replicated
state, so that its replicas have a consistent view of it and can correctly reconfigure. Since
reconfiguration does not happen immediately, the actual membership (also part of the
subnet’s replicated state) lags behind the target membership.

5.2 IPC Subnet Actor (ISA)

The IPC Subnet Actor (ISA) is the actor in the parent subnet’s replicated state that governs
a single child subnet. It stores all information about the child subnet that the parent needs

18



Algorithm 1: IPC Gateway Actor (IGA)

1 ownSubnetName: name of the subnet the IGA resides in
2 parentSubnetName: name of the parent subnet
3 childSubnets: set of subnet names, initially empty
4 valid : predicate over a PoF defining its validity criteria
5 postbox : set of tuples (transaction, source, destination), initially empty
6 targetMembership: the membership this subnet should reconfigure to if it is not yet using it (PoS only)
7

8 CreateChild(name)
9 childSubnets = childSubnets ∪ {name}

10 RemoveChild(name)
11 childSubnets = childSubnets \ {name}
12 MintDeposited(amount, account, PoF)
13 if valid(PoF ) then
14 mint amount new coins
15 transfer minted coins to account

16 Withdraw(amount, account)
17 if account.balance ≥ amount then
18 Burn amount coins from account

19 Dispatch(tx, src, dest)
20 postbox = postbox ∪ {(tx, src, dest)}
21 Propagate(tx, src, dest, PoF)
22 if valid(PoF ) then
23 if dest = ownSubnetName then
24 execute tx

25 else if ∃s ∈ childSubnets ∪ {parentSubnetName} : s is part of dest then
26 Propagate (tx, src, dest)

27 UpdateMembership(membership, PoF)
28 if valid(PoF ) then
29 targetMembership = membership

and logic that manipulates it. The ISA is registered in the IPC hierarchy by invoking the
parent’s IGA.CreateChild (subnetName) function (see Section 4.1). The functionality of the
ISA described in Section 4 is summarized in Algorithm 2. The ISA holds:

• The predicate (valid) used to evaluate the validity of Proofs of Finality of the child subnet’s
replicated state. It is specific to the child subnet and the protocol it uses, and its definition
is part of params passed to IGA.CreateChild when the ISA is created.

• The amount of funds that are locked for use in the child subnet (lockedFunds). Deposits
increase and withdrawals decrease this value accordingly. Keeping track of this value is
only necessary for enforcing the firewall property, since a misbehaving child subnet might
claim to withdraw more than has been deposited in it. Thus, before withdrawing, the ISA
consults this value to make sure that the total amount of withdrawals never exceeds the
amount previously deposited.

• Snapshots of the child subnet’s replicated state obtained through invocations of the
Checkpoint function (checkpoints).

• If the child subnet is a PoS-based one, the ISA also contains state required for managing
the subnet’s membership and the associated collaterals. The high-level implementation

19



presented in Algorithm 2 presents a simplified view of this state and the associated logic,
as it conveys the mechanisms involved without getting lost in details. In particular,
the presented description neglects some corner cases arising from concurrent handling of
multiple staking, releasing, and/or slashing procedures. In a real-world implementation,
however, these corner cases can easily be addressed.

The ISA stores information on which child replica has how much collateral (childMem-
bership), how much collateral (and for which replica) is staked from which account (col-
lateral), and which accounts requested the withdrawal of how much collateral (collater-
alRequests). Moreover, the ISA’s state contains a predicate for checking the validity of
proofs of misbehavior (validPom) and a procedure to execute when a valid PoM is received
through the Slash function.

Algorithm 2: IPC Subnet Actor (ISA)

1 valid : predicate over a PoF defining its validity criteria
2 lockedFunds: total amount of funds circulating in the child subnet
3 checkpoints: set of checkpoints of the child’s replicated state
4 childMembership: map of replica identities to their respective staked collaterals
5 collateral : map of accounts to replica identities, to staked collaterals
6 collateralRequests: set of received but unsatisfied requests for releasing collateral
7 validPoM : predicate over a PoM defining its validity criteria
8 slashingPolicy : procedure to execute on reception of a valid PoM
9

10 Deposit(amount, account)
11 lockedFunds += amount

12 ReleaseWithdrawn(amount, account, PoF)
13 if valid(PoF ) ∧ lockedFunds ≥ amount then
14 lockedFunds − = amount
15 transfer amount to account

16 Checkpoint(snapshot, PoF)
17 if valid(PoF ) then
18 checkpoints = checkpoints ∪ {snapshot}

19 StakeCollateral(account, replica, amount)
20 childMembership[replica] += amount
21 collateral [account ][replica] += amount

22 RequestCollateral(replica, amount, account)
23 if collateral[account ][replica] ≥ amount then
24 childMembership[replica] − = amount
25 collateralRequests = collateralRequests ∪ {(amount, account)}

26 ReleaseCollateral(membership, PoF)
27 if valid(PoF ) ∧ membership = subnetMembership then
28 for (amount, account) ∈ collateralRequests do
29 transfer amount to account

30 Slash(replica, PoM)
31 if valid(PoM ) then
32 slashingPolicy(PoM )

20



6 Related Work

We categorize related work in the following subcategories of approaches to scale blockchains:
novel consensus protocols, rollups, channel networks, and subnet networks (like IPC). Note
however that these categories are not inherently competing, but rather potentially orthogonal
solutions that, carefully combined, could scale even beyond what one of them, in isolation, is
capable of.

