
A not so short
introduction
to ConTEXt Mark IV

Jo
aq

uí
n
A
ta
z-
Ló

pe
z

A not so short introduction to ConTEXt Mark IV
Version 1.6 [January 2, 2021]

© 2020-2021, Joaquín Ataz-López

Original title: Una introducción (no demasiado breve) a ConTEXt Mark IV
English Translation: A good friend who wishes to remain anonymous.

The author of this text (and its English translator) authorises its free distribution and use, in
cluding the right to copy and redistribute this document in digital format on condition that its
authorship is acknowledged, and that it is not included in any software package or suite, or in
documentation whose conditions of use or distribution do not include the free right of recipients to
copy and distribute. Authorisation is likewise given for translation of the document, provided that
the authorship of the original text is indicated, and that the translated text is distributed under
the FDL licence of the Free Software Foundation, the Creative Commons licence that authorises
copying and redistribution, or a similar licence.

The above notwithstanding, publication or marketing or translation of this document in paper
form will require the author's express authorisation in writing.

Version history:
• August 18, 2020: Version 1.0 (Spanish only): Original document.
• August 23, 2020: Version 1.1 (Spanish only): Correction of minor errors, typos and misunderstandings by the author.
• September 3, 2020: Version 1.15 (Spanish only): More errors, typos and misunderstandings.
• September 5, 2020: Version 1.16 (Spanish only): More errors, typos and misunderstandings as well as some very minor

changes to make the text clearer (I hope).
• September 6, 2020: Version 1.17 (Spanish only): The number of minor errors I am finding is incredible. I would just

need to stop re-reading the document to find no more!
• October 21, 2020: Version 1.5 (Spanish only): Introduction of suggestions and correction of errors reported by NTG-

context users.
• January 2, 2021: Version 1.6: Corrections suggested after a new and careful reading of the document, on the occasion

of its translation to English. This is the first version in English.

3

Table of Contents
Preface . 6

I What is ConTEXt and how do we work with it 14

1 ConTEXt: a general overview . 15
1.1 What is ConTEXt then? . 15
1.2 Typesetting texts . 16
1.3 Markup languages . 18
1.4 TEX and its derivatives . 19
1.5 ConTEXt . 22

2 Our first source file . 30
2.1 Preparing the experiment: essential tools . 30
2.2 The experiment itself . 32
2.3 The structure of our example file . 36
2.4 Some additional details on how to run “context” . 38
2.5 Managing errors . 39

3 Commands and other fundamental concepts of ConTEXt 42
3.1 ConTEXt's reserved characters . 43
3.2 Commands themselves . 46
3.3 Scope of the commands . 49
3.4 Command operation options . 52
3.5 Summary of command syntax and options, and on the use of square and

curly brackets when calling them . 55
3.6 The official list of ConTEXt commands . 57
3.7 Defining new commands . 58
3.8 Other fundamental concepts . 62
3.9 Self-learning method for ConTEXt . 66

4 Source files and projects . 68
4.1 Encoding source files . 68
4.2 Characters in the source file(s) that ConTEXt treats in a special way 71
4.3 Simple and multifile projects . 74
4.4 Structure of the source file in simple projects . 75
4.5 Multifile management in TEX style . 76
4.6 ConTEXt projects as such . 79

Table of Contents 4

II Global aspects of the document . 85

5 Pages and document pagination . 86
5.1 Page size . 86
5.2 Elements on the page . 90
5.3 Page layout (\setuplayout) . 93
5.4 Page numbering . 98
5.5 Forced or suggested page breaks . 100
5.6 Headers and footers . 102
5.7 Inserting text elements in page edges and margins . 106

6 Fonts and colours in ConTEXt . 108
6.1 Typographical fonts included in “ConTEXt Standalone” . 108
6.2 Font features . 109
6.3 Setting the document's main font . 112
6.4 Changing font or some font features . 114
6.5 Other matters relating to the use of some alternatives . 120
6.6 Use and configuration of colours . 121

7 Document structure . 127
7.1 Structural divisions in documents . 127
7.2 Section types and their hierarchy . 128
7.3 Syntax common to section commands . 130
7.4 Format and configuration of sections and their titles . 132
7.5 Defining new section commands . 142
7.6 The document's macrostructure . 143

8 Table of contents, indexes, lists . 145
8.1 Table of contents . 145
8.2 Lists, combined lists and table of contents based on a list . 156
8.3 Index . 160

9 References and hyperlinks . 165
9.1 Reference types . 165
9.2 Internal references . 166
9.3 Interactive electronic documents . 173
9.4 Hyperlinks to external documents . 175
9.5 Creating bookmarks in the final PDF . 179

III Particular issues . 181

10 Characters, words, text and horizontal space . 182
10.1 Getting characters not normally accessible from the keyboard 182
10.2 Special character formats . 191
10.3 Character and word spacing . 195
10.4 Compound words . 199
10.5 The language of the text . 200

Table of Contents 5

11 Paragraphs, lines and vertical space . 208
11.1 Paragraphs and their characteristics . 208
11.2 Vertical space between paragraphs . 211
11.3 How ConTEXt builds lines that form paragraphs . 215
11.4 Interline space . 220
11.5 Other matters relating to lines . 221
11.6 Horizontal and vertical alignment . 224

12 Special constructions and paragraphs . 228
12.1 Footnotes and endnotes . 228
12.2 Paragraphs with multiple columns . 237
12.3 Structured lists . 242
12.4 Descriptions and enumerations . 249
12.5 Lines and frames . 252
12.6 Other environments and constructions of interest . 256

13 Images, tables and other floating objects . 259
13.1 What are floating objects and what do they do? . 259
13.2 External images . 261
13.3 Tables . 268
13.4 Aspects common to images, tables and other floating objects 275
13.5 Defining additional floating objects . 281

Appendices . 284

A Installing, configuring and updating ConTEXt 285
1 Installing and configuring “ConTEXt Standalone” . 286
2 Installing LMTX . 290
3 Using several versions of ConTEXt on the same system (only for Unix-type systems) 294

B Commands for generating maths and non-maths symbols 295

C Index of commands . 299

6

Preface∗

Gentle reader, this is a document about ConTEXt, a typesetting system derived
from TEX, which, in turn, is another typesetting system created between 1977 and
1982 by Donald E. Knuth at Stanford University.

ConTEXt was designed for the creation of documents of very high typographical
quality – either paper documents or documents designed to be displayed on the
screen of a computing device. It is not a word processor or text editor, but, as
I said before, a system, or in other words a suite of tools aimed at typesetting
documents, understood as the graphic layout and visualisation of the different
elements of the document on the page or on screen. ConTEXt, in summary, aims
to provide all the tools needed to give documents the best possible appearance.
The idea is to be able to generate documents that, besides being well written, are
also “beautiful”. In this respect, we can mention here what Donald E. Knuth
wrote when presenting TEX (the system on which ConTEXt is based):

If you merely want to produce a passably good document—something ac
ceptable and basically readable but not really beautiful—a simpler system
will usually suffice. With TEX the goal is to produce the finest quality; this
requires more attention to detail, but you will not find it much harder to
go the extra distance, and you'll be able to take special pride in the finished
product.

When we prepare a manuscript with ConTEXt, we indicate exactly how this must
be transformed into pages (or screens) whose typographical quality is comparable
to what can be obtained with the best of the world's print shops. To do this,
once we have learned the system, we need little more work than what is needed to
normally type up the document in any word processor or text editor. In fact, once
we have gained a certain ease in handling ConTEXt, our total work is probably less
if we bear in mind that the main formatting details of the document are described

∗ This preface began with the intention of being a translation/adaptation to ConTEXt of the preface
to “The TEXBook”, the document that explains everything you need to know about TEX. Ulti
mately, I had to deviate from that; however, I have retained some snippets that I hope, for those
who know it, will offer some echoes of it.

Preface 7

globally in ConTEXt and we are working with text files that are – once we are
accustomed to them – a much more natural way of dealing with the creation and
editing of documents; other than the fact that these kinds of files are much lighter
and easier to deal with than the heavy binary files belonging to word processors.

There is a considerable amount of documentation on ConTEXt, almost all of it
in English. What we might consider to be the official distribution of ConTEXt
– called “ConTEXt Standalone”1 – for example, contains some 180 PDF files of
documentation (the majority of it in English, but some in Dutch and German)
including manuals, examples and technical articles; and on the Pragma ADE web
(the company that gave birth to ConTEXt) there are (on the day I did the count
in May 2020) 224 downloadable documents, most of which are distributed with
the “ConTEXt Standalone” but some others as well. Just the same, this huge doc
umentation is not particularly useful for learning ConTEXt since, in general, these
documents are not aimed at a reader who knows nothing about the system but
wants to learn it. Of the 56 PDF files that “ConTEXt Standalone” calls “manuals”,
there is only one that assumes that the reader knows nothing about ConTEXt. This
is a document entitled “ConTEXt Mark IV, an Excursion”. This document, how
ever, as its name indicates, limits itself to presenting the system and explaining
how to do certain things that can be done with ConTEXt. It would be a good
introduction if it were followed up by a somewhat more structured and systematic
reference manual. This manual does not exist and the gap between the document
relating to the ConTEXt “Excursion” and the rest of the documentation is too
great.

In 2001, a reference manual was written and can be found on the Pragma ADE web
site; but despite this title, one the one hand it was not designed to be a complete
manual, while on the other it was (is) a text aimed at the previous version of
ConTEXt (called Mark II) and is therefore quite out of date.

In 2013, the manual was partially updated but many of its sections were not
rewritten and it contains information relating to both ConTEXt Mark II and Con
TEXt Mark IV (the current version), without always making it totally clear what
information refers to each of the versions. Perhaps this is why this manual is not
to be found among the documents included in “ConTEXt Standalone”. Yet despite
these defects, the manual continues to be the best document for beginning to learn
ConTEXt once we have read the introductory “ConTEXt Mark IV, an Excursion”.
Also very useful for starting out in ConTEXt is the information to be found in its
wiki which, at the time this is being written, is being redesigned and has a much

1 At the time the first version of this text was drafted, what it said there was factual; but in the
spring of 2020 the ConTeXt wiki was updated and from then on we have to assume that the
“official” distribution of ConTeXt has become LMTX. However, for those coming to the world of
ConTeXt for the first time, I would still recommend using “ConTEXt Standalone” since it is a more
stable distribution. Appendix A explains how to install either distribution.

http://www.pragma-ade.com/
http://www.pragma-ade.com/
https://www.contextgarden.net/

Preface 8

clearer structure, although it too mixes explanations that only work in Mark II
with others for Mark IV or for both versions. This lack of differentiation is also
found in the official list of ConTEXt commands1 which does not specify which
commands work only in one of the two versions.

Basically, this introduction has been written by drawing from the four information
sources listed here: The ConTEXt “Excursion”, the 2013 manual, the contents of the
wiki and the official list of commands that includes, for each of them, the allowable
configuration options; in addition, of course, my own tests and conclusions. So, in
fact this introduction is the result of an investigative effort, and for some time I
was tempted to call it “What I know about ConTEXt Mark IV” or “What I have
learned about ConTEXt Mark IV”. Ultimately, I discarded these titles because,
as true as they may be, I felt that they might dissuade someone from getting
into ConTEXt; and what is certain is that although the documentation has (in my
view) some shortcomings, here we have a truly useful and versatile tool for which
the effort it takes to learn it is undoubtedly worthwhile. By using ConTEXt we
can manipulate and configure text documents to achieve things that someone who
does not know the system simply cannot even imagine.

Because of who I am, I cannot help the fact that my complaints about the lack of information
will appear from time to time throughout this document. I would not like this to be misunder
stood: I am immensely grateful to the creators of ConTEXt for having designed such a powerful
tool and for having made it available to the public. It is simply that I cannot avoid thinking
that this tool would be much more popular if its documentation were improved: one has to
invest a lot of time into learning it, not so much because of its intrinsic difficulty (which it has,
but no greater than other similar tools – to the contrary in fact), but due to the lack of clear,
complete and well-organised information that differentiates between the two versions of Con
TEXt, explaining the functions in each of them and, above all, clarifying what each command,
argument and option does.

It is true that this kind of information demands great time investment. But given that many
commands share options with similar names, perhaps a kind of glossary of options could be
provided that would also help to detect some inconsistencies resulting from when two options
with the same name do different things, or when, to do the same thing, one uses the names
of different options in different commands.

As for the reader who is approaching ConTEXt for the first time, let my complaints not dissuade
you, because although it may be true that deficient information increases the time needed to
learn it, at least for the material dealt with in this introduction I have already invested this
time so that the reader does not have to do so. And just with what can be learned from
this introduction, readers will have at their disposal a tool that will allow them to produce
documents with an ease that they could never have suspected.

Since what is explained in this document comes to a large extent from my own
conclusions, it is likely that even though I have personally tested most of what I
explain, some statements or opinions may be neither correct nor very orthodox. I

1 For the list see section 3.6.

Preface 9

will, of course, appreciate any correction, nuance or clarification readers can offer
me, and these can be sent to joaquin@ataz.org. However, to reduce the occasions
where I am likely to be wrong I have tried not to enter into matters about which I
have found no information and that I have not been able (or have not wanted) to
personally try out. At times this is the case because the results of my tests were
not conclusive, and at other times because I have not always tested everything: the
number of commands and options ConTEXt has is impressive, and if I had to try
everything out I would never have finished this introduction. There are occasions,
however, when I cannot avoid assuming something, i.e. making a statement that
I see as probable but that I am not completely sure about. In these cases, a
‘conjecture’ image has been placed in the left margin of the paragraph where I
am making such an assumption. The image aims to graphically represent the
assumption.1 At other times, I have no choice but to admit that I don't know
something and I don't even have a reasonable assumption about it: in this case,
the image visible to the immediate left in the margin is meant to represent more
than just conjecture or ignorance.2 But as I have never been very good with graphic
representations, I am not sure that the images I have selected really manage to
convey so many nuances.

This introduction, on the other hand, has been written from the point of view of
a reader who knows nothing about either TEX or ConTEXt, although I hope that
it can also be useful to those coming from TEX or LATEX (the most popular of the
TEX derivatives) who are approaching ConTEXt for the first time. Just the same, I
am aware that in trying to please so many different kinds of reader, I run the risk
of satisfying nobody. Therefore, in case of doubt, I have always been clear that the
principal addressee of this document is the newcomer to ConTEXt, the newcomer
who has just come to this fascinating ecosystem.

Being a newcomer to ConTEXt does not imply also being a newcomer to using
computer tools; and although in this introduction I am not assuming any particular
level of computer literacy in readers, I do presume a certain “reasonable literacy”
that implies, for example, having a general understanding of the difference between
a word processor and a text editor, knowing how to create, open and manipulate
a text file, knowing how to install a program, knowing how to open a terminal and
execute a command... and little else.

Reading through the previous parts of this introduction as I write these lines, I realise that
sometimes I get carried away and get into computer issues that are not necessary for learning
ConTEXt and that could scare the newcomer off, while at other times I am busy explaining quite
obvious things that could bore the experienced reader. I beg the indulgence of both. Rationally,
I know that it is very difficult for a complete beginner in computerised text management to even

1 I did not draw the image, but downloaded it from the internet (https://es.dreamstime.com/),
where it says that it is a royalty-free image.