6.1 Consensus protocols

Recent developments in asynchronous consensus protocols have significantly increased through-
put by decoupling data dissemination from metadata ordering [41, 55, 32, 46, 44, 45, 2, 8, 17, 57].
These advances are inherently restricted by the need to replicate all state updates across all
members of the consensus protocol. Furthermore, their improvements are orthogonal to the
horizontal scaling proposed by IPC, in that each subnet can benefit from these advances at
their consensus level.

6.2 ZK and optimistic rollups

Rollups scale blockchains by having third parties (sequencers) locally order and execute batches
of transactions and submitting only the result of the batch in the blockchain. Optimistic
rollups [40, 4] rely on the result of a sequencer allowing for a predefined dispute period. If
disputed, the sequencer is not punished only if it proves within a limited amount of time, via
executing the batch in the blockchain, that the result of its batch matches its submitted result.
ZK rollups [49, 1, 58, 56, 15, 11, 1, 6] cryptographically generate a succinct proof of the correct-
ness of the result for fast verification. Unfortunately, most ZK rollups proposed to date rely on
centralized sequencers, with some novel works working on decentralizing sequencers [6]. In ad-
dition, rollups that post transaction input data on L1 inherit throughput scalability limitations
of an L1. Some alternative approaches such as Validium [21], combine ZK rollups with input
data storage off-L1, for better scalability.

Compared to rollups, IPC to a certain extent resembles a combination of Validium and
optimistic rollups in a sense that IPC subnets leverage parent subnets for increased security,
while storing transaction data off parent subnet, i.e., in a child subnet itself, replicated with a
BFT protocol. IPC currently does not use ZK technology for transaction execution in subnets;
however, such support is not precluded in future. In particular, our group aims at exploring
integration of Lurk ZK execution framework [24] in IPC subnets.

6.3 Sharding

Sharding [65, 42, 47, 64, 26, 25, 62, 23, 39] approaches periodically partition blockchain state
across different groups of replicas. While sharding has shown promise in increasing scalability,
it also introduces new challenges such as ensuring cross-shard communication and preventing
data fragmentation. Unlike subnets, shards do not conceptually differ from each other, leading
to a potential increase of cross-shards communication compared to subnets, where users and
services partition the state on demand.

6.4 State and payment channels

State channels [34] scale blockchains by having participants lock their state in the blockchain
(on-chain) among them in order to update locally the state (off-chain) with which to release
the funds back on-chain. Payment channels [51, 33, 29] are the analogous solutions for channels

21



where the state are coins. Channels can form network graphs in which nodes can relay payments
(or general state) in exchange of a fee [54, 53, 20, 35, 22]. Though many works, particularly
in state channels, are addressing significant problems specific to channels, IPC subnets are a
generalization of channels. This is because channels require all parties to sign in order to update
the channel’s state off-chain, whereas subnets (like the ones we show in this document) allow
for a variable quorum size, or even different types of proofs of finality.

6.5 Subnet and sidechain networks

There are a number of previous and concurrent works that are conceptually similar to IPC
subnets.

Single-layer networks. Polkadot’s relay-chain connects Polkadot’s parachains [13] with na-
tive cross-net transactions, in a topology that also resembles a single scaling layer of direct
child subnets of a rootnet. They also offer specialized bridges to other blockchains, like that
of Bitcoin or Ethereum. Polkadot’s parachains rely on anchoring their compressed state to the
parent for total ordering and cross-net interactions, which limits the capabilities of horizontal
scaling: parachains need to constantly lease an auctioned slot on the relay-chain for a specific
period, a problem that is exacerbated in a single layer of child subnets checkpointing to the same
parent, compared to IPC’s tree topology. Polygon [14, 18] scales the Ethereum blockchain by
using a network of subnets (sidechains in the Polygon terminology) connected to the Ethereum
mainnet, with a developing framework for services to create their own subnet. Yet, Polygon
PoS offers one subnet, and Polygon does not offer a native cross-net communication protocol.
Avalanche offers a similar solution for its rootnet with Avalanche subnets [16], a network of
subnets that are connected to their rootnet for further scaling and customized applications. In-
ternet Computer Protocol’s (ICP) subnets [9] are independent blockchains with the ICP rootnet
as the common parent, and whose committees are subcommittees of the rootnet’s validator set.
ICP subnets are tightly integrated with its rootnet and dedicated to execute smart contracts
seamlessly. Unfortunately, none of these works consider a structure beyond a single layer of
direct child with their respective rootnet as the only parent.