2 Also found on the internet (https://www.freepik.es/) where its free use is authorised.

https://es.dreamstime.com/icono-s%C3%B3lido-negro-para-la-conjetura-preocupaci%C3%B3n-y-duda-conjeturar-el-logotipo-image146773292
https://www.freepik.es/iconos-gratis/duda-cabeza_785036.htm

Preface 10

know that ConTEXt exists, but from another point of view, in my professional environment I am
surrounded by people who are constantly struggling with texts when they used word processors,
and they do so reasonably well, but never having worked with text files as such they ignore
such basic issues as, for example, what encoding text files use or what the difference is between
a word processor and a text editor.

The fact that this manual is designed for people who know nothing about ConTEXt
or TEX, implies that I have included information that clearly is not about Con
TEXt but TEX; but I have understood that it is not necessary to burden readers
with information that is not relevant for them, as could be the case if a certain
command that in fact works, is really a ConTEXt command or belongs to TEX; so
only on some occasions, when it seems to me to be useful, do I clarify that certain
commands really belong to TEX.

With regard to the organisation of this document, the material is grouped into
three blocks:

• The first part, comprising the first four chapters, offers a global overview
of ConTEXt, explaining what it is and how we work with it, showing a first
example of how to transform a document so as to be able, later, to explain
some fundamental concepts of ConTEXt along with certain questions relating
to ConTEXt source files.

As a whole, these chapters are intended for readers who up until now have only
known how to work with word processors. A reader who already knows about
working with markup languages could forgo these early chapters; and if the
reader already knows TEX, or LATEX, they could also skip much of the content
in Chapters 3 and 4. Just the same, I would recommend at least reading:

– The information relating to ConTEXt commands (Chapter 3), and in par
ticular how it functions, how it is configured, because this is where the
principal difference lies between the conception and syntax of LATEX and
ConTEXt. Since this introduction refers only to the latter, these differences
are not expressly indicated as such, but someone reading this chapter who
knows how LATEX works will immediately understand the difference in syn
tax of the two languages, as also the way that ConTEXt allows us to con
figure and customise the way almost all of its commands work.

– The information relating to multifile ConTEXt projects (Chapter 4), which
is not so similar to the way of working with other TEX-based systems.

• The second part, that includes Chapters 5 to 9, focuses on what we consider
to be the main global aspects of a ConTEXt document:

– The two aspects that mainly affect the appearance of a document are the
size and layout of its pages and the font used. Chapters 5 and 6 are dedicated
to these matters.

Preface 11

⋆ The first focuses on pages: size, the elements that make up a page,
its layout (meaning, how the page elements are distributed), etc. For
systematic reasons, more specific aspects are also dealt with here, such
as those relating to pagination and the mechanisms that allow us to
influence it.

⋆ Chapter 6 explains commands related to the fonts and their handling.
Also included here is a basic explanation of the use and management
of colours since, although these are not strictly a characteristic of fonts,
they are just as much an influence on the external appearance of the
document.

– Chapters 7 and 8 focus on the structure of the document and the tools
that ConTEXt makes available to the author for writing well-structured
documents. Chapter 7 focuses on structure properly so called (structural
divisions of the document) and Chapter 8 on how this is reflected in the
Table of Contents; although, in line with the explanation of this, we use the
opportunity to also explain how to generate various kinds of indexes with
ConTEXt, since for ConTEXt these all come under the notion of “lists”.

– Finally, Chapter 9 focuses on references, an important global aspect of
any document when we need to refer to something in another part of the
document (internal references) or to other documents (external references).
In the case of the latter, we are only interested for the moment in references
(links) that mean going to an external document. These links (that can
also occur in internal references) make our document interactive, and in
this chapter we explain some of the features of ConTEXt for creating these
kinds of documents.

These chapters do not need to be read in any particular order except for Chap
ter 8, which may be easier to understand if Chapter 7 has been read first. In
any case, I have tried to ensure that when a question arises in a chapter or
section that is dealt with elsewhere in this introduction, the text includes a
mention of that together with a hyperlink to the point where the question is
dealt with. However, I am not in a position to guarantee that this will always
be the case.

• Finally the third part (Chapters 10 and following) focuses on more detailed
aspects. They are independent not only of each other, but even of their sections
(except, perhaps, in the last chapter). Given the large number of utilities that
ConTEXt incorporates, this part could be very extensive; but since my under
standing is that by the time they arrive here readers will already be prepared
to dive into ConTEXt documentation of their own accord, I have only included
the following chapters:

Preface 12

– Chapters 10 and 11 deal with what we could call the core elements of any
text document: the text is made up of characters which make up words that
are grouped on lines, which in turn make up paragraphs separated from
one another by vertical space... Clearly, all these issues could have been
included in a single chapter, but as this would be too long, I have divided
this matter into two chapters, one that deals with characters, words and
horizontal space and another that deals with lines, paragraphs and vertical
space.

– Chapter 12 is a kind of mishmash dealing with elements and constructions
commonly found in documents; for the most part academic or scientific or
technical documents: footnotes, structured lists, descriptions, numbering,
etc.

– Finally, Chapter 13 focuses on floating objects especially the most typical
of these: images inserted into documents, and tables.

• The introduction closes with three appendices. One is about installing Con
TEXt, a second appendix contains several dozen commands that allow the gen
eration of various symbols – mainly but not only for mathematical use, and a
third appendix contains an alphabetical list of ConTEXt commands explained
or mentioned in the course of this text.

There are many issues that remain to be explained: dealing with quotes and biblio
graphic references, writing specialised texts (maths, chemistry...), the connection
with XML, the interface with Lua code, modes and processing based on modes,
working with MetaPost for designing graphics, etc. This is why, since I am not
including a complete explanation of ConTEXt, nor am I pretending to do so, I
have called this document “An introduction to ConTEXt Mark IV”; and I have
added the fact that the introduction is none too short, because obviously this is
the case: a text that has left so many things still in the pipeline but that has
already gone beyond 300 pages is not by any means a short introduction. This is
because I want the reader to understand the logic of ConTEXt, or at least the logic
as I have understood it. It does not claim to be a reference manual, but rather a
guide for self-learning that prepares the reader to produce documents of medium
complexity (and this includes most of the likely documents) and that above all
teaches the reader to imagine what can be done with this powerful tool and find
out how to do it in the documentation available. Nor is this document a tutorial.
Tutorials are designed to progressively increase the level of difficulty, so that what
is to be learned is taught step by step; in this respect I have preferred to begin with
the second part instead of ordering material according to the level of difficulty, in
order to be more systematic. But while it is not a tutorial, I have included very
many examples.

Table of Contents 13

It is possible that for some readers this document's title reminds them of a text
written by Oetiker, Partl, Hyna and Schlegl available on the internet and
one of the better documents for introducing oneself to the LATEX world. I am
talking about “The Not So Short Introduction to LATEX 2𝜖”. This is no coincidence,
but a tribute and act of appreciation: thanks to the generous work of those who
write texts like that, it is possible for many people to begin to work with useful and
powerful tools like LATEX and ConTEXt. These authors helped me to start out with
LATEX; I am hoping to do the same with someone who wants to start out with Con
TEXt, even though in the original Spanish version of this text I stuck exclusively
to the Spanish-speaking world who have lacked so much documentation in their
language. I hope this document fulfils this expectation, and in the meantime, others
have generously offered to translate it into other languages, hence this English
edition. Thank you.

Joaquín Ataz-López
Summer 2020

14

I
What is ConTEXt

and how do we work
with it

15

Chapter 1
ConTEXt: a general

overview
Table of Contents: 1.1 What is ConTEXt then?; 1.2 Typesetting texts;
1.3 Markup languages; 1.4 TEX and its derivatives; 1.4.1 TEX engines;
1.4.2 Formats derived from TEX; 1.5 ConTEXt; 1.5.1 A short history of ConTEXt;
1.5.2 ConTEXt versus LATEX; 1.5.3 A good understanding of the dynamics of working
with ConTEXt; 1.5.4 Getting help with ConTEXt;

1.1 What is ConTEXt then?
ConTEXt is a typesetting system, or in other words: an extensive set of tools
aimed at giving the user absolute and complete control over the appearance and
presentation of a specific electronic document intended for print on paper or to be
shown on screen. This chapter explains what this means. But first, let us highlight
some of the characteristics of ConTEXt.

• There are two flavours of ConTEXt known as Mark II and Mark IV respectively.
ConTEXt Mark II is frozen, i.e. it is considered to be an already fully-developed
language that is not intended to have further changes or new things added.
A new version would appear only in the case where some error needs to be
corrected. ConTEXt Mark IV, on the other hand, continues to be developed so
that new versions appear from time to time that introduce some improvement
or additional utility. But, although still in development, it is a very mature
language in which changes introduced by the new versions are quite subtle and
exclusively affect the low level operation of the system. For the average user
these changes are totally transparent; it is as if they did not exist. Although
both flavours have much in common, there are also some incompatible features
between them. Hence this introduction focuses only on ConTEXt Mark IV.

• ConTEXt is software libre (or free software, but not just in the sense of gratis).
The program properly speaking (that is, the complex of computer tools that
make up ConTEXt), is distributed under the GNU General Public Licence. The
documentation is offered under the “Creative Commons” licence that allows it
to be freely copied and distributed.

Chapter 1 ConTEXt: a general overview 16

• ConTEXt is neither a word processor program nor a text editing program, but
a collection of tools aimed at transforming a text we have previously written
in our favourite text editor. Therefore, when we work with ConTEXt:

– We begin by writing one or more text files with any kind of text editor.

– In these files, along with the text that makes up the contents of the docu
ment, there is a range of instructions that tell ConTEXt about the appear
ance that the final document generated from the original text files must
have. The complete set of ConTEXt instructions, in fact, is a language; and
since this language allows one to program the typographical transforma
tion of a text, we can say that ConTEXt is a typographical programming
language.

– Once we have written the source files, these will be processed by a program
(also called “context”1), which will generate a PDF file from them ready
to be sent to a print shop or to be shown on screen.

• In ConTEXt, therefore, we must differentiate between the document we are
writing, and the document that ConTEXt generates. To avoid any doubts, in
this introduction I will call the text document that contains formatting instruc
tions the source file, and the PDF document generated by ConTEXt from the
source file I will call the final document.

The above basic points will be further developed below.

1.2 Typesetting texts
Writing a document (book, article, chapter, leaflet, print out, paper ...) and putting
it together typographically are two very different activities. Writing the document
is much the same as drafting it; this is done by the author who decides on its
content and structure. The document created directly by the author, just as he or
she wrote it, is called the manuscript. By its very nature, only the author or those
permitted to read it have access to the manuscript. Its dissemination beyond this
intimate group requires the manuscript to be published. Today, publishing some
thing – in the etymological sense of making it “accessible to the public” – is as
simple as putting it on the internet, available to anyone who finds it and wants

1 ConTEXt is both a language and a program at the same time (besides being other things). This
fact, in a text like the current one, poses the problem that at times we have to distinguish between
these two aspects. This is why I have adopted the typographical convention of writing “ConTeXt”
with its logo (ConTEXt) when I want to refer exclusively to the language, or to both the language
and the program. However, when I want to refer exclusively to the program, I will write “context”
all in lower case and in the monospaced type that is typical of computer terminals and typewriters.
I will also use this type for examples and mentions of commands belonging to this language.

Chapter 1 ConTEXt: a general overview 17

to read it. But until relatively recently, publication was a cost-intensive process
dependent on certain professionals specialised in it, only accessed by those manu
scripts which, because of their content, or because of their author, were considered
to be particularly interesting. And even today we tend to reserve the word pub
lication for this kind of professional publication where the manuscript undergoes
a series of transformations in its appearance aimed at improving the legibility of
the document. This series of transformations is what we call typesetting.

The aim of typesetting is – generally speaking, and leaving aside advertisement-
type texts that seek to attract the reader's attention – to produce documents
with the greatest legibility, meaning the quality of the printed text that invites
or facilitates its reading and ensures that the reader feels comfortable with it.
Many things contribute to this; some, of course, have to do with the document's
contents: (quality, clarity, organisation...), but others depend on things like the
type and dimensions of the font used, the use of white space in the document,
visual separation between paragraphs, etc. In addition, there are other kinds of
resources, not so much of the graphic or visual kind, such as the presence or
otherwise in the document of specific aids to the reader like page headers and
footers, indexes, glossaries, use of bold type, margin headings, etc. The knowledge
and correct handling of all the resources available to a typesetter could be called
the “art of typesetting” or the “art of printing”.

Historically, and until the advent of the computer, the tasks and roles of writer
and typesetter were kept quite distinct. The author wrote by hand or on a 19th
century machine called a typewriter, the typographical resources of which were
even more limited than those who wrote by hand; and then the writer gave the
originals to the publisher or printer who transformed them to obtain the printed
document.

Today, computer science has made it easier for the author to decide on the com
position down to the last detail. However, this does not do away with the fact
that the qualities that a good author needs are not the same as those needed by a
good typesetter. Depending on the kind of document being dealt with, the author
needs an understanding of the subject matter being written about, clarity of ex
position, well-structured thinking that allows for the creation of a well-organised
text, creativity, a sense of rhythm, etc. But the typesetter has to combine a good
knowledge of the conceptual and graphical resources at his or her disposal, and
sufficient good taste to be able to use them harmoniously.

With a good word processing program1 it is possible to achieve a reasonably good
typographically prepared document. But word processors, generally speaking, are

1 According to a rather old convention, we make a distinction between text editors and word proces
sors. The early kinds of text editing programs dealt with unformatted text files, while the other
kind worked with binary files of formatted text.

Chapter 1 ConTEXt: a general overview 18

not designed for typesetting and the results, although they may be correct, are
not comparable to the results obtainable with other tools designed specifically to
control the composition of the document. In fact, word processors are how type
writers evolved, and their use, to the extent that these tools mask the difference
between the authorship of the text and its typesetting, tends to produce unstruc
tured and typographically inadequate texts. On the contrary, tools like ConTEXt
have evolved from the printing press; they offer many more composition possibili
ties and above all, it is not possible to learn how to use them without also acquiring,
along the way, many notions relating to typesetting. This is the difference from
word processors, which someone can use for many years without learning a single
thing about typography.

1.3 Markup languages
In the days before computers, as I said before, the author prepared the manuscript
by hand or typewriter and handed it to the publisher or printer who was responsible
for the transformation of the manuscript into the final printed text. Although
the author had relatively little involvement in the transformation, he or she did
maintain some intervention by pointing out, for example, that certain lines of
the manuscript were the titles of its various parts (chapters, sections ...), or by
indicating that certain things should be highlighted typographically in some way.
These indications were made by the author in the manuscript itself, sometimes
expressly, and at other times through certain conventions that continued to develop
over time. For example, the chapters always began on a new page by inserting
several blank lines before the title, underlining it, writing it in capital letters,
or framing the text to be highlighted between two underscores, increasing the
indentation of a paragraph, etc.

To put it briefly, the author marked up the text in order to provide indications
relating to how it should be typeset. Then later, the editor would handwrite other
indications on the text for the printer, such as, for example, the font to be used,
and its size.