Topology-agnostic networks. The concept of sidechains [28, 36] precedes that of subnets.
In particular, IPC parent-child interaction design and IPC trust model, draws a lot of inspiration
from PoS sidechain formalization [36]. A sidechain targets crosschain payments not necessarily
in the parent-child hierarchy. Cosmos zones [5] are independent blockchains that interact in a
general graph not necessarily in the topology of a tree, with a reference implementation that
spawns new zones running Tendermint as the consensus protocol. Cosmos relies on the single
finality of Tendermint for inter-blockchain communication (IBC). Cosmos zones can alterna-
tively use the Cosmos hub, a zone that specializes in facilitating cross-net interactions, similarly
to the Polkadot relay-chain. The flexibility for any topology between subnets comes with the
need to have further requirements for IBC, like having nodes of a blockchain run light clients
of each other blockchain they want to interact with.

UTXO-based subnets. Plasma chains [50] horizontally scale payments via multiple subnets
(childchains) organized in a tree-like structure. It is, one of the first works to consider subnet-like
interactions between blockchains. Given the topology, many of the challenges that IPC subnets
face are present in Plasma chains. However, Plasma chains are tree-based subnets focused on
payments. In this sense, IPC subnets generalize the problem that Plasma chains are trying to
solve, allowing state to be transacted in subnets, and not just payments. Also, Plasma chains

22



rely on synchrony for withdrawals offering a dispute resolution period, similarly to channels and
optimistic rollups, posing an irreconcilable trade-off between finality latency and security [52],
with Platypus [52] approaching the PoF shown for IPC subnets running Trantor as the first fix
to this trade-off. IPC subnets also generalize withdrawal mechanisms by allowing subnets to
define what constitutes a PoF , a slashing rule and a fraud proof.

7 IPC’s reference implementation

The reference implementation of IPC differs slightly from the description of the functionality
and implementation shown in previous sections, partly due to the rapidly changing development
of the system, and partly due to its concurrent implementation simultaneous with the design and
improvement of the system. In this section, we describe the particular implementation choices
for the reference implementation of IPC. It is not the purpose of this section to comprehensively
describe the reference implementation, but to list the relevant differences of the current reference
implementation compared with the description of IPC made in previous sections, as well as to
list the pertinent implementation decisions of abstractions such as the PoF or the consensus
protocol used by the reference implementation.

7.1 Preliminaries

The current implementation considers Filecoin [7] as the rootnet and Trantor [19] running in
child subnets, both running as the consensus layer of the Lotus blockchain client [10]. Filecoin
is a Proof-of-Storage, longest-chain-style protocol with probabilistic finality. For our purposes,
we note that Trantor is a BFT-style protocol that iterates through instances of PBFT [31]
with immediate finality. Every decided block in Trantor contains an ordered list of decided
transactions and a certificate for verification, with every ∆-th block containing a checkpoint
of the state. At the moment, the checkpoint being generated by Trantor is a certificate of the
latest decided block provided by the Lotus client.

The reference implementation makes use of IPFS-style content addressing, in that data
is stored where relevant and referred to with a Multiformats-compliant [12] content identifier
(CID) elsewhere. In particular, CIDs that address information of a specific child’s subnet can be
used to retrieve the content through BitSwap [3] from any of the participants running full nodes
of the subnet. This means that if a subnet only has faulty participants, the content referred to
by this CID may not be available. However, this is not a problem, as IPC still preserves the
subnet firewall property (Section 3).

The reference implementation uses the Filecoin Virtual Machine (FVM) as the runtime
environment in which the IGA and the ISA are deployed. Both actors are user-defined, in that
any user can deploy their own modifications of the provided actors, and use them to interact
with the rest of the IPC hierarchy.

7.2 Components

The IPC reference implementation preserves all the components described in Section 5 without
additions. We however list here implementation decisions concerning these components. The
two main design decisions are (i) to have one IPC agent manage the interactions across all
subnets, and not one per parent-child pair, and (ii) to make the IGA the entry point for all IPC
functionality, with the possibility to augment the default functionality for a specific subnet with
the ISA.

23



7.2.1 IPC agent

In the previous sections, we considered that every parent-child pairing had an independent
IPC agent process. In fact, the implementation manages to execute one single IPC agent for
the entire tree of subnets that may be of relevance to a participant. This process can be
executed either as a daemon or as a command-line tool. In the latter case, the IPC agent
cannot participate in either checkpointing or propagating cross-net transactions. We refer to
the participants running the IPC agent as a command-line tool as the IPC clients.