Today, in a computerised world, we can continue to do this to generate electronic
documents through what is called a markup language. These kinds of languages
use a series of marks or indications that the program processing the file containing
them knows how to interpret. Probably the best known markup language today is
HTML, since most web pages today are based on it. An HTML page contains the
text of a web page, along with a series of marks that tell the browser program that
loads the page how it should display it. The HTML markup that web browsers
understand, together with instructions about how and where to use them, is called
the “HTML language”, which is a markup language. But as well as HTML, there
are many other markup languages; in fact they are booming, and so XML, which

Chapter 1 ConTEXt: a general overview 19

is the markup language par excellence, is found everywhere today and is in use
for pretty much everything: for database design, for the creation of specific lan
guages, transmission of structured data, application configuration files, etc. There
are also markup languages intended for graphic design (SVG, TikZ or MetaPost),
maths formulas (MathML), music (Lilypond and MusicXML), finance, geomatics,
etc. And of course there are also markup languages aimed at the typographical
transformation of text, and among these, TEX and its derivatives stand out.

With regard to the typographical markup that indicates how a text should look,
there are two kinds that we can refer to: purely typographical markup and con
ceptual markup or, if you prefer, logical markup. Purely typographical markup
is limited to indicating precisely what typographical resource should be used to
display a certain text; such as when, for example, we indicate that certain text
should be in bold or italics. Conceptual markup, on the other hand, indicates what
function complies with certain text in the document as a whole, such as when we
indicate that something is a title, or a subtitle, or a quote. In general, documents
that prefer to use this second kind of markup are more consistent and easier to
compose, since once again they point out the difference between authorship and
composition: the author indicates that such and such a line is a title, or that such
and such a fragment is a warning, or a quote; and the typesetter decides how to
typographically highlight all titles, warnings or quotations; thus, on the one hand,
consistency is guaranteed, as all the fragments that fulfil the same function will
look the same, and, on the other hand it saves time, because the format of each
type of fragment only needs to be indicated once.

1.4 TEX and its derivatives
TEX was developed towards the end of the 70s by Donald E. Knuth, a professor
(now emeritus professor) of theoretical computer programming at Stanford Uni
versity, who implemented the program to produce his own publications and as an
example of a systematically developed and annotated program. Along with TEX,
Knuth developed an additional programming language called MetaFont, created
for designing typographical fonts, and he used it to design a font he baptised as
Computer Modern, which, along with the usual characters of any font, also in
cluded a complete set of “glyphs”1 designed for writing mathematics. To all this
he added some additional utilities and thus the typesetting system called TEX was
born, which, due to its power, quality of results, flexibility of use and broad pos
sibilities, is considered one of the best computerised systems for text composition.

1 In typography, a glyph is the graphical representation of a character, a number of characters or
part of a character, and is today's equivalent of the letter type (the bit engraved with the letter or
movable type).

Chapter 1 ConTEXt: a general overview 20

It was designed for texts in which there was a lot of mathematics, but it soon
became clear that the system's possibilities made it suitable for all kinds of texts.

Internally, TEX functions in the same way as the former compositors would do in
a print shop. For TEX, everything is a box: The letters are contained in boxes, the
blank spaces are also boxes, several letters (the boxes containing several letters)
form a new box that encloses the word, and several words, along with the blank
space between them, form a box containing a line, several lines become a box
containing the paragraph ... and so on. All this, moreover, with extraordinary
precision in the handling of measurements. Consider that the smallest unit that
TEX deals with is 65.536 times smaller than the typographical point with which
characters and lines are measured, which is usually the smallest unit handled by
most word processing programs. This means that the smallest unit handled by
TEX is approximately 0.000005356 millimetres.

The name TEX comes from the root of the Greek word τϵ́χνη, written in upper
case letters (ΤÉΧΝΗ). Therefore, the final letter of the word TEX is not a Latin
‘X’, but the Greek ‘χ’, pronounced – apparently – like the Scottish ‘ch’ in loch. So
TEX should be pronounced as Tech. This Greek word, on the other hand, meant
both “art” and “technology”, and this is the reason why Knuth chose it to name
his system. The purpose of this name – he wrote – “is to remind you that TEX
is primarily concerned with high quality technical manuscripts. Its emphasis is on
art and technology, as in the underlying Greek word”.

Using the convention established by Knuth, TEX is to be written:

• In typographically formatted texts like this one, using the logo that I have been
using until now: the three letters in upper case, with the central ‘E’ slightly
displaced below to facilitate a closer alignment between the ‘T’ and the ‘X’; or
in other words: “TEX”.

To facilitate the writing of this logo, Knuth included an instruction in TEX for writing it
in the final document: \TeX.

• In unformatted texts (such as an email, or a text file), with the ‘T’ and the ‘X’
in upper case, and the central ‘e’ in lower case; so: “TeX”.

This convention continues to be used in all derivatives of TEX that include its
proper name, as is the case with ConTEXt. When writing it in text mode we need
to write “ConTeXt”.

1.4.1 TEX engines
The TEX program is free libre software: its source code is available to the public
and anyone can use it or modify it as they wish, with the only condition that, if
modifications are made, the result cannot be called “TEX”. This is why, over time,

Chapter 1 ConTEXt: a general overview 21

certain adaptations of the program have emerged, introducing different improve
ments to it, and which are generally referred to as TEX engines. Apart from the
original TEX program, the main engines are, in chronological order of appearance,
pdfTEX, 𝜀-TEX, XƎTEX and LuaTEX. Each of them is supposed to incorporate the
improvements of the previous one. These improvements, on the other hand, up
until the appearance of LuaTEX, did not affect the language itself, but only the
input files, the output files, handling of sources and low level operation of macros.

The question of which TEX engine to use is a much debated one within the TEX universe. I will
not develop this question here since ConTEXt Mark IV only works with LuaTeX. In reality, in
the ConTEXt world, discussion on TEX engines becomes a discussion on whether to use Mark II
(that works with PdfTeX and XeTeX) or Mark IV (that only works with LuaTeX).

1.4.2 Formats derived from TEX
The core or heart of TEX only understands a set of approximately 300 very basic
instructions, called primitives, which are suitable for typesetting operations and
programming functions. The great majority of these instructions are of a very
low level, which, in computer terminology, means that they are more easily un
derstandable by the computer than by human beings, since they concern very
elementary operations of the “shift this character 0.000725 millimetres upward”
kind. Hence Knuth saw that TEX would be extensible, meaning that there should
be a mechanism that allows instructions to be defined at a higher level, more easily
understandable by human beings. These instructions, that are broken down into
other simpler instructions at the time of execution, are calledmacros. For example,
the TEX instruction that prints the (\TeX) logo, is broken down as follows at the
time of execution:

T
\kern -.1667em
\lower .5ex
\hbox {E}
\kern -.125em
X

But for the human being, it is much easier to understand and remember that the
simple command “\TeX” carries out the typographical operations needed to print
the logo.

The difference between what is a macro and what is a primitive, really only has importance
from the perspective of the TEX developer. From the user's perspective they are instructions
or, if you prefer, commands. Knuth called them control sequences.

This possibility of extending the language through macros is one of the character
istics that turned TEX into such a powerful tool. In fact, Knuth himself created
approximately 600 macros that, along with the 300 primitives, make up the format

Chapter 1 ConTEXt: a general overview 22

called “Plain TEX”. It is quite common to confuse TEX properly so called, with
Plain TEX and, in fact, almost everything usually written or said about TEX, is
really a reference to Plain TEX. Books that claim to be about TEX (including the
foundational “The TEXBook”), really refer to Plain TEX; and those who believe
they are directly working with TEX are in reality working with Plain TEX.

Plain TEX is what, in TEX terminology, is called a format, consisting of a broad
set of macros, together with certain rules of syntax concerning how and in what
way to use them. As well as Plain TEX, with the passing of time other formats
have been developed, among which it is worth mentioning LATEX, a broad set of
macros for TEX created in 1985 by Leslie Lamport and which is probably the
TEX derivative that is most in use in the academic, technological and mathematical
world. ConTEXt is (or has begun to be), on a par with LATEX as a format derived
from TEX.

Normally these formats are accompanied by a programme that loads the macros
that make them up into memory before calling on “tex” (or the actual engine
being used for processing) to process the source file. But even though all these
formats are actually running TEX, as each of them has different instructions and
different syntax rules from the user's point of view, we can think of them as different
languages. They all draw their inspiration from TEX, but are different from TEX
and also different from each other.

1.5 ConTEXt
In reality ConTEXt, which started out as a format of TEX, is much more than that
today. ConTEXt includes:

1. A very broad set of TEX macros. If Plain TEX has around 900 instructions,
ConTEXt has around 3500; and if we add up the names of the different options
that these commands support, we are talking about a vocabulary of around
4000 words. The vocabulary is this large because of the ConTEXt strategy to
facilitate its learning, and this strategy means the inclusion of any number of
synonyms for commands and options.

The intention is that if a certain effect is to be achieved, then for each of the ways an
English speaker would call that effect there is a command or option that achieves it –
which is supposed to make the use of the language easier. For example, to simultaneously
get a bold and italic letter, ConTEXt has three instructions all of which achieve the same
result: \bi, \italicbold and \bolditalic.

2. A likewise broad set of macros for MetaPost, a graphical programming language
derived from MetaFont, which in turn is a language for typeface design that
Knuth developed jointly with TEX.

Chapter 1 ConTEXt: a general overview 23

3. Various scripts developed in Perl (the oldest), Ruby (some also old, others
not so old) and Lua (the most recent).

4. An interface that integrates TEX, MetaPost, Lua and XML, allowing one to
write and process documents in any of these languages, or to mix elements
from some of them.

Perhaps you did not understand much of the previous explanation? Don't worry about it. I
used a lot of computer jargon in it and mentioned many programs and languages. It is not
necessary to know all the different components to use ConTEXt. The important thing, at this
stage of learning, is to stay with the idea that ConTEXt integrates many tools from different
sources that together make up a typesetting system.

It is because of this latter feature of integration of tools with different origins, that
we say that ConTEXt is a “hybrid technology” intended for typesetting documents.
My understanding is that this turns ConTEXt into an extraordinarily advanced and
powerful system.

Even though ConTEXt is much more than a collection of macros for TEX, it con
tinues to be based on TEX, and this is why this document, that I claim to be no
more than an introduction, focuses on this.

ConTEXt, on the other hand, is rather more modern than TEX. When TEX was
created, the emergence of computers was just at the beginning, and we were far
from seeing what the internet and the multimedia world would be (would become).
In this respect, ConTEXt naturally integrates some of the things that have always
been something of a foreign body in TEX such as including external graphics,
handling colour, hyperlinks in electronic documents, assuming a paper size suitable
for a document intended for display on a screen, etc.

1.5.1 A short history of ConTEXt
ConTEXt was born approximately in 1991. It was created by Hans Hagen and
Ton Otten in a Dutch document design and processing company called “Pragma
Advanced Document Engineering”, usually abbreviated as Pragma ADE. It began
by being a collection of TEX macros that had Dutch names and was unofficially
known as Pragmatex, aimed at the company's non-technical employees who had
to manage the many details of editing typeset documents and who were not used
to using markup languages or interfaces other than Dutch. Hence the first version
of ConTEXt was written in Dutch. The idea was to create a sufficient number of
macros with a uniform and consistent interface. Approximately in 1994 the package
was stable enough for a user manual to be written in Dutch, and in 1996, through
the initiative of Hans Hagen, reference to it began taking on the name “Con
TEXt”. This name claims to mean “Text with TEX” (using the Latin preposition
‘con’ meaning ‘with’), but at the same time a wordplay on the English (and Dutch)

Chapter 1 ConTEXt: a general overview 24

word “Context”. Behind the name, therefore, lies a triple play on words involving
“TEX”, “text” and “context”.

Therefore, since the name is based on wordplay, ConTEXt should be pronounced ‘context’ and
not ‘contecht’ since this would mean losing the play on words.

The interface began to be translated into English approximately in 2005, giving
rise to the version known as ConTEXt Mark II, where the ‘II’ is explained because
in the mind of the developers, the previous version in Dutch was Version ‘I’, even
though it was never officially called that. After the interface was translated into
English, the use of the system began to spread beyond the Netherlands, and the
interface was translated into other European languages such as French, German,
Italian and Romanian. The “official” documentation for ConTEXt, nevertheless, is
normally based on the English version, and this is the version this document works
with.

In its initial version, ConTEXt Mark II worked with the PdfTeX TEX engine. But
later, at the appearance of the XƎTEX engine, ConTEXt Mark II was modified
to allow the use of this new engine that contributed a number of advantages by
comparison with PdfTeX. But when LuaTEX came along some years later, the
decision was made to internally reconfigure how ConTEXt functioned in order to
integrate all the new possibilities that this new engine offered. And so, ConTEXt
Mark IV was born, and it was presented in 2007, immediately after the presen
tation of LuaTEX. Very probably, one of the influencing factors in the decision
to reconfigure ConTEXt to adapt it to LuaTEX was that two of the three main
developers of ConTEXt, Hans Hagen and Taco Hoekwater, were also part of
the main team developing LuaTEX. This is why ConTEXt Mark IV and LuaTEX
were born at the same time and developed in unison. There is a synergy between
ConTEXt and LuaTEX that does not exist in any other derivative of TEX; and I
doubt that any of the others can avail themselves of the advantages of LuaTEX as
ConTEXt can.

There are many differences between Mark II and Mark IV, although most of them
are internal, that is, they have to do with how the macro actually works at a lower
level, such that from the user's perspective the differences are not noticeable: the
name and parameters of the macro remain the same. There are, however, some
differences that affect the interface and force one to do things differently depending
on which version one is working with. These differences are relatively few, but they
do affect very important aspects such as for example, the coding of the input file,
or the handling of fonts installed in the system.

It would, however, be very welcome if somewhere there were a document that explained (or
listed) the appreciable differences between Mark II and Mark IV. In the ConTEXt wiki, for
example, for each ConTEXt command there are two kinds of syntax (very often identical). I
presume one belongs to Mark II and the other to Mark IV; and based on this assumption, I also

Chapter 1 ConTEXt: a general overview 25

presume that the first version is from Mark II. But the truth is that the wiki tells us nothing
about this.

The fact that the differences, at a language level, are relatively few, means that
on many occasions rather than speaking of two versions we are talking about two
“flavours” of ConTEXt. But whether you call them one or the other, the fact is
that a document prepared for Mark II cannot normally be compiled with Mark IV
and vice versa; and if the document mixes both versions, it will most likely not
compile well with either of them; which implies that the author of the source file
has to start by deciding whether to write for Mark II or for Mark IV.

If we work with the different versions of ConTEXt, a good trick for differentiating at first sight
between files intended for Mark II and those intended for Mark IV is to use a different extension
for the file names. Thus, for example, for any files I have written for Mark II, I put “.mkii”
as the extension, and “.mkiv” instead for those written for Mark IV. It is true that ConTEXt
expects all source files to have the extension “.tex”, but we can change the file extension as
long as we expressly indicate the file extension when applying ConTEXt to the file.

The ConTEXt distribution installed on the wiki, “ConTEXt Standalone”, includes
both versions, and to avoid confusion – I assume – uses a different command for
each of them to compile a file. Mark II compiles with the command “texexec”
and Mark IV with the command “context”.

In fact both commands, “context” and “texexec”, are scripts with different options that run
“mtxrun”, which in turn is a Lua script.

Today, Mark II is frozen and Mark IV continues to be developed, which means that
new versions of the former are only published when errors or faults are discovered
that need to be corrected, while new versions of Mark IV continue to be published
regularly; sometimes two or three times a month, even though in most of these
cases the “new versions” do not introduce perceptible changes in the language but
are limited to somehow improving implementation of a command at low level, or
updating some of the many manuals included with the distribution. Even so, if we
have installed the development version – which is what I would recommend and
which is the one installed by default with “ConTEXt Standalone” – it makes sense
to update our version from time to time (See Appendix A for the way of updating
the installed version of “ConTEXt Standalone”).

.LMTX and other alternative implementations of Mark IV

The developers of ConTEXt are naturally restless, and therefore have not ceased development
of ConTEXt with Mark IV; new versions are still being tested and experimented with, although
in general these differ from Mark IV in very few ways, and do not have the incompatibility in
compiling that exists between Mark IV and Mark II.

Thus, certain minor variants of Mark IV called, respectively, Mark VI, Mark IX and Mark XI
have been developed. Of these, I have only been able to find a small reference to Mark VI in
the ConTEXt wiki where it says that the only difference with Mark IV lies in the possibility of

Chapter 1 ConTEXt: a general overview 26

defining commands by assigning the parameters not a number, as is traditional in TEX, but a
name, as is usually done in almost all programming languages.

More important than these small variations, I believe, is the appearance in the ConTEXt universe
(ConTEXtverse?) of a new version called LMTX, a name which is an acronym of LuaMetaTeX:
a new TEX engine that is a simplified version of LuaTEX, developed with a view to saving
computer resources; which means that LMTX requires less memory and less processing power
than ConTEXt Mark IV.

LMTX was presented in spring 2019 and one assumes that it will not imply any external change
to the Mark IV language. For the author of the document there would be no difference at the
time of working with it; but when compiling it, one would need to choose between doing so
with LuaTEX, or doing so with LuaMetaTeX. In Appendix A, relating to the installation of Con
TEXt, a procedure is shown for assigning a different command name to each of the installations
(section 3).

1.5.2 ConTEXt versus LATEX
Given that the most popular format derived from TEX is LATEX, a comparison
between this and ConTEXt is inevitable. Clearly we are talking about different
languages although in some way related to each other since they both derive from
TEX; the relationship is similar to that which exists, for example, between Spanish
and French: languages that have a common origin (Latin) which means that their
syntax is similar and many of the words in each of these languages is mirrored by
a word in the other. But apart from this family resemblance, LATEX and ConTEXt
differ in their philosophy and implementation, since the initial aims of both, are, to
some degree, the opposite. LATEX claims to facilitate the use of TEX, isolating the
author from the concrete typographical details to help focus on content, leaving
the typesetting details in the hands of LATEX. This means that simplifying the use
of TEX takes place at the expense of limiting the immense flexibility of TEX, by
predefining basic formats and limiting the number of typographical issues that the
author has to decide on. In contrast to this philosophy, ConTEXt was born within
a company dedicated to typesetting documents. Therefore, far from wanting to
isolate the author from typesetting details, the aim is to give the author absolute
and complete control over them. To achieve this, ConTEXt provides a uniform and
consistent interface which is much closer to the original spirit of TEX than LATEX.

This difference in philosophy and founding objectives then translates, in turn,
into a difference in implementation. LATEX, that tends to simplify things as much
as possible, does not need to use all of TEX's resources. In some way, its core is
rather simple. So when there is a need to broaden its possibilities, it is necessary to
expressly write a package to do so. This packaging associated with LATEX is both a
virtue and a defect: a virtue, because the tremendous popularity of LATEX, together
with the generosity of its users, means that almost any need we are likely to have
has been met by someone before, and that there is a package to achieve it; but it is
also a defect because these packages are often incompatible with each other, and

Chapter 1 ConTEXt: a general overview 27

their syntax is not always uniform. This means that working with LATEX requires
one to constantly be searching through thousands of already existing packages to
fulfil one's needs and ensure that they all work together.

By contrast with the simplicity of the LATEX core, which is complemented by its
extensibility through packages, ConTEXt is designed to have within it all – or
almost all – the typographical possibilities of TEX, so its conception is much more
monolithic, but at the same time it is also more modular. The ConTEXt core
allows us to do almost everything, and we are guaranteed that there will be no
incompatibilities between its different utilities, no need to investigate extensions
for what we need, and the syntax of the language does not change just because we
need a particular utility.

It is true that ConTEXt has what are called extension modules that some might
consider as carrying out a function similar to the LATEX packages, but in real terms
they both work differently: ConTEXt modules are designed exclusively to include
additional utilities that, because they are still in an experimental stage, have not
yet been incorporated into the core, or to allow access to extensions authored by
someone outside the ConTEXt development team.

I do not believe that either one of these two philosophies is preferable to the other.
The question depends rather on the user's profile and what he or she wants. If
the user does not want to deal with typographical issues but simply produce very
high quality standardised documents, it would probably be preferable to opt for
a system like LATEX; on the other hand, the user who likes to experiment, or who
needs to control every last detail of the document, or someone who has to devise
a special layout for a document, would probably be better off using a system like
ConTEXt, where the author has all the control in their hands; with the risk, of
course, of not knowing how to use this control correctly.

1.5.3 A good understanding of the dynamics of
working with ConTEXt

When we work with ConTEXt, we always begin by writing a text file (which we
call a source file), in which, along with the actual content of our final document,
we will include the instructions (in ConTEXt-speak) that indicate exactly how we
want the document to be formatted: the general appearance we want its pages
and paragraphs to have, the margins we want to apply to certain paragraphs, the
font we want to display, the snippets we want shown in a different font, etc. Once
we have written the source file, we apply the “context” program from a terminal,
which will process it, and will generate a different file from it in which the contents
of our document will be formatted in accordance with the instructions included
in the source file for this purpose. This new file could be sent to a (commercial)
printer, displayed on screen, placed on the internet or distributed among contacts,

Chapter 1 ConTEXt: a general overview 28

friends, clients, teachers, pupils ... or in other words, to anyone for whom we wrote
the document.

This means that when working with ConTEXt the author is working with a file
whose appearance has nothing to do with the final document: the file the author
is directly working on is a text file that is not formatted typographically. So Con
TEXt works in a different way than do programs known as word processors that
show the final appearance of the edited document at the same time we are writing
it. For those accustomed to word processors, the way of working with ConTEXt
will initially feel strange, and it may even take some time to get used to it. How
ever, once one gets used to it, one understands that in reality this other way of
working, differentiating between the work file and the final result, is actually an
advantage for many reasons, among which I will highlight here, without following
any particular order, the following:

1. Because text files are ‘lighter’ to handle than word processor binary files,
and editing them requires less computer memory, they are less likely to be
corrupted, and they do not become unintelligible when we change the version
of the program we are creating them with. They are also compatible with
any operating system, and can be edited with many text editors, so that
in order to work with them it is not necessary for the computer system to
have the program the file was created with installed on it: any other editing
program will do; and in every computer system there is always some text
editing program.

2. Because differentiating between the working document and the final document
helps to distinguish what the actual content of the document is from what its
appearance will be, allowing the author to concentrate on the content in the
creation phase, and to focus on the appearance in the typesetting phase.

3. Because it allows one to quickly and accurately change the appearance of the
document, since this is determined by ConTEXt commands that can be easily
identified.

4. Because this facility for changing the appearance, on the other hand, allows
us to easily generate two (or more) different versions from a single content:
Perhaps one version optimised for printing on paper, and another designed to
be displayed on screen, adjusted to the size of the latter and perhaps including
hyperlinks that make no sense in a paper document.

5. Because typographical errors (typos) that are common in word processors,
such as extending the italics beyond the last character of a word, are also
easily avoided.

6. Because while the work file is not distributed and is ‘for our eyes only’, it is
possible to incorporate annotations and observations, comments and warnings

Chapter 1 ConTEXt: a general overview 29

for ourselves for subsequent revisions or versions, with the peace of mind in
knowing that these will not appear in the formatted file to be distributed.

7. Because the quality that can be obtained by processing the whole document
simultaneously is much higher than that which can be achieved with a program
that has to make typographical decisions as the document is being written.

8. Etcetera.

All of the above means that on the one hand when working with ConTEXt, once
we have got the hang of it, we are more efficient and productive, and that on the
other hand, the typographical quality we can obtain is much superior to what can
be obtained with so-called word processors. And although it is true that the latter
are easier to use, in point of fact they are not that much easier to use. Because
while it is true that ConTEXt, as we have said before, contains 3500 instructions,
a normal user of ConTEXt will not need to know them all. To do what is usually
done with word processors, we only need to know the instructions that allow us
to indicate the structure of the document, a few instructions concerning common
typographical resources, such as bold or italics, and perhaps how to generate a list,
or a footnote. In total, no more than 15 or 20 instructions will allow us to do almost
all the things that are done with a word processor. The rest of the instructions
allow us to do different things that we normally cannot do with a word processor,
or are very difficult to achieve. We can say that while learning to use ConTEXt is
more difficult than learning to use a word processor, this is because we can do a
lot more with ConTEXt.

1.5.4 Getting help with ConTEXt
While we are new to it, the best place for getting help with ConTEXt is, un
doubtedly, on the wiki, which abounds in examples and has a good search engine,
especially if one understands English well. We can also find help on the internet,
of course, but here the play on words in the name ConTEXt will play tricks on
us because searching on the word “context” will return millions of results most of
which will have nothing to do with what we are looking for. To find information on
ConTEXt you need to add something to the word “context”; for example, “tex”, or
“Mark IV” or “Hans Hagen” (one of the creators of ConTEXt) or “Pragma ADE”,
or something similar. It could also be useful to seek information using the wiki
name: “contextgarden”.

When we have learned something more about ConTEXt, we can consult some of
the many documents included in “ConTEXt Standalone”, or even seek help in TeX
– LaTeX Stack Exchange, or on the mailing list for ConTEXt (NTG-context). The
latter involves the people who know the most about ConTEXt, but the rules of
good cyber-etiquette demand that before asking a question, we should have tried
hard beforehand to find the answer ourselves.

https://www.contextgarden.net/
https://tex.stackexchange.com/
https://tex.stackexchange.com/
https://mailman.ntg.nl/mailman/listinfo/ntg-context

30

Chapter 2
Our first source file

Table of Contents: 2.1 Preparing the experiment: essential tools; 2.2 The
experiment itself; 2.3 The structure of our example file; 2.4 Some additional
details on how to run “context”; 2.5 Managing errors;

This chapter is dedicated to our first experiment, and will explain the basic struc
ture of a ConTEXt document, as well as the best strategies for dealing with poten
tial errors.

2.1 Preparing the experiment:
essential tools

To write and compile a first source file, we need the following tools to be installed
on our system.

1. A text editor for writing our test file. There are many text editors around and
it is difficult to think of an operating system that does not already have one
installed. We can use any of them: there are simple ones, more complex ones,
more powerful ones, some you pay for, some free (as in gratis), some free (as
in libre), some which specialise in TEX systems, others of a general nature, etc.
If we are used to handling a particular editor, we would do better to continue
working with it; if we are not used to working with one up to this point, my
advice, initially, is to find a simple editor so as not to add the task of learning
how to use a text editor to the difficulty of learning ConTEXt. Although it is
true that often the most difficult programs to learn are the ones that are the
most powerful.

I have written this text with GNU Emacs, which is one of the most powerful
and versatile general purpose editors in existence; it is true that it has its pecu
liarities and also its detractors, but in general there are more “Emacs-lovers”
than “Emacs-haters”. There is a GNU Emacs extension called AucTeX for
working with TEX files or one of its derivatives, which provides the editor with
some very interesting additional utilities, although AucTeX is in general better
prepared to work with LATEX than with ConTEXt files. GNU Emacs in com
bination with AucTeX could be a good option if we don't know which editor

Chapter 2 Our first source file 31

to choose; both are software libre programs, and so there are versions of them
for all operating systems. In fact, saying that GNU Emacs is software libre
is an understatement, since this program embodies better than any other the
spirit of what free software is and means. In the end, its main developer was
Richard Stallman founder and ideologue of the GNU project and the Free
Software Foundation.

As well as GNU Emacs + AucTeX, other good options, if you do not know
which to choose, are Scite and TexWorks. The former, even though a general
purpose editor not specifically designed for working with ConTEXt files, is easily
customised and, as it is the editor that ConTEXt developers generally use,
“ConTEXt Standalone” contains the configuration files for this editor, written
byHans Hagen himself. TexWorks, on the other hand, is a fast text editor and
specialises in handling TEX files and those of its derivative languages. It is quite
simple to configure it for working with ConTEXt and “ConTEXt Standalone”
also envisages its configuration.

Whatever the editor, the one thing we must not use as a text editor is a
word processor like, for example, OpenOffice Writer or Microsoft Word. These
programs, also too slow and heavy in my opinion can, if it is expressly indicated,
save a file as ‘text only (txt)’, but they were not designed for this and we will
most likely end up saving our file in some binary format that is incompatible
with ConTEXt.

2. A ConTEXt distribution for processing our test file. If there is already a TEX
(or LATEX) installation on our system, it is possible that there is already a
version of ConTEXt installed. To test this, it is enough to open a terminal and
type

$> context --version

NOTE for those who are new to handling terminals, the first two characters I have written
(“$>”) do not need to be written in the terminal. I have simply represented what is called
the terminal prompt; the little blinking sign that indicates that the terminal is awaiting
instructions.

If there is already a version of ConTEXt installed, something like the following
will appear:

mtx-context | ConTeXt Process Management 1.03
mtx-context |
mtx-context | main context file: /home/jq/context/LMTX/tex/texmf-context/

| tex/context/base/mkiv/context.mkiv
mtx-context | current version: 2020.04.30 11:15
mtx-context | main context file: /home/jq/context/LMTX/tex/texmf-context/

| tex/context/base/mkiv/context.mkxl
mtx-context | current version: 2020.04.30 11:15

Chapter 2 Our first source file 32

The last line informs us of the date when the installed version was released.
If this is too old, we should either update it or install a new version. I recom
mend the installation of the distribution called “ConTEXt Standalone” whose
installation instructions can be found on the ConTEXt wiki. You can find a
summary of all this in Appendix A .

3. A reader for PDF files, so we can see the result of our experiment on
screen. In Windows and Mac OS there is always Adobe Acrobat Reader. It
is not installed by default (or wasn't when I ceased using Microsoft Windows
more than 15 years ago), but it does so the first time you try to open a PDF file
so it is most likely that it is already installed. Linux/Unix systems do not have
a current version of Acrobat Reader, but nor do you need it since there are
literally dozens of free and very good PDF readers available. Besides, there is
almost always one of them installed by default on these systems. My favourite,
for speed and ease of use, is MuPDF; although it has some drawbacks if you
are using languages other than English with accented characters, and it does
not allow you to select text or send a document to the printer; it is simply a
reader; but it is very fast and comfortable to use. When I need some of the
facilities that don't work in MuPDF, I usually use either Okular, or qPdfView.
But again, it is a matter of taste: one can choose whatever one prefers.

We can choose our editor, our PDF reader, our ConTEXt distribution ... Welcome
to the world of free libre software!

2.2 The experiment itself
Writing the source file

If the tools mentioned above are already available, we need to open our text editor
and create a file with it that we will call “rain.tex”. We will write what follows as
the contents of this file:

https://www.contextgarden.net/

Chapter 2 Our first source file 33

% First line of the document

\mainlanguage[en] % Language = English

\setuppapersize[S5] % paper size

\setupbodyfont
[modern,12pt] % Font = Latin Modern, 12 point

\setuphead % Format of chapters
[chapter]
[style=\bfc]

\starttext % Begin document contents

\startchapter
[title=The rain in Spain...]