While a participant only runs one IPC anget, it also runs a full node for each subnet that
the participant is involved in. The IPC agent process along with all the full nodes relevant to a
participant conform the participant’s trust domain. All processes within the same trust domain
assume each other’s correctness. As a result, the IPC agent can be notified of changes to the
state of each of the full nodes locally run by the participant.

7.2.2 IGA as entry point

In the reference implementation, the entry point for all functionality is the IGA, unlike in the
high-level functionality described in Section 4. For any of the provided functionalities, the
IPC agent submits transactions to the IGA (e.g. IGA.Deposit (C, amt, ...)). For bottom-up
transactions, the child’s IGA communicates with the ISA of the child at the parent. For top-
down transactions, the IGA of the parent directly communicates with the IGA at the child.
Nonetheless, the IPC agent never communicates with the ISA directly, but indirectly through
an IGA.

As a result, in the reference implementation, the IGA contains the locked funds of each
subnet, i.e. the subnet’s circulating supply (unlike in Section 5, where the ISA held the locked
funds). The circulating supply of each child subnet is stored in a map at the IGA, where the key
is the subnet ID. As withdrawals contain a PoF , the circulating supply suffices for the firewall
property.

7.2.3 ISA for subnet customization

In the reference implementation, ISAS holds the state specific to subnet S. However, the afore-
mentioned entry point for all functionality is the IGA, and not the ISA. A subnet can augment
the default functionality of the IGA in the ISA. In particular, the ISA can include conditions for
the validation of proofs of finality, releases of funds and stake, and slashing rules10.

7.3 Functionality

In this section, we describe the implementation of the functionality. In the reference implemen-
tation, cross-net transactions are the cornerstone of interactions between IPC subnets. Deposits,
withdrawals, staking and releasing collateral, and state changes across subnets are all imple-
mented with cross-net transactions.

7.3.1 Deposits

The main difference of deposits in the reference implementation compared to the high-level
description is that ISAC does not hold the funds being deposited to subnet C. Additionally,
the reference implementation explicitly addresses incentives by requiring an IPC fee in each

10the reference implementation does not provide any slashing rule at the time of writing, but provides the
mechanism to define slashing rules in the ISA.

24



cross-net transaction. In particular, depositing amount coins from an account P.a in the parent
subnet P to an account P/C.b in the child subnet P/C is performed in the following steps:

1. The owner of P.a submits a transaction tx = P.IGA.Deposit (P/C, b, amount, IPCfee).

2. tx is ordered and executed at P. The ordering and execution of tx is as follows:

• IGA checks that IPCfee is above a hard-coded minimum IPC base fee. The parame-
ter IPCfee is an amount of coins to be paid to the child replicas to incentivize them
to participate in the validation of top-down transactions for the child11 (see Sec-
tion 7.3.4).

• amount is deposited in the IGA of the parent subnet.

• IGA creates a top-down transaction tx′ = P/C.IGA.MintDeposited (b, amount, IPCfee)
and stores it in the top-down registry (see Section 7.3.4).

• The top-down transaction tx′ is ordered and executed at the child subnet, resulting
in the minting of amount sent to account P/C.b. We detail further the ordering and
execution of top-down transactions in Section 7.3.4.

7.3.2 Withdrawals

Analogously to deposits, withdrawals must carry an IPC fee to be paid to the child replicas,
and the funds to be released back at the parent subnet P are being held at P.IGA. Otherwise,
the procedure is analogous to the one described in Section 4. More concretely, withdrawing
amount coins from an account P/C.b in the child subnet P/C to an account P.a in the parent
subnet P involves the following steps:

• The owner of P/C.b submits a transaction tx = P/C.IGA.Withdraw (amount, a, IPCfee).

• tx is ordered and executed at P/C. The ordering and execution of tx is as follows:

– IGA checks that fee is above a hard-coded minimum IPC base fee. The parameter
IPCfee is an amount of coins to be paid to the child replicas to incentivize them
to participate in the validation of bottom-up transactions for the child (see Sec-
tion 7.3.4).

– amount is burned from b.

– IGA creates a bottom-up transaction tx′ = P.ISAC.ReleaseWithdrawn (amount, b,
IPCfee) and stores it in the bottom-up registry (see Section 7.3.4).

– The bottom-up transaction tx′ is ordered and executed at the parent subnet. This
results in ISAC calling IGA to release amount and send it to account P.a. We detail
further the ordering and execution of bottom-up transactions in Section 7.3.4.

7.3.3 Checkpointing

A checkpoint of a subnet P/C is triggered every ∆ blocks decided at the child subnet. If the
latest block decided meets this condition, and if the participant’s full node is a replica according
to the state stored at the parent, then the IPC agent starts computing the checkpoint as follows:

11The IPC fee is different from and in addition to transaction fees for replicas to order and execute transactions
in a subnet, which we mention in Section 3 but otherwise omit in each transaction throughout the document.