How kind of you to let me come.
Now once again, where does it rain?
On the plain, on the plain.
And where's that blasted plain?
In Spain, in Spain.
The rain in Spain stays mainly in the plain.
The rain in Spain stays mainly in the plain.

\stopchapter

\stoptext % End of document

While writing it, it does not matter if anything changes, especially if adding or
removing white space or line breaks. What is important is that the words following
the “\” are written exactly as they are, as well as the contents inside the curly
brackets. There can be variations in the rest.

The file's character encoding

Once we have written what is above, we save the file on disk, making sure the
character encoding is UTF-8. This character encoding is today's standard. In any
case, if we are not sure, we can see the encoding from the text editor itself, and
can change it if we need to. How to do so obviously depends on the text editor
we are using. In GNU Emacs, for example, by clicking on both the CTRL-X keys
at once, then Return followed by ‘f’, in the last line in the window (which GNU
Emacs calls a mini-buffer) a message will appear asking us for the new encoding
and telling us what the current encoding is. In other editors we can usually access
the encoding in the “Save as” menu.

Chapter 2 Our first source file 34

Once we have checked that the encoding is correct, and have saved the file on disk,
we close the editor and focus on analysing what we have written.

A look at the contents of our first source file written for
ConTEXt

The first line begins with the “%” character. This is a reserved character telling
ConTEXt not to process the text between that character and the end of the line
where it is found. This helps when we want to write a comment on the source
file that only the author can read, since it does not become part of the final
document. In this example I have used this character to call attention to certain
lines, explaining what it is they do.

The lines that follow begin with the “\” character, another of ConTEXt's reserved
characters indicating that what follows it is the name of a command. This example
shows a number of the commands found in a ConTEXt source file: the language the
document is written in, the paper size, the font that will be used in the document
and the way the chapters are to be formatted. Further on in other chapters we will
see the details of these commands, but for the moment I am only interested in the
reader seeing what they look like: they always begin with the “\”, then comes the
command name, and then, between curly brackets (otherwise known as braces, but
we will use curly brackets in this document to make the difference clear) or square
brackets, depending on the situation, the data the command needs to produce its
effects. Between the name of the command and the square or curly brackets that
accompany it, there may be blank spaces or line breaks.

On the 9th line of our example (I am only counting lines with some text in them)
is the important \starttext command: it tells ConTEXt that the document's
contents start from this point onwards; and, on the last line of our example, we
see the command \stoptext that says this is where the document ends. They are
two very important commands about which I will soon have more to say. Between
them lies the actual contents of our document that, in our example, consists of the
famous dialogue from “My Fair Lady” “The Rain in Spain...”. I have written it in
prose form so we can see how ConTEXt formats the paragraph.

Processing the source file

For the next step, after making sure that ConTEXt is properly installed on our
system, we need to open a terminal in the same directory that our source file
“rain.tex” has been saved in.

Many text editors allow us to compile the document we have been working on without the
need to open a terminal. However, the canonical procedure for processing a document with
ConTEXt implies doing it from a terminal, by directly executing the program. I am going to do
it this way (or presume that it is done this way) throughout this document for various reasons;

Chapter 2 Our first source file 35

the first is that I cannot know what text editor the reader is using. But the most important
one is that by using a terminal, we will have access to the screen output from “context” and
can see the messages coming from the program.

If the ConTEXt distribution that we have installed is “ConTEXt Standalone”, before
anything else we need to execute the script that tells the terminal the path and
location of the files ConTEXt needs to be able to run. In Linux/Unix systems, this
is done by writing the following command:

$> source ~/context/tex/setuptex

assuming we have installed ConTEXt in a directory called “context”.

With regard to the execution of the script we have just spoken about, see what it says in
Appendix A in relation to the installation of “ConTEXt Standalone”.

Once the variables required to run “context” have been loaded into memory, we
can then run it. We do this by typing

$> context rain

in the terminal. Note that although the source file is called “rain.tex”, when
calling “context” we have omitted the file extension. Had we called the source
file, for example, “rain.mkiv” (something I usually do so I can tell that this
file was written for Mark IV), we would have had to expressly indicate the file
extension by writing “context rain.mkiv”.

After running “context” in the terminal, a few dozen lines will appear on the
screen telling us what ConTEXt is doing. This information appears with a speed
that a human being cannot follow, but we should not worry about this, since as well
as being on screen, the same information is also stored in an auxiliary file, whose
extension is “.log”. This is generated at the time of processing and if necessary
we can calmly consult it later.

A few seconds later, if we have written the text in our source file without making
any serious errors, the terminal messages will end. The last of the messages will
tell us how long it took to compile the file. A little more time is need the first
time a document is compiled, since ConTEXt has to load into memory any files
telling it what fonts are being used, while for further processing these are already
loaded. When the final message appears telling us the time taken, the processing
is complete. If everything has gone well, the directory in which we ran “context”
will now contain three additional files:

• rain.pdf
• rain.log
• rain.tuc

Chapter 2 Our first source file 36

The first of these is the result of our processing, or in other words it is the resulting
formatted PDF. The second is the “.log” file storing all the information shown
on screen while the file was being processed; the third is an auxiliary file that
ConTEXt generates while compiling and that is used for building indexes and
cross-references. For now, if everything has gone as expected, we can delete both
files (rain.log and rain.tuc). If there was any problem the information in these
files will help us find out where it is and will help us find a solution.

If we did not get these results, this is probably due to:

• either not having correctly installed our ConTEXt distribution, and in this case,
when writing the “context” command in the terminal, we would have seen the
message “command unknown”.

• or our file was not encoded as UTF-8 and this generated a processing error.
• or perhaps the ConTEXt installed on our system was Mark II. In this version

we cannot use UTF-8 encoding without expressly indicating it in the source
file. We could adjust the source file so that it compiles properly but, given that
this introduction refers to Mark IV, it makes no sense to continue working with
Mark II: it would be best for us to install “ConTEXt Standalone”.

• or we have made an error in the source file when writing a command name or
the data associated with it.

If, after running “context” the terminal began emitting messages, then stopped without the
prompt reappearing, before continuing we need to press CTRL-X to abort the ConTEXt run
that has been interrupted by an error.

We then need to check what has happened, and resolve it, until we get a correct
compilation.

In figure 2.1 we see the contents of “rain.pdf”. We also see that ConTEXt has
numbered the page and the chapter, and has written the text in the font we
indicated. There does not happen to be any hyphenation of words in this case but
by default ConTEXt will hyphenate words at the end of a line in accordance with
the hyphenation rules of the language chosen, and in our case the first line of our
source file indicates (\mainlanguage[en]).

To sum up: ConTEXt has transformed the source file and generated a file where we
have a document formatted according to the instructions in the source file. Any
comments in that have disappeared, and as far as commands are concerned, what
we have now is not their name but the results of their being executed.

2.3 The structure of our example file
In a project developed in just a single source file, the structure is very simple
and marked by the commands \starttext ... \stoptext. Everything between the

Chapter 2 Our first source file 37

1

1 The Rain in Spain...

How kind of you to let me come. Now once again, where does it
rain? On the plain, on the plain. And where’s that blasted plain?
In Spain, in Spain. The rain in Spain stays mainly in the plain. The
rain in Spain stays mainly in the plain.

Figure 2.1 The rain in Spain...

first line of the file and the command \starttext is called the preamble. The
contents of the actual document are inserted between the commands \starttext
and \stoptext. In our example the preamble includes three global configuration
commands: one to indicate the language of our document (\mainlanguage), an
other to indicate the size of the pages (\setuppapersize) which is “S5” in our
case, representing the dimensions of a computer screen, and a third command
(\setuphead) which allows us to configure what the chapter titles look like.

The body of the document is framed between the commands \starttext and
\stoptext. These commands indicate the beginning and end points of the process
able text respectively: between them we need to include all the text we want Con
TEXt to process, along with commands that should not affect the whole document
but only parts of it. For now let us assume that the commands \starttext and
\stoptext are obligatory in every ConTEXt document, even though further on,
when speaking about multifile projects (section 4.6) we will see that there are some
exceptions to this.

Chapter 2 Our first source file 38

2.4 Some additional details on how to run
“context”

The “context” command with which we began processing our first source file
earlier is really a Lua script, meaning a small Lua program that, after performing
some checks, calls on LuaTeX, since this is what processes the source file.

We could call “context” with various options. The options are introduced imme
diately after the command name, preceded by two dashes. If we wish to introduce
more than one option, we separate them with a space. The “help” option gives us
a list of all the options, with a brief explanation of each:

$>context --help

Some of the more interesting options are as follows:

interface: As I already said in the introductory chapter, the ConTEXt inter
face has been translated into various languages. By default the interface is in
English, however this option allows us to tell it to use Dutch (nl), French (fr),
Italian (it), German (de) or Romanian (ro).

purge, purgeall: Delete the auxiliary files generated during processing.

result=Name: Indicates the name that the resulting PDF file should have. By
default it will be the same as the source file being processed, with the extension
.PDF.

usemodule=list: Load the modules indicated before running ConTEXt (a module
is an extension of ConTEXt that is not part of its core, and that provides some
additional utility).

useenvironment=list: Load the environment files indicated before running Con
TEXt (an environment file is a file with configuration instructions).

version: Show the ConTEXt version.

help: print help information on program options.

noconsole: Suppress sending messages to the screen during compilation. However,
these messages are still saved in the .log file.

nonstopmode: Carry out the compilation without stopping when there are errors.
this does not mean that the error is not produced, but that when ConTEXt
encounters an error, even one it can recover from, it will continue compiling
till the end or until it encounters an error it cannot recover from.

Chapter 2 Our first source file 39

batchmode:A combination of the two previous options. It runs without interruption
and omits any screen messages.

In the early steps of learning ConTEXt I do not think it is a good idea to use the
last three options since when an error is produced, we will have no clue as to where
it is or what has produced it. And believe me, dear readers, sooner or later you
will have an error during processing.

2.5 Managing errors
While working with ConTEXt it is inevitable that sooner or later there will be
some errors during processing. We can basically group the errors into these four
categories:

1. Writing errors. These are produced when we make a mistake with the com
mand name. In this case we will be sending the compiler an order it does not
understand. Such as when, for example, instead of writing the command \TeX
we write \Tex with a final lower case ‘x’, given that ConTEXt differentiates
between upper case and lower case and therefore sees “TeX” and “Tex” as
different words; or if the functioning options of a command are placed inside
square brackets instead of curly brackets, or if we try to use reserved characters
as if they were normal characters, etc.

2. Errors of omission. In ConTEXt there are instructions that begin a task that
require that we also explicitly indicate when it ends; like the reserved character
$ that enables the maths mode which continues until it is disabled, and if we
forget to disable it, an error is generated when a text or instruction that makes
no sense in maths mode is encountered. And the same if we begin a text
block with the reserved ‘{’ character or with a \startSomething command
and further on the explicit closing ‘}’ or \stopsomething command is not
found.

3. Conception errors. This is what I call errors produced when a command is
called that requires certain arguments but they are not provided, or when the
syntax that calls the command is incorrect.

4. Situation errors. There are some commands that are designed to work only in
certain contexts or environments, and are not recognised outside of them. This
happens especially in the maths mode: some ConTEXt commands only work
when writing mathematical formulas and if called in another environment they
generate an error.

What do we do when “context” warns us, while processing, that an error has been
produced? The first thing, obviously, is to determine what the error is. For that we

Chapter 2 Our first source file 40

need to analyse the “.log” file generated during processing; although sometimes
this is not necessary, since the error is of such a kind that it has immediately
forced processing to stop, in which case the error message will be visible in the
same terminal where we have run “context”.

3 \setuppapersize % Paper size
4 [S5]
5
6 \setupbodyfont
7 [modern,12pt] % Main font
8
9 \setuphead % Chapter titles in bold
10 [chapter]
11 [style=\bfc]
12
13 >> \startext % Begin the document
14
15 \startchapter[title=The rain in Spain]
16
17 How kind of you to let me come.
18 Now once again, where does it rain?
19 On the plain, on the plain.
20 And where's that blasted plain?
21 In Spain, in Spain.
22 The rain in Spain stays mainly in the plain.
23 The rain in Spain stays mainly in the plain.

mtx-context | fatal error: return code: 256

Figure 2.2 Screen output in the case of a compilation error

For example, if in our test file, “rain.tex”, by mistake, instead of \starttext
we had written \startext (with only one ‘t’), a very common mistake, when
running “context rain” the processing will stop and in the terminal we can see
the information shown in figure 2.2. There we can see that the lines of our source
file are numbered, and in one of them, in this case number 13, between the number
and the line of text, the compiler has added “>>” to indicate that this is the line
where it has found an error. The file “rain.log” will give us more clues. In our
example it is not such a big file, since the source being compiled is much reduced;
in other cases it might contain an overwhelming amount of information. But we
must dive into it. If we open “rain.log” with a text editor we will see that it has
stored everything that ConTEXt is doing. We need to find a line there that begins
with an error warning and for this we can use the text editor's search function.
We will be looking for “tex error”, and that will bring us to the following lines:

tex error > tex error on line 13 in file |
/home/jq/context/docs/rain.tex: ! Undefined control sequence

l.13 \startext
% Begin the document

Note: The first line telling us about the error in the “rain.log” file is very long. To make
it look good, bearing in mind the width of the page, I have split it in two. The character ‘|’
shows the point where I have split it.

Chapter 2 Our first source file 41

If we pay attention to the three lines of the error message, we see that in the first
it tells us what line number has produced the error (line 13) and what kind of
error it is: “Undefined control sequence”, or, which is the same thing: unknown
control sequence, in other words, unknown command. The two following lines of
the log file show us line 13, split at the point that produced the error. So there
is no doubt that the error lies in \startext. We read it carefully and with luck
and experience, we will realise that we have written “startext” and not “starttext”
(with a double ‘t’).

Think of the fact that computers are very good and very fast at carrying out
instructions, but very slow at reading our mind, and the word “startext” is not
the same as “starttext”. The program knows how to execute the latter, not the
former. It does not know what to do with that.

At other times, finding the error will not be so easy. Especially when the error
consists of the fact that something has begun but where it must end has not been
indicated. At times, instead of searching for “tex error” in the “.log” file, we
should be looking for an asterisk. This character at the beginning of a line in the
file is not so much a fatal error as a warning. However, warnings can be helpful
for finding the error.

And if the information in the “.log” file is not enough, we would need to go
through our main file, bit by bit, looking for the error. A good strategy for this is
to change the location of the \stoptext command. Remember that ConTEXt stops
processing the text when it finds this command. Therefore, if I place a \stoptext
more or less halfway through the file and compile it, only that first half will be
compiled; if the error happens again then I know it is in the first half of the source
file, and if not, then it means it is in the second half... and so on, bit by bit,
changing the location of the \stoptext command, we will be able to find where
the error is. Once we have found it, we can then try to understand and correct it
or, if we cannot understand why the error has been produced, at least, by finding
where it is, we can try writing things in another way to avoid reproducing it. This
latter solution, of course, can only apply if we are the author. If we simply typeset
a text for someone else, we cannot alter it and will have to keep investigating until
we discover the reasons for the error and its possible solution.

In practice, when a relatively long document is produced with ConTEXt it is usually
compiled from time to time as the document is being drafted, so that if it throws
an error we will be more or less clear about the new part since the last time we
processed the file, and why it has thrown an error.

42

Chapter 3
Commands and other
fundamental concepts

of ConTEXt
Table of Contents: 3.1 ConTEXt's reserved characters; 3.2 Commands them
selves; 3.3 Scope of the commands; 3.3.1 Commands that do or do not require
a scope to be indicated; 3.3.2 Commands requiring an express indication of where they
begin and end (environments); 3.4 Command operation options; 3.4.1 Commands
that can work in several different ways; 3.4.2 Commands that configure how other com
mands work (\setupSomething); 3.4.3 Setting up customised versions of configurable
commands (\defineSomething); 3.5 Summary of command syntax and options,
and on the use of square and curly brackets when calling them; 3.6 The offi
cial list of ConTEXt commands; 3.7 Defining new commands; 3.7.1 General
mechanism for defining new commands; 3.7.2 Creating new environments; 3.8 Other
fundamental concepts; 3.8.1 Groups; 3.8.2 Dimensions; 3.9 Self-learning
method for ConTEXt;

We have already seen that in the source file, as well as in the actual contents of our
future formatted document, we find the instructions needed to explain to ConTEXt
how we want our manuscript to be transformed. These instructions can be called
“commands”, “macros” or “control sequences”.

From the point of view of ConTEXt's internal functioning (actually, TEX's functioning), there
is a difference between primitives and macros. A primitive is a simple instruction that cannot
be broken down into other simpler instructions. A macro is an instruction that can be broken
down into other simpler instructions which, in turn, can also perhaps be broken down into
still others, and so on and so on. Most of ConTEXt's instructions are, in fact, macros. From
the programmer's perspective, the difference between macros and primitives is important. But
from the user's perspective the issue is not so important: in both cases what we have are
instructions that are carried out without our need to worry about how they function at a low
level. Therefore, ConTEXt documentation commonly talks about a command when it takes
the user's perspective, and a macro when it takes the programmer's perspective. Since we are
only taking the user's perspective in this introduction, I will use either term, regarding them
as synonymous.

Commands are orders given to ConTEXt to do something; we control the program's performance
through them. Thus KNUTH, the father of TEX, uses the term control sequences to refer to

Chapter 3 Commands and other fundamental concepts of ConTEXt 43

both primitives and macros, and I think this is the most accurate term of them all. I will use
it when I believe it is important to distinguish between control symbols and control words.

ConTEXt's instructions are basically of two kinds: reserved characters, and com
mands properly so called.

3.1 ConTEXt's reserved characters
When ConTEXt is reading the source file made up only of text characters, since it
is a text file it needs to somehow distinguish what is actual text to be formatted,
and what are the instructions it has to carry out. ConTEXt's reserved characters
are what enable it to make this distinction. In principle, ConTEXt will assume that
every character in the source file is text to be processed, unless it is one of the 11
reserved characters which are to be treated as an instruction.

Only 11 instructions? No. There are only 11 reserved characters; but since one of
them, the“\” character, has the function of converting the character or characters
immediately following it into an instruction, then really the potential number of
commands is unlimited. ConTEXt has around 3000 commands (adding up the
commands exclusive to Mark II, Mark IV and the ones common to both versions).

The reserved characters are as follows:

\ % { } # ~ | $ _ ^ &

ConTEXt interprets them in the following way:

\ This character is the most important of all for us: it indicates that what
comes immediately after must not be interpreted as text but as an instruc
tion. It is called the “Escape character” or “Escape sequence” (even though
it has nothing to do with the “Esc” key found on most keyboards).1

% Tells ConTEXt that what follows up to the end of the line is a comment that
must not be processed or included in the final formatted file. Introducing
comments into the source file is extremely useful. A comment can help
explain why something has been done in a certain way, and this is very
helpful in completed source files, in view of later revision when sometimes

1 In computer terminology, the key that affects the interpretation of the following character is called
the escape character. By contrast, the escape key on keyboards is called this because it generates
character 27 in ASCII code, which is used as the escape character in this encoding. Today, the uses
of the Escape key are more associated with the idea of cancelling an ongoing action.

Chapter 3 Commands and other fundamental concepts of ConTEXt 44

we cannot remember why we did what we did; or it can also help as a
reminder to ourselves about something we might need to revise. It can even
be used to help locate the cause of a certain error in the source file, since
by placing a comment mark at the beginning of a line, we exclude that line
from being compiled, and can see if it was that line that was causing the
error; it can also be used to store two different versions of the same macro,
and that way get different results after compiling; or to prevent a snippet
from being compiled that we are not sure about but without deleting it from
the source file in case we want to return to it later ... etc. Once we have
opened up the possibility that our source file contains text that nobody but
ourselves should see, our uses of this character are only limited by our own
imagination. I admit that this is one of the utilities I miss most when the
only remedy for writing a text is a word processor.

{ This character opens a group. Groups are blocks of text affected by certain
features. We will talk about them in section 3.8.1.

} This character closes a group previously opened with {.

This character is used for defining macros. It refers to the macro's argu
ments. See section 3.7.1 in this chapter.

~ Introduces a white space into the document to prevent a line break, meaning
that two words separated by the ~ character will always remain on the same
line. We will speak about this instruction and where it should be used in
section 11.3.1.

| This character is used to indicate that two words joined by a separating
element constitute a compound word that can be divided by syllables into
the first component, but not into the second component. See section 10.4.

$ This character is a switch for the maths mode. It enables that mode if it
wasn't enabled, or disables it if it was. When in maths mode, ConTEXt ap
plies some fonts and rules that differ from normal ones, aimed at optimising
the writing of mathematical formulas. Even though writing mathematics is
a very important use of ConTEXt, I will not develop this in this introduction.
Being a literary man, I don't feel up to it!

_ This character is used in maths mode to indicate that what follows is a
subscript. So, for example, to get 𝑥1, we need to write x_1.

^ This character is used in maths mode to indicate that what follows is a su
perscript. So for example, to get (𝑥+ 𝑖)𝑛

3
we need to write $(x+i)^{n^3}$.

& It says in the ConTEXt documentation that this is a reserved character, but
it does not say why. In Plain TEX this character basically has two uses: it is

Chapter 3 Commands and other fundamental concepts of ConTEXt 45

used to align columns in basic table environments, and, in a maths context,
so that what follows is to be treated as normal text. In the introductory
manual “ConTEXt Mark IV, an Excursion”, although it does not say what
it is for, there are examples of its use in mathematical formulas, though
not of the kind it had in Plain TEX, but to align columns within complex
functions. As I am a literary person, I do not feel I can carry out further
tests to see what the precise use of this reserved character is for.

It can be assumed that in selecting which characters would be reserved ones, they
would be characters available on most keyboards but ones not usually used in
written scripts. However, although not so common, there is always the possibility
that some of them will figure in our documents, like for example, when we want to
write that something costs a 100 dollars ($100), or that in Spain, the percentage
of drivers over 65 years of age was 16% in 2018. In these cases we must not write
the reserved character directly but use a command that will output the reserved
character properly in the final document. The command for each of the reserved
characters is found in table 3.1.

Reserved character Command that generates it
\ \backslash
% \%
{ \{
} \}
\#
~ \lettertilde
| \|
$ \$
_ _
^ \letterhat
& \&

Table 3.1 Writing reserved characters

Another way of getting the reserved characters is with the \type command. This
command sends what it takes as an argument to the final document without pro
cessing it in any way, and therefore without interpreting it. In the final document,
the text received from \type will be shown in the monospaced font typical of
computer terminals and typewriters.

Normally we would enclose the text that \type has to show between curly brackets. However,
when this text itself includes opening or closing curly brackets, instead of them we must enclose
the text between two equal characters that are not part of the text that constitutes the argument
of \type. For example: \type*{*, or \type+}+.

Chapter 3 Commands and other fundamental concepts of ConTEXt 46

If, by mistake, we use one of the reserved characters directly, other than for the
purpose which it is intended, because we have forgotten that it is a reserved char
acter and cannot be used like a normal one, then three things can happen:

1. Most commonly, an error is generated when compiling.

2. We get an unexpected result. This happens especially with “~” and “%”; in
the former case, instead of the “~” we expected in the final document, a white
space will be inserted; and in the latter case, everything on the same line
will stop being processed, starting from “%”. Improper use of the “\” too can
produce an unexpected result if it or the characters immediately after it make
up a command that ConTEXt knows about. However, more commonly when
we incorrectly use the “\” we will have a compiling error.

3. No problem occurs: This happens with three of the reserved characters used
mainly in mathematics (_ ^ &): if used outside of this environment they are
treated as normal characters.

Point 3 is my conclusion. The truth is that I not found anywhere in the ConTEXt docu
mentation that tells us where these reserved characters can be used directly; in my tests,
however, I have not seen any error when this is done; unlike, for example, in LATEX.

3.2 Commands themselves
Commands themselves always begin with the “\” character. Depending on what
comes immediately after the escape sequence, a distinction is made between:

a. Control symbols. A control symbol begins with the escape sequence (“\”)
and consists exclusively of a character other than a letter, as for example “\,”,
“\1”, “\'” or “\%”. Any character or symbol that is not a letter in the strict
sense of the term can be a control symbol, including numbers, punctuation
marks, symbols and even a blank space. In this document, to represent a blank
space (white space) when its presence needs to be highlighted, the symbol I
use is ␣. In fact, “\␣” (a backslash followed by a blank space) is a commonly
used control symbol, as we will soon be able to see.

A blank or white space is an “invisible” character, which is a problem in a document like
this, where at times we need to clearly specify what needs to be written in a source file.
Knuth was already aware of the problem, and in his “The TEXBook” he began the custom
of representing significant blank spaces with the “␣” symbol. So, for example, if we wanted
to show that two words in the source file need to be separated by two blank spaces, then
we would write “word1␣␣word2”.

b. Control words. If the character immediately following the backslash is a
letter properly speaking, the command will be a Control word. this group of

Chapter 3 Commands and other fundamental concepts of ConTEXt 47

commands is the most numerous and its feature is that the command name can
only consist of letters; numbers, punctuation marks or any other kind of symbol
are not allowed. Only lower case or upper case letters. Bear in mind, on the
other hand, that ConTEXt makes a distinction between lower case and upper
case, meaning that the \mycommand and \MyCommand commands are different.
But \MyCommand1 and \MyCommand2 would be considered the same, since not
being letters, ‘1’ and ‘2’ are not part of the command names.

The ConTEXt reference manual contains no rules on command names, nor do the rest of the
“manuals” included with “ConTEXt Standalone”. What I stated in the previous paragraph
is my conclusion based on what happens in TEX (where, besides, characters like accented
vowels that do not appear in the English alphabet are not thought of as “letters”). This
rule makes it possible to offer a good explanation for the absorption of white space after
a command name.

When ConTEXt is reading a source file and finds an escape character (“\”), it
knows that a command will follow. It then reads the first character following the
escape sequence. If it is not a letter, it means the command is a control symbol
and consists only of this first symbol. But on the other hand, if the first character
after the escape sequence is a letter, then ConTEXt will continue to read each
character until it finds the first non-letter, and then it knows that the command
name has finished. This is why command names that are control words cannot
contain characters that are not letters.

When the “non-letter” at the end of the command name is a blank space, it is
assumed that the blank space is not part of the text to be processed, but was
inserted exclusively to indicate where the command name ended, so ConTEXt gets
rid of this space. This produces an effect that surprises ConTEXt beginners, because
when the effect of the command in question implies writing something in the final
document, the written output of the command is connected to the next word. For
example, the following two sentences in the source file
Knowing \TeX helps with learning \ConTeXt.
Knowing \TeX, although not essential, helps with learning \ConTeXt

produce the following results respectively:

Knowing TEXhelps with learning ConTEXt.
Knowing TEX, although not essential, helps with learning ConTEXt.1

Note how, in the first case, the word “TEX” is connected to the word that follows
but not in the second case. This is because, in the first case in the source file, the

1 Note: two conventions are followed in cases where, to illustrate something in this introduction, a
fragment of source code is written as well as the result of compiling it: sometimes the code and
the result of its compilation are placed next to each other in a two-column paragraph; other times
the code is written in dark magenta shade which is generally used in this document to represent
ConTEXt commands, and the result of its compilation in red.

Chapter 3 Commands and other fundamental concepts of ConTEXt 48

first “non-letter” after the command name \TeX was a blank space, suppressed
because ConTEXt assumed it was there only to indicate the end of a command
name, while in the second instance there was a comma, and since this is not a
blank space, it has not been suppressed.

On the other hand, this problem is not solved simply by adding an extra blank
space, and writing, for example,

Knowing \TeX␣␣helps with learning \ConTeXt1.

will not solve the problem, because a ConTEXt rule (that we will see in sec
tion 4.2.1) is that a blank space absorbs all the blanks and tabs that follow it.
Therefore, when we have this problem (which fortunately does not happen too
often) we must make sure that the first “non-letter” after the command name is
not a blank space. There are two candidates for this:

• The reserved characters “{}”. The reserved character “{”, as I have said, opens
a group, and “}” closes a group, therefore the sequence “{}” introduces an
empty group. An empty group has no effect on the final document, but it helps
ConTEXt to know that the command name prior to it has finished. Or we could
also create a group around the command in question, for example by writing
“{\TeX}”. In either case, the result will be that the first “non-letter” after \TeX
is not a blank space.

• The control symbol “\␣” (a backslash followed by a blank space, see the note on
page 46). The effect of this control symbol is to insert a blank space in the final
document. To understand ConTEXt's logic properly, it may be worth taking
some time to see what happens when ConTEXt encounters a control word (for
example \TeX) followed by a control symbol (e.g. “\␣”):

– ConTEXt encounters the \ character followed by a ‘T’ and knowing that
this comes before a control word, it keeps reading characters until it comes
to a “non-letter”, something that happens when it comes to the \ character
introducing the next control symbol.

– Once it knows that the command name is \TeX, it runs the command and
prints TEX in the final document. It then returns to the point where it
stopped reading to check the character immediately after the second back
slash.

– It checks that it is a blank space, meaning a “non-letter” which means that
the control sequence is exactly that, so it can run it. It does so, and inserts
a blank space.

– Finally, it returns once more to the point where it stopped reading (the
blank space that was the control symbol) and continues to process the
source file from there onwards.

1 Regarding the “␣” symbol, recall the note on page 46.

Chapter 3 Commands and other fundamental concepts of ConTEXt 49

I have explained this mechanism in some detail, as the elimination of blank spaces
often surprises newcomers. However, it should be noted that the problem is rela
tively minor, as the control words do not usually print directly to the final docu
ment, but affect the format and appearance. By contrast, it is quite common for
control symbols to print something to the final document.

There is a third procedure to avoid the problem of blank space, which consists in defining (TEX
style) a similar command and including a “non-letter” at the end of the command name. For
example, the following sequence:

\def\txt-{\TeX}

would create a command called \txt, that would do exactly the same as the command \TeX
and only function correctly if called with a hyphen after it \txt-. This hyphen is not technically
part of the command name, but it will not work unless the name is followed by a hyphen. Why
this is so has to do with the mechanism for defining TEX macros, and it is too complex to
explain here. But it works: once this command is defined, every time we use \txt-, ConTEXt
substitutes it with \TeX by eliminating the hyphen, but using it internally to know that the
command name is already finished, so a blank space immediately after it would not be deleted.

This ‘trick’ will not work correctly with the \define command, which is a specifically ConTEXt
command for defining macros.