25



1. The IPC agent obtains a state snapshot from the child’s subnet. The state snapshot is
a CID chkpCID of the latest decided block of the child’s subnet that contains a check-
point certificate as PoF (recall that every ∆-th block contains a checkpoint certificate in
Trantor). The PoF of the checkpoint is the certificate of the block.

2. The IPC agent obtains the CIDs of all new grandchildren’s checkpoints stored at P/C.IGA.gcChkps
and of the bottom-up transactions in the bottom-up registry BUpTxs (see Section 7.3.4).
Explicitly checkpointing children checkpoints recursively bubbles up the security anchor
from lower levels of the hierarchy.

3. The IPC agent submits tx =P.ISAC.Checkpoint(P/C, chkpCID, gcChkps, BUpTxs, PoF ).

4. The ISAC verifies the validity of the PoF , saves the checkpoint CID in its state and calls
on IGA to save all checkpoints’ CIDs (those of P/C’s children and of P/C) and to execute
all bottom-up transactions attached to the checkpoint. If the PoF is not valid according
to the state at ISAC, then the entire checkpoint will fail.

7.3.4 Propagating cross-net transactions

Similarly to the description in Section 4, the current reference implementation uses the post-
box in each IGA to propagate cross-net transactions to a subnet not immediately adjacent by
submitting multiple cross-net transactions in the parent-child hierarchy (one in each subnet
along the path to the destination subnet). As shown in Section 4, a cross-net transaction tx is
propagated to each immediately adjacent subnet along the path to its destination by traversing
through the postbox of all intermediate subnets, via cross-net transactions tx′(tx) containing
tx as payload.

However, once tx′ is ordered and executed at an intermediate subnet S, an IPC agent must
pay for the cost to pay the fees for ordering and executing another transaction tx′′(tx) in S

so as to move the state to the next subnet along the path. For this reason, the reference
implementation leaves tx in the postbox of that intermediate subnet until the account that
originally triggered the cross-net transaction creates tx′′ and pays for the fees required to execute
it12. This process is repeated until tx reaches its destination subnet.

As a result, a cross-net transaction that has been paid for leaves the postbox to join a
FIFO queue, known as either the bottom-up registry or top-down registry. All three, postbox,
bottom-up registry and top-down registry, contain cross-net transactions and are part of the
state of IGA, but only those transactions in either top-down registry or bottom-up registry are
propagated. Transactions in the top-down registry (resp. bottom-up registry) at P.IGA are
top-down (resp. bottom-up) transactions.

Top-down transactions. In order to prevent inconsistencies across replicas, the IPC agent
does not immediately submit a top-down transaction to the child subnet. Instead, IPC agents
consistently broadcast the top-down transactions they consider as final at the parent subnet.
Also, as an optimization, the IPC agent batches top-down transactions in a top-down checkpoint
that is consistently broadcast to other replicas every ∆T blocks. In this consistent broadcast,
an IPC agent broadcasts batches of top-down transactions that it locally considers as valid, and
it in turn signs a received batch if it considers all transactions of the batch as valid. As such,
the PoF of a top-down transaction tx is obtained once enough signatures to form a certificate13

are received for a batch containing tx.

12a whitelist of accounts that are allowed to create and pay can be provided.
13In Trantor, a certificate for the batch consists of at least enough replicas containing a supermajority of the

voting power sign the batch.

26



A participant running a straggling parent full node that receives a certificate for a batch
as PoF , but that does not locally see all transactions of the batch as valid, can instead verify
the PoF . Once the IPC agent verifies a certificate for a batch of transactions, the IPC agent
submits the batch to the child subnet for ordering and execution.

Bottom-up transactions. The child subnet aggregates bottom-up transactions attaching
their corresponding CIDs to the next checkpoint, along with an increasing nonce value per CID
that is unique for each parent-child pair14. The CIDs of these bottom-up transactions are placed
in the IGA of the child. Bottom-up transactions are stored in the IGA of the child until it is
time to checkpoint to the parent (see Section 7.3.3). This way, the IGA serves as the single
location for the CIDs of bottom-up transactions and the IPC agent only needs to monitor the
IGA to get all necessary information from the child subnet. As shown in Section 7.3.3, since the
CIDs of bottom-up transactions are attached to the checkpoint, the propagation of bottom-up
transactions depends on the validity and execution of the checkpoint transaction.