3.3 Scope of the commands
3.3.1 Commands that do or do not require a scope

to be indicated
Many of the ConTEXt commands, especially those that affect formatting features of
fonts (bold, italic, small caps, etc.), enable a certain feature that remains enabled
until another command is encountered that disables it, or that enables another
feature incompatible with it. For example, the command \bf enables bold, and
this will remain active until it finds an incompatible command like, for example,
\tf, or \it.

These kinds of commands do not need to take any argument, as they are not
designed to apply only to certain text. It is as if they are limited to turning on
whatever function (bold, italic, sans serif, a certain font size, etc.).

When these commands are executed within a group (see section 3.8.1), they also
lose their effectiveness when the group they are executed in is closed. Therefore,
often in order to make these commands affect only a portion of text, what is done
is to generate a group containing that command and the text we want it to affect.
A group is created by enclosing it between curly brackets. Therefore, the following
text

Chapter 3 Commands and other fundamental concepts of ConTEXt 50

In {\it The \TeX Book}, {\sc Knuth}
explained everything you need to know
about \TeX.

In The TEXBook, Knuth explained everything
you need to know about TEX.

creates two groups, one to determine the scope of the \it (italics) command and
the other to determine the scope of the \sc (small caps) command.

By contrast with this kind of command, there are others that, because of the effect
they produce or for other reasons, require an express indication of what text they
are to be applied to. In these cases the text to be affected by the command is
enclosed within curly brackets immediately after the command. As an example of
this we could mention \framed: this command draws a frame around the text it
takes as an argument, such that

\framed{Tweedledum and Tweedledee}

will produce

Tweedledum and Tweedledee

Note that although in the first group of commands (those that require an argu
ment) curly brackets are also sometimes used to determine the field of action, this
is not necessary for the command to work. The command is designed to be applied
from the point where it appears. So, when determining its field of application by
using brackets, the command is placed within these brackets, unlike in the second
group of commands, where the brackets framing the text the command is to be
applied to, come after the command.

In the case of the \framed command, it is obvious that the effect it produces
requires an argument – the text to which it is to be applied. In other cases, it
depends on the programmer whether the command is of one type or the other. So,
for example, what the \it and \color commands do is quite similar: they apply a
feature (format or colour) to the text. But the decision was made to program the
first one without an argument, and the second as a command with an argument.

3.3.2 Commands requiring an express indication
of where they begin and end (environments)

There are certain commands that determine their scope by indicating precisely the
point at which they begin to be applied and the point where they cease to do so.
These commands, therefore, come in pairs: one indicating when the command is
to be enabled, and the other when this action must cease. “start”, followed by the
command name, is used to indicate the beginning of the action, and “stop”, also
followed by the command name, to indicate the end. So for example, the command

Chapter 3 Commands and other fundamental concepts of ConTEXt 51

“itemize” becomes \startitemize to indicate the beginning of itemization and
\stopitemize to indicate where it ends.

There is no special name for these command pairings in the official ConTEXt
documentation. The reference manual and the introduction simply call them “start
... stop”. Sometimes they are called environments, which is the name LATEX gives
to a similar kind of construction, although this has the disadvantage that in Con
TEXt the term “environment” is used for something else (a special kind of file that
we will see when talking about multifile projects in section 4.6). Even so, since
the term environment is clear, and the context will make it easy to distinguish if
we are talking about environment commands or environment files, I will use this
term.

Environments, therefore, consist of a command that opens or begins them, and
another that closes or ends them. If the source file contains a command to open
the environment that is not later closed, an error will normally be generated.1 On
the other hand, these kinds of errors are harder to find, as the error can occur
a long way past where the opening command occurs. Sometimes the “.log” file
will show us the line where the incorrectly closed environment begins; but at other
times, the lack of closure of the environment means that ConTEXt misinterprets a
certain passage and not in that faulty environment, meaning that the “.log” file
is not much help to us for finding where the problem lies.

Environments can be nested, meaning another environment can be opened within
an existing environment, although in the case where there are nested environments,
an environment needs to be closed inside the environment it was opened in. In other
words, the order in which environments are closed has to be consistent with the
order in which they were opened. I believe this should be clear from the following
example:

\startSomething
...
\startSomethingElse
...
\startAnotherSomethingElse
...

\stopAnotherSomethingElse
\stopSomethingElse

\stopSomething

In the example you can see how the “AnotherSomethingElse” environment has
been opened inside the “SomethingElse” environment and needs to be closed
inside it as well. To do otherwise would generate an error when compiling the file.

1 Though not always; it depends on the environment in question and on the situation in the rest of
the document. ConTEXt differs from LATEX in this regard, which is much stricter.

Chapter 3 Commands and other fundamental concepts of ConTEXt 52

In general, commands designed as environments are ones that implement some
change intended to be applied to units of text no smaller than the paragraph. For
example, the “narrower” environment that changes the margins only makes sense
when applied at paragraph level; or the “framedtext” environment that frames one
or more paragraphs. This latter environment may help us understand why some
commands are designed as environments and others as individual commands: if we
wish to frame one or more words, all on the same line, we would use the command
\framed, but if what we want framed is a whole paragraph (or several paragraphs)
then we would use the “framedtext” environment.

On the other hand, text located within a particular environment normally consti
tutes a group (see section 3.8.1), which means that if an activation command is
found inside an environment, of those commands that apply to all the text that
follows, this command will apply only until the end of the environment in which
it is found; and, in fact ConTEXt has an unnamed environment beginning with
the \start command (no other text follows; just start. This is why I call it an
unnamed environment) and finishing with the \stop command. I suspect that the
only function this has is to create a group.

I have not read anywhere in ConTEXt documentation that one of the effects of environments
is to group their contents, but this is the result of my tests with a number of the prede
fined environments, though I must admit that my tests have not been too exhaustive. I have
simply checked some environments chosen at random. My tests show, however, that such a
statement, if true, would only be so for some predefined environments: those created with the
\definestartstop command (explained in the section 3.7.2) do not create any group, unless
when defining the new environment we include the commands needed to create the group (see
section 3.8.1).

It is also my assumption that the environment I have called the unnamed (\start) environment
is only there to create a group: it does create a group, but whether or not it has some other
use I do not know. This is one of the undocumented commands in the reference manual.

3.4 Command operation options
3.4.1 Commands that can work in several differ

ent ways
Many commands can work in more than one way. In such cases there is always a
predetermined way of working that can be altered by indicating the parameters
corresponding to the desired operation in brackets after the command name.

We find a good example of what I have just said with the \framed command
mentioned in the previous section. This command draws a frame around the text
it takes as an argument. By default, the frame has the height and width of the

Chapter 3 Commands and other fundamental concepts of ConTEXt 53

text it is applied to; but we can indicate a different height and width. Thus we
can see the difference between how the default \framed functions:

\framed{Tweedledum}
Tweedledum

and how a customised version functions:

\framed
[width=3cm, height=1cm]
{Tweedledum}

Tweedledum

In the second example, between square brackets we have indicated a specific width
and height for the frame that surrounds the text it takes as an argument. Within
the brackets, the different configuration options are separated by a comma; blank
spaces and even line breaks (as long as they are not a double line break) between
two or more options, are not taken into consideration so that, for example, the
next four versions of the same command produce exactly the same result:

\framed[width=3cm,height=1cm]{Tweedledum}

\framed[width=3cm, height=1cm]{Tweedledum}

\framed
[width=3cm, height=1cm]
{Tweedledum}

\framed
[width=3cm,
height=1cm]

{Tweedledum}

It is obvious that the final version is the easiest to read: we can see at first sight
how many options there are and how they are used. In an example like this with
only two options, perhaps it might not seem so important; but in cases where there
is a long list of options, if each of them has its own line in the source file it makes
it easier to understand what the source file is asking ConTEXt to do, and also, if
necessary, to discover a potential error. Therefore, this last format (or similar) for
writing commands is the ‘preferred’ one for users.

As for the syntax of configuration options, see further ahead in (section 3.5).

Chapter 3 Commands and other fundamental concepts of ConTEXt 54

3.4.2 Commands that configure how other
commands work (\setupSomething)

We have already seen that commands that support various possibilities in how
they function always have a default way of working. If one of these commands is
called several times in our source file, and we would like to alter the default for
them all, rather than changing these options each time the command is called, it
is much more convenient and efficient to change the default. To do this there is
almost always a command available whose name begins with \setup, followed by
the name of the command whose default options we wish to change.

The \framed command we have been using as an example in this section continues
to be a good example. So, if we are using a lot of frames in our document, but they
all need precise measurements, then it would be best to reconfigure how \framed
works, doing so with \setupframed. Thus
\setupframed
[
width=3cm,
height=1cm

]

will ensure that from then on, every time we call \framed, by default it will then
generate a frame 3 centimetres wide by 1 centimetre high, without needing to
indicate this expressly each time.

There are some 300 commands in ConTEXt that allow us to configure how other
commands function. Thus, we can configure the default functioning of frames
(\framed), lists (“itemize”), chapter titles (\chapter), or section titles (\sec
tion), etc.

3.4.3 Setting up customised versions of configurable
commands (\defineSomething)

Continuing with the \framed example, it is obvious that if our document uses
several kinds of frames, each with different measurements, the ideal would be that
we could predefine different configurations of \framed, and associate them with a
particular name so we could use one or other of them as needed. We can do this
in ConTEXt with the \defineframed command, whose syntax is:

\defineframed[Name][Configuration]

where Name is the name assigned to the particular kind of frame to be configured;
and Configuration is the particular configuration associated with this name.

The effect of all this will be that the indicated configuration is associated with the
name we have established, which, to all intents and purposes, will work as if it

Chapter 3 Commands and other fundamental concepts of ConTEXt 55

were a new command, and we can use this in any context where we would have
been able to use the original command (\framed).

This possibility does not only exist for the concrete case of the \framed command,
but for many of the commands that have a \setup possibility. The combination
of \defineSomething + \setupSomething is a mechanism that gives ConTEXt
its extreme power and flexibility. If we make a detailed examination of what the
\defineSomething command does, we see that:

• First of all, it clones a particular command that supports a variety of configu
rations.

• It associates this clone with the name of a new command.
• Finally, it sets a predetermined configuration for the clone, different from how

the original command was configured.

In the example we have given, we were configuring our special frame at the
same time as we were creating it. But we can also create it first and configure
it later, because, as I said, once the clone is created it can be used where the
original could have been used. So for example, if we have created a frame called
“MySpecialFrame”, we can configure it with \setupframed indicating the actual
frame we want to configure. In this case the \setup command will take a new
argument with the name of the frame to be configured:
\defineframed[MySpecialFrame]

\setupframed
[MySpecialFrame]
[...]

3.5 Summary of command syntax and
options, and on the use of square and
curly brackets when calling them

Summing up what we have seen so far, we see that in ConTEXt

• Commands properly so called always begin with the “\” character.

• Some commands can take one or several arguments.

• Arguments that tell the command how it must function or that affect how it
works in some way, are introduced inside square brackets.

• Arguments that tell the command what part of the text it must act on are
introduced inside curly brackets.

Chapter 3 Commands and other fundamental concepts of ConTEXt 56

When the command will only act on one letter, as is the case, for example with the
\buildtextcedilla command (just to give an example – the ‘ç’ so often used in Catalan),
the curly brackets around the argument can be omitted: the command will apply to the
first character that is not a blank space.

• Some arguments can be optional, in which case we can omit them. But what we
can never do is to change the order of the arguments the command is expecting.

Arguments introduced between square brackets can be of various kinds. Mainly:

• They can take only a single value which will almost always be one word or a
phrase.

• They can take various options, in which case they can:

– Be represented by just one word that could be a symbolic name (one that
ConTEXt knows the meaning of), a measure or dimension, a number, the
name of another command, etc.

– Consist of names of variables that must be given a value. In this case the
official definition of the command (see section 3.6) always tells us what kind
of value each of the options expects.

⋆ When the value the option expects is text, this can contain blank spaces
and also commands. In these cases it is sometimes convenient to enclose
the value of the option between curly brackets.

⋆ When the value an option expects is a command, normally we can in
dicate more than one command as the value of an option, although
sometimes we need to enclose all the commands assigned to the option
between curly brackets. We must also enclose the contents of the option
between curly brackets if any of the commands included in it takes an
option between square brackets.

In both cases the different options that are to take the same argument will
be separated by commas. White space and line breaks (other than doubles)
between the different options are ignored. White space and line breaks between
the different arguments to a command are also ignored.

• Finally, it is never the case with ConTEXt that the same argument simultane
ously takes options consisting of a word and options consisting of a variable
that must be explicitly assigned a value. In other words, we can have options
like

\command[Option1, Option2, ...]

and others like

Chapter 3 Commands and other fundamental concepts of ConTEXt 57

\command[Variable1=value, Variable2=value, ...]

But we can never find a mixture of both:

\command[Option1, Variable1=value, ...]

3.6 The official list of
ConTEXt commands

Amongst the ConTEXt documentation, there is an especially important document
with a list of all the commands, indicating for each of them how many arguments
they expect and of what kind, as well as the different options envisaged and their
permitted value. This document is called “setup-en.pdf”, and is generated auto
matically for each new version of ConTEXt. It can be found in the directory called
“tex/texmf-context/doc/context/documents/general/qrcs”.

In fact, the “qrc” has seven versions of this document, one for each of the languages that has
a ConTEXt interface: German, Czech, French, Dutch, English, Italian and Romanian. For each
of these languages there are two documents in the directory: one called “setup-LangCode”
(where LangCode is the two international language identification letter-code) and a second
document called “setup-mapping-LangCode”. This second document contains a list of com
mands in alphabetical order and indicates the command prototype, but without further infor
mation on the likely values for each argument.

This document is fundamental for learning to use ConTEXt, because it is there that
we can find out if a certain command exists or not; this is especially useful, bearing
in mind the command (or environment) + setupcommand + definecommand
combination. For example, if I know that a blank line is introduced with the \blank
command, I can find out if there is a command called \setupblank that lets me
configure it, and another that allows me to set up a customised configuration for
blank lines, (\defineblank).

“setup-en.pdf”, therefore, is fundamental for learning ConTEXt. But I would really prefer,
first of all, for it to tell us if a command only works in Mark II or Mark IV, and especially,
that if instead of only telling us about the number of type of arguments each command allows,
it would tell us what these arguments are for. This would greatly reduce the shortcomings of
the ConTEXt documentation. There are some commands that allow optional arguments that I
don't even mention in this introduction because I don't know what they are for and, since they
are optional, nor is there any need to mention them. This is extremely frustrating.

Chapter 3 Commands and other fundamental concepts of ConTEXt 58

3.7 Defining new commands
3.7.1 General mechanism for defining

new commands
We have just seen how, with \defineSomething we can clone a pre-existing com
mand and develop a new version of it from there, that will function, to all intents
and purposes, as a new command.

Along with that possibility, which is only available to some specific commands
(quite a few, certainly, but not all), ConTEXt has a general mechanism for defining
new commands that is extremely powerful though, in some of its uses, also quite
complex. In a text like this one, aimed at beginners, I think it best to introduce
it by starting with some of its simplest uses. The simplest of all is to associate
snippets of text with a word, so that each time this word appears in the source
file, it is replaced by the text linked to it. This will allow us, on the one hand, to
save a lot of typing time and, on the other hand, as an extra advantage, it reduces
the possibilities of making mistakes when typing, while ensuring that the text in
question is always written the same way.