7.3.5 Creating and removing a child subnet

Analogously to Section 4, subnets are created by instantiating a new ISA and registering the
ISA in IGA. When the IGA contains a minimum amount of collateral stored associated with ISA

(where enough is defined in the IGA), the subnet can be registered in IGA.
A subnet P/C is removed from IPC in three steps. First, all users must withdraw their funds

to set the circulating supply to zero. Second, all validators leave and release their collateral.
Third, any account sends a P.IGA.kill (C ) transaction to the IGA that marks the subnet as
removed.

7.3.6 Staking and releasing collateral

Contrary to Section 4, staking collateral does not require a explicit call to update any state in
the IGA of the child subnet. A replica simply increases its stake with account P.a by submitting
a transaction tx = P.IGA.StakeCollateral (P.a, replica, amount). This transaction stakes the
collateral in the IGA of the parent P. Notwithstanding, it does not incur a reconfiguration in
the weights of the replica set running the Trantor protocol at the child subnet P/C. Instead,
it is up to the current replica set at P/C to decide when and how to update their membership
to reflect this change of the relative voting power, and notify the new reconfiguration to P.IGA
with a bottom-up transaction.

A reconfiguration transaction tx = P.ISAC.UpdateMembership (membership, PoF ) being sub-
mitted to the parent can also trigger a release of collateral tx = P.IGA.ReleaseCollateral (membership)
to reflect this update in the weighted voting of the child subnet. It is possible that a recon-
figuration triggers a release of collateral that drops the staked collateral below the minimum
threshold for subnet creation. IPC subnets of the reference implementation must always hold
this minimum amount of collateral per subnet (defined in the IGA). If, after it has been created
and registered, the subnet’s collateral drops below the required minimum, then the subnet en-
ters an inactive state. This means that the subnet can no longer interact with the rest of the
active subnets registered in the IGA, or even withdraw funds back to the parent subnet. In this
case, though, users and remaining replicas can stake enough collateral to reactivate the subnet.

14the nonce value is necessary to prevent replay attacks

27



7.4 Incentives

In the current reference implementation, replicas get rewarded for executing the checkpoint
algorithm and participating in the top-down checkpoint by charging an IPC fee on all cross-net
transactions. This incentivizes replicas to participate, even if that costs them a fee to be paid
for the transaction at the parent. All cross-net transactions must contain a fixed amount known
as IPC fee (on top of the standard transaction fee required for ordering and execution of the
transaction in the corresponding subnet). The IPC fee is only paid once the checkpoint (or
top-down checkpoint) is ordered and executed. However, no specific incentives are given at the
moment to the submitter(s) of the checkpoint transaction, or to the signers of the certificate,
in that the sum of IPC fees of the batch is evenly distributed proportionally to the stake
of each replica in the membership. This can lead to equilibria in which some participants are
incentivized neither to submit checkpoints nor participate in generating a PoF . We are currently
working in more complex incentive-compatible mechanisms that ensure rational participants will
follow the protocol for the reference implementation, via rewards and slashing.

8 Conclusion

The scalability challenge posed by the need of consensus in blockchain networks has led to the
exploration of L2 and subsequent layers. While there has been an explosion of L2 solutions in
recent years, most of these lack of a non-monolithic design that allows for native communication
across state partitions, on-demand horizontal scaling, decentralization, and recursive security
anchoring with the root layer. We presented in this document Interplanetary Consensus (IPC),
a blockchain architecture based on web-scale on-demand horizontal scalability through a hier-
archical subnet structure. IPC leverages the security of parent subnets to benefit child subnets
and allows subnets to be used in different ways, such as hosting different applications or sharding
a single application, or even user-motivated state partitions that are not necessarily immediate
at the time of writing. As a result, we believe IPC represents a significant step forward in the
quest for L2+ scaling, providing for a sensible, flexible design that balances decentralization,
scalability, security, and usability at relatively short timescales.

References

[1] Applied zkp. https://appliedzkp.org/. Accessed: March 24, 2023.

[2] Aptos labs. https://aptoslabs.com/. Accessed: March 24, 2023.

[3] Bitswap — ipfs docs. https://docs.ipfs.tech/concepts/bitswap/. Accessed on March
24, 2023.

[4] Celestia documentation - rollmint. https://docs.celestia.org/developers/

rollmint/. Accessed: March 24, 2023.

[5] Cosmos network documentation. https://docs.cosmos.network/main. Accessed: March
24, 2023.

[6] Espresso. https://www.espressosys.com/. Accessed: March 24, 2023.

[7] Filecoin. https://filecoin.io/. Accessed: March 24, 2023.

[8] Hedera hashgraph. https://hedera.com/. Accessed: March 24, 2023.

28

https://appliedzkp.org/
https://aptoslabs.com/
https://docs.ipfs.tech/concepts/bitswap/
https://docs.celestia.org/developers/rollmint/
https://docs.celestia.org/developers/rollmint/
https://docs.cosmos.network/main
https://www.espressosys.com/
https://filecoin.io/
https://hedera.com/


[9] How it works - internet computer. https://internetcomputer.org/how-it-works. Ac-
cessed: March 24, 2023.

[10] Lotus. https://lotus.filecoin.io/. Accessed on March 24, 2023.

[11] Matter labs. https://matter-labs.io/. Accessed: March 24, 2023.

[12] Multiformats. https://multiformats.io/. Accessed on March 24, 2023.

[13] Parachains — polkadot. https://polkadot.network/parachains/. Accessed: March 24,
2023.

[14] Polygon pos. https://polygon.technology/solutions/polygon-pos. Accessed: March
24, 2023.

[15] Sin7y. https://sin7y.org/. Accessed: March 24, 2023.

[16] Subnets — avalanche. https://www.avax.network/subnets. Accessed: March 24, 2023.

[17] Sui. https://sui.io/. Accessed: March 24, 2023.

[18] Supernets. https://polygon.technology/supernets. Accessed: March 24, 2023.

[19] Trantor: Modular consensus for (not only) filecoin ipc. https://hackmd.io/

P59lk4hnSBKN5ki5OblSFg?view. Accessed: March 24, 2023.

[20] The raiden network, 2019.

[21] Validium, 2023.

[22] ACINQ. Eclair github repository, 2008.

[23] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George Danezis.
Chainspace: A sharded smart contracts platform, 2017.

[24] Nada Amin, John Burnham, François Garillot, Rosario Gennaro, Chhi’mèd Künzang,
Daniel Rogozin, and Cameron Wong. Lurk: Lambda, the ultimate recursive knowledge.
Cryptology ePrint Archive, Paper 2023/369, 2023. https://eprint.iacr.org/2023/369.

[25] Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-Kogias. Chan-
nels: Horizontal scaling and confidentiality on permissioned blockchains. In Javier Lopez,
Jianying Zhou, and Miguel Soriano, editors, Computer Security, pages 111–131, Cham,
2018. Springer International Publishing.

[26] Georgia Avarikioti, Eleftherios Kokoris-Kogias, and Roger Wattenhofer. Divide and scale:
Formalization of distributed ledger sharding protocols, 2021.

[27] Sarah Azouvi and Marko Vukolić. Pikachu: Securing pos blockchains from long-range
attacks by checkpointing into bitcoin pow using taproot. In Proceedings of the 2022 ACM
Workshop on Developments in Consensus, ConsensusDay ’22, page 53–65, New York, NY,
USA, 2022. Association for Computing Machinery.

[28] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew
Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling blockchain innovations
with pegged sidechains, 2014.

29

https://internetcomputer.org/how-it-works
https://lotus.filecoin.io/
https://matter-labs.io/
https://multiformats.io/
https://polkadot.network/parachains/
https://polygon.technology/solutions/polygon-pos
https://sin7y.org/
https://www.avax.network/subnets
https://sui.io/
https://polygon.technology/supernets
https://hackmd.io/P59lk4hnSBKN5ki5OblSFg?view
https://hackmd.io/P59lk4hnSBKN5ki5OblSFg?view
https://eprint.iacr.org/2023/369


[29] Conrad Burchert, Christian Decker, and Roger Wattenhofer. Scalable funding of bitcoin
micropayment channel networks. In Royal Society open science, 2018.

[30] Vitalik Buterin. Why sharding is great: demystifying the technical properties, 2021.

[31] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI, vol-
ume 99, pages 173–186, 1999.

[32] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman.
Narwhal and tusk: a dag-based mempool and efficient BFT consensus. In Yérom-David
Bromberg, Anne-Marie Kermarrec, and Christos Kozyrakis, editors, EuroSys ’22: Seven-
teenth European Conference on Computer Systems, Rennes, France, April 5 - 8, 2022,
pages 34–50. ACM, 2022.

[33] Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Symposium on Self-Stabilizing Systems, 2015.

[34] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state channel
networks. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’18, page 949–966, New York, NY, USA, 2018. Association for
Computing Machinery.

[35] Elements Project. c-lightning – a lightning network implementation in C. Accessed on
March 24, 2023.

[36] Peter Gaži, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In S&P,
2019.

[37] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algo-
rand: Scaling Byzantine agreements for cryptocurrencies. In SOSP, 2017.

[38] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Ger-
vais. Sok: Layer-two blockchain protocols. In Joseph Bonneau and Nadia Heninger, editors,
Financial Cryptography and Data Security, pages 201–226, Cham, 2020. Springer Interna-
tional Publishing.

[39] Zicong Hong, Song Guo, Peng Li, and Wuhui Chen. Pyramid: A layered sharding
blockchain system. In IEEE INFOCOM 2021 - IEEE Conference on Computer Com-
munications, pages 1–10, 2021.

[40] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W.
Felten. Arbitrum: Scalable, private smart contracts. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 1353–1370, Baltimore, MD, August 2018. USENIX
Association.

[41] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you
need is DAG. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC
’21: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July
26-30, 2021, pages 165–175. ACM, 2021.

[42] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and
Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018
IEEE Symposium on Security and Privacy (SP), pages 583–598, 2018.

30



[43] L2BEAT Team. L2beat: Ethereum layer 2s analytics. https://l2beat.com/, 2021. Ac-
cessed: March 30, 2023.

[44] Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo transformer: Asynchronous con-
sensus as fast as the pipelined BFT. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages
2159–2173. ACM, 2022.

[45] Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo transformer: Asynchronous con-
sensus as fast as the pipelined BFT. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages
2159–2173. ACM, 2022.

[46] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-mvba: Optimal multi-
valued validated asynchronous byzantine agreement, revisited. In Yuval Emek and Chris-
tian Cachin, editors, PODC ’20: ACM Symposium on Principles of Distributed Computing,
Virtual Event, Italy, August 3-7, 2020, pages 129–138. ACM, 2020.

[47] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, page 17–30,
New York, NY, USA, 2016. Association for Computing Machinery.

[48] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008.

[49] Kamilla Nazirkhanova, Joachim Neu, and David Tse. Information dispersal with provable
retrievability for rollups. arXiv preprint arXiv:2111.12323, 2021.

[50] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts, 2017.

[51] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments, 2016.

[52] Alejandro Ranchal-Pedrosa and Vincent Gramoli. Platypus: Offchain protocol without
synchrony. In IEEE NCA, 2019.

[53] Andrew Samokhvalov, Joseph Poon, and Olaoluwa Osuntokun. Basis of lightning technol-
ogy (BOLTs), 2018.

[54] Andrew Samokhvalov, Joseph Poon, and Olaoluwa Osuntokun. The lightning network
daemon, 2018.

[55] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias.
Bullshark: DAG BFT protocols made practical. In Heng Yin, Angelos Stavrou, Cas Cre-
mers, and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11,
2022, pages 2705–2718. ACM, 2022.

[56] StarkWare. Starkware. https://starkware.co/, 2022. Accessed: March 24, 2023.

31

https://l2beat.com/
https://starkware.co/


[57] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolic. State machine replication
scalability made simple. In Yérom-David Bromberg, Anne-Marie Kermarrec, and Christos
Kozyrakis, editors, EuroSys ’22: Seventeenth European Conference on Computer Systems,
Rennes, France, April 5 - 8, 2022, pages 17–33. ACM, 2022.

[58] Polygon Technology. Polygon launches zkevm, a new ethereum-compatible scaling solution.
https://polygon.technology/polygon-zkevm, 2022. Accessed: March 24, 2023.

[59] Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. Blockchain scaling
using rollups: A comprehensive survey. IEEE Access, 10:93039–93054, 2022.

[60] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication.
In Jan Camenisch and Dogan Kesdogan, editors, Open Problems in Network Security - IFIP
WG 11.4 International Workshop, iNetSec 2015, Zurich, Switzerland, October 29, 2015,
Revised Selected Papers, volume 9591 of Lecture Notes in Computer Science, pages 112–125.
Springer, 2015.

[61] Marko Vukolić. On the future of decentralized computing. Bull. EATCS, 135, 2021.

[62] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asynchronous con-
sensus zones. In NSDI, volume 2019, pages 95–112, 2019.

[63] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. In Ethereum
Project Yellow Paper, 2014.

[64] Guangsheng Yu, Xu Wang, Kan Yu, Wei Ni, J. Andrew Zhang, and Ren Ping Liu. Survey:
Sharding in blockchains. IEEE Access, 8:14155–14181, 2020.

[65] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling blockchain
via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 931–948, New York, NY, USA, 2018. Association
for Computing Machinery.

32

https://polygon.technology/polygon-zkevm


33


	Introduction
	Example Use Case: On-Line Gaming Platform
	Preliminaries
	IPC parent-child interactions
	Creating a child subnet
	Depositing funds
	Withdrawals
	Checkpointing
	Propagating cross-net transactions
	Removing a child subnet
	Proof-of-stake subnets
	Staking collateral
	Releasing collateral
	Slashing a misbehaving replica


	IPC Actors
	IPC Gateway Actor (IGA)
	IPC Subnet Actor (ISA)

	Related Work
	Consensus protocols
	ZK and optimistic rollups
	Sharding
	State and payment channels
	Subnet and sidechain networks

	IPC's reference implementation
	Preliminaries
	Components
	IPC agent
	IGA as entry point
	ISA for subnet customization

	Functionality
	Deposits
	Withdrawals
	Checkpointing
	Propagating cross-net transactions
	Creating and removing a child subnet
	Staking and releasing collateral

	Incentives

	Conclusion