Let us imagine, for example, that we are writing a treatise on alliteration in Latin
texts, where we are often quoting the Latin sentence “O Tite tute Tati tibi tanta
tyranne tulisti” (O Titus Tatius, you tyrant, so much you have brought upon
yourself!). It is a fairly long sentence in which two of the words are proper names
and start with capital letters, and where, let us admit it, as much as we might love
Latin poetry, it is easy for us to “trip up” when writing it down. In this case, we
could simply put in the preamble of our source file:

\define\Tite{\quotation{O Tite tute Tati tibi tanta tyranne tulisti}}

Based on such a definition, each time the command \Tite appears in our source
file, it will be substituted by the sentence indicated, and it will also be between
quotation marks just as the original definition had it, which allows us to ensure
that the way that sentence appears will always be the same. We could also have
written it in italics, with a larger font size... whatever we want. The important
thing is that we only have to write it once, and throughout the text it will be
reproduced exactly as it was written, as often as we want. We could also create
two versions of the command, called \Tite and \tite, depending on whether the
sentence needs to be written using capital letters or not. The replacement text can
be pure text, or include commands, or form mathematical expressions in which
there is more chance of mistyping (at least for me). For example, if the expression
(𝑥1, … , 𝑥𝑛) needs to appear regularly in our text, we could create a command to
represent it. For example

Chapter 3 Commands and other fundamental concepts of ConTEXt 59

\define\xvec{(x_1,\ldots,x_n)}

so that whenever \xvec appears in the text, it is replaced by the expression asso
ciated with it.

The general syntax of the \define command is as follows:

\define[NumArguments]\CommandName{TeXtToReplace}

where

• NumArguments refers to the number of arguments the new command will take.
If it doesn't need to take any, as in the examples given so far, this would be
omitted.

• CommandName refers to the name the new command will have. Here, the general
rules regarding command names apply. The name could be a single character
that is not a letter, or one or more letters without including any “non-letter”
character.

• TextToReplace contains the text that will replace the name of the new com
mand, each time it is found in the source file.

The possibility of providing the new commands with arguments in their definition
gives this mechanism great flexibility, as it allows a variable replacement text to
be defined according to the arguments taken.

For example: let us imagine that we want to write a command that produces the
opening of a business letter. A very simple version of this would be:
\define\LetterHeading{
\rightaligned{Peter Smith}\par
\rightaligned{Consultant}\par
Maryborough, \date\par
Dear Sir,\par
}

but it would be preferable to have a version of the command that would write the
name of the recipient in the header. This would require the use of a parameter
that communicates the name of the recipient to the new command. This would
require redefining the command as follows:
\define[1]\LetterHeading{
\rightaligned{Peter Smith}\par
\rightaligned{Consultant}\par
Maryborough, \date\par
Dear Mr #1,\par
}

Note that we have introduced two changes in the definition. First of all, between the
key word \define and new name for the command, we have included a 1 between
square brackets ([1]). This tells ConTEXt that the command we are defining will
take one argument. Further on, in the last line of the command definition, we have

Chapter 3 Commands and other fundamental concepts of ConTEXt 60

written “Dear Mr #1,”, using the reserved character “#”. This indicates that at
the point in the replacement text where “#1” appears, the contents of the first
argument will be inserted. If it had two parameters, “#1” would refer to the first
parameter and “#2” to the second. In order to call the command (in the source file)
after the command name, the arguments must be included between curly brackets,
each argument with its own set. So, the command that we have just defined should
be called in the following way in the text of our source file:

\LetterHeading{Name of addressee}

For example: \LetterHeading{Anthony Moore}.

We could still further improve the previous function, because it assumes that
the letter will be sent to a man (it puts “Dear Sir”), so perhaps we could include
another parameter to distinguish between male and female addressees. for example:
\define[2]\LetterHeading{
\rightaligned{Peter Smith}\par
\rightaligned{Consultant}\par
Maryborough, \date\par
#1\ #2,\par
}

so that the function would be called, for example, with

\LetterHeading{Dear Ms}{Eloise Merriweather}

although this is not very elegant (from a programming point of view). It would be
preferable for symbolic values to be defined for the first argument (man/woman;
0/1; m/f) so that the macro itself would choose the appropriate text according to
this value. But explaining how to achieve this requires us to get into more depth
than I think the novice reader can understand at this stage.

3.7.2 Creating new environments
To create a new environment, ConTEXt provides the \definestartstop command
whose syntax is as follows:

\definestartstop[Name][Options]

In the official definition of \definestartstop (see section 3.6) there is an additional argument
that I have not put above because it is optional, and I have not been able to found out what
it is for. Neither the introductory ConTEXt “Excursion”, nor the incomplete reference manual
explain it. I had assumed that this argument (which must be entered between the name and
the configuration) could be the name of some existing environment that would serve as an
initial model for the new environment, but my tests show that this assumption was wrong. I
have looked on the ConTEXt mailing list and I have not seen any use of this possible argument.

where

Chapter 3 Commands and other fundamental concepts of ConTEXt 61

• Name is the name the new environment will have.

• Configuration allows us to configure the behaviour of the new environment.
We have the following values with which we can configure it:

– before – Commands that have to be run before entering the environment.

– after – Commands that have to be run after leaving the environment.

– style – Style that the text of the new environment must have.

– setups – Set of commands created with \startsetups ... \stopsetups.
This command and its use is not explained in this introduction.

– color, inbetween, left, right – Undocumented options that I have
not been able to make work. We can assume what some do because of their
name, for example color, but from more tests I have done, indicating some
value for that option, I do not see any change within the environment.

An example of the definition of an environment could be as follows:
\definestartstop
[TextWithBar]
[before=\startmarginrule\noindentation,
after=\stopmarginrule,
style=\ss\sl

]

\starttext

The first two fundamental laws of human stupidity state unambiguously
that:

\startTextWithBar

\startitemize[n,broad]

\item Always and inevitably we underestimate the number of stupid
individuals in the world.

\item The probability that a given person is stupid is independent
of any other characteristic of the same person.

\stopitemize

\stopTextWithBar

\stoptext

The result would be:

Chapter 3 Commands and other fundamental concepts of ConTEXt 62

The first two fundamental laws of human stupidity state
unambiguously that:

1. Always and inevitably we underestimate the number
of stupid individuals in the world.

2. The probability that a given person is stupid is in
dependent of any other characteristic of the same
person.

If we want our new environment to be a group (section 3.8.1), so that any alteration
of the normal functioning of ConTEXt that happens within it disappears on leaving
the environment, we must include the \bgroup command in the “before” option,
and the \egroup command in the “after” option.

3.8 Other fundamental concepts
There are other notions, other than commands, that are fundamental to under
standing the logic behind how ConTEXt works. Some of them, because of their
complexity, are not appropriate for an introduction and therefore will not be dealt
with in this document; but there are two notions that should be examined now:
groups and dimensions.

3.8.1 Groups
A group is a well-defined fragment of the source file that ConTEXt uses as a working
unit (what this means is explained shortly). Every group has a beginning and end
that needs to be expressly indicated. A group begins:

• With the reserved character “{” or with the command \bgroup.
• With the command \begingroup
• With the command \start
• With the opening of certain environments (\startSomething command).
• By beginning a maths environment (with the reserved character «$»).

and is closed

• With the reserved character “}” or with the command \egroup.
• With the command \endgroup
• With the command \stop

Chapter 3 Commands and other fundamental concepts of ConTEXt 63

• With the closing of the environment (\stopSomething command).
• On leaving the maths environment (with the reserved character «$»).

Certain commands also automatically generate a group, for example, \hbox, \vbox
and, in general, commands linked to the creation of boxes1. Outside of these latter
cases (groups automatically generated by certain commands), the way of closing
a group has to be consistent with the way it is opened. This means that a group
that is begun with “{” must close with “}”, and a group begun with \begingroup
must be closed with \endgroup. This rule has only one exception, that a group
begun with “{” can be closed with \egroup, and the group begun with \bgroup
can be closed with “}”; in reality, this means that “{” and \bgroup are completely
synonymous and interchangeable, and similarly for “}” and \egroup.

The commands \bgroup and \egroup were designed to be able to define commands to open a
group and others to close a group. Therefore, for reasons internal to TEX syntax, those groups
could not be opened and closed with curly brackets, since this would generate unbalanced curly
brackets in the source file, and this would always throw an error when compiling.

The commands \begingroup and \endgroup, by contrast, are not interchangeable with curly
brackets or the \bgroup ... \egroup commands, since a group begun with \begingroup
has to be closed with \endgroup. These latter commands were designed to allow for much
more in-depth error checking. In general, normal users do not have to use them.

We can have nested groups (a group within another group), and in this case the
order in which groups are closed must be consistent with the order in which they
were opened: any subgroup has to be closed within the group in which it began.
There can also be empty groups generated with “{}”. An empty group, in principle,
has no effect on the final document, but it can be useful, for example, for indicating
the end of a command name.

The main effect of the groups is to encapsulate their content: as a rule, the defini
tions, formats and value assignments that are made within a group are “forgotten”
once we leave the group. This way, if we want ConTEXt to temporarily alter its
normal way of functioning, the most efficient way is to create a group and, within
it, alter that functioning. Thus, when we leave the group, all the values and formats
previous to it will be restored. We have already seen some examples of this when
mentioning commands like \it, \bf, \sc, etc. But this doesn't only happen with
format commands: the group in a way isolates its contents, so that any change
in any of the many internal variables that ConTEXt is constantly managing, will
remain effective only as long as we are within the group in which that change took
place. Likewise, a command defined within a group will not be known outside it.

So, if we process the following example

1 The box notion is also a central ConTEXt one, but its explanation is not included in this introduc
tion.

Chapter 3 Commands and other fundamental concepts of ConTEXt 64

\define\A{B}
\A
{
\define\A{C}
\A

}
\A

we will see that the first time we run the command \A, the result corresponds
to that of its initial definition (‘B’). Then we created a group and redefined the
command \A within it. If we run it now within the group, the command will give
us the new definition (‘C’ in our example), but when we leave the group in which
the command \A was redefined, if we run it again it will type ‘B’ once more. The
definition made within the group is “forgotten” once we have left it.

Another possible use of the groups concerns those commands or instructions de
signed to apply exclusively to the character that is written after them. In this case,
if we want the command to be applied to more than one character, we must enclose
the characters we want the command or instruction to be applied to, in a group.
So for example, the reserved “^” character which, we already know, converts the
following character into a superscript when used inside the maths environment; so
if we write, for example, “4^2x” we will get “42𝑥”. But if we write “4^{2x}”
we will get “42𝑥”.

Finally: a third use of grouping is to tell ConTEXt that what is enclosed within the
group must be treated as one. This is the reason why before (section 3.5) it was
said that on certain occasions it is better to enclose the contents of some command
option within curly brackets.

3.8.2 Dimensions
Although we could use ConTEXt perfectly without worrying about dimensions, we
would not be able to make use of all the configuration possibilities without giving
them some consideration. Because to a large extent the typographical perfection
achieved by TEX and its derivatives lies in the great attention that the system pays
internally to dimensions. Characters have dimensions; the space between words,
or between lines, or between paragraphs have dimensions; lines have dimensions;
margins, headers and footers. For almost every element on the page we can think
of there will be some dimension.

In ConTEXt dimensions are indicated by a decimal number followed by the unit
of measurement. The units that can be used are found in table 3.2.

Chapter 3 Commands and other fundamental concepts of ConTEXt 65

Name Name in ConTEXt Equivalent
Inch in 1 in = 2.54 cm
Centimetre cm 2.54 cm = 1 inch
Millimetre mm 10 mm = 1 cm
Point pt 72.27 pt = 1 inch
Big point bp 72 bp = 1 inch
Scaled point sp 65536 sp = 1 point
Pica pc 1 pc = 12 points
Didot dd 1157 dd = 1238 points
Cicero cc 1 cc = 12 didots

em
ex

Table 3.2 Units of measurement in ConTEXt

The first three units in the table 3.2 are standard measures of length; the first is
used in some parts of the English-speaking world and the others outside it or in
some parts of it. The remaining units come from the world of typography. The last
two, for which I have put no equivalent, are relative units of measurement based
on the current font. 1 “em” is equal to the width of an “M” and an “ex” is equal to
the height of an “x”. The use of measures related to font size allows the creation
of macros that look just as good whatever the source used at any given moment.
That is why, in general, it is recommended.

With very few exceptions, we can use any unit of measurement we prefer, as
ConTEXt will convert it internally. But whenever a dimension is indicated, it is
compulsory to indicate the unit of measurement, and even if we want to indicate
a measurement of “0”, we have to say ‘0pt’ or ‘0cm’. Between the number and the
name of the unit, we may or may not leave a blank space. If the unit has a decimal
part, we can use a decimal separator, either the (.) or the comma (,).

The measurements are usually used as an option for some command. But we can
also directly assign a value to some internal measure of ConTEXt as long as we know
the name of it. For example, indentation of the first line of an ordinary paragraph is
internally controlled by ConTEXt with a variable called \parindent. By expressly
assigning a value to this variable we will have altered the measurement that Con
TEXt uses from that point on. And so, for example, if we want to eliminate the
indentation of the first line, we only need to write in our source file:

\parindent=0pt

We could also have written \parindent 0pt (without the equal sign) or
\parindent0pt with no space between the name of the measure and its value.

However, assigning a value directly to an internal measure is considered
“inelegant”. In general, it is recommended to use the commands that control that

Chapter 3 Commands and other fundamental concepts of ConTEXt 66

variable, and to do so in the preamble of the source file. The opposite results in
source files that are very difficult to debug because not all the configuration com
mands are in the same place, and it is really difficult to obtain a certain consistency
in typographical characteristics.

Some of the dimensions used by ConTEXt are “elastic”, that is, depending on the
context, they can take one or other measure. These measures are assigned with
the following syntax:

\MeasureName plus MaxIncrement minus MaxDecrease

For example

\parskip 3pt plus 2pt minus 1pt

With this instruction we are telling ConTEXt to assign to \parskip (indicating
the vertical distance between paragraphs) a normal measurement of 3 points, but
that if the composition of the page requires it, the measurement can be up to 5
points (3 plus 2) or only 2 points (3 minus 1). In these cases it will be left to
ConTEXt to choose the distance for each page between a minimum of 2 points and
a maximum of 5 points

3.9 Self-learning method for ConTEXt
The huge quantity of ConTEXt commands and options turns out to be truly over
whelming and can give us the feeling that we will never end up learning to work
well with it. This impression would be a mistake, because one of the advantages
of ConTEXt is the uniform way it handles all its structures: learning well a few
structures, and knowing, more or less, what the remaining ones are for, when we
need some extra utility it will be relatively easy learn to use it. Therefore, I think
of this introduction as a kind of training that will prepare us to make our own
investigations.

To create a document with ConTEXt it is probably only essential to know the
following five things (we could call them the ConTEXt Top Five):

1. Know how to create the source file or project of any; this is explained in Chap
ter 4 of this introduction.

2. Set the main font for the document, and know the basic commands to change
font and colour (Chapter 6).

3. Know the basic commands for structuring the content of our document, such
as chapters, sections, subsections, etc. This is all explained in Chapter 7.

Chapter 3 Commands and other fundamental concepts of ConTEXt 67

4. Perhaps know how to handle the itemize environment explained in some detail
in section 12.3.

5. ... and little else.

For the rest, all we need to know is that it is possible. Certainly no one will use
a utility if they do not know that it exists. Many of them are explained in this
introduction; but, above all, we can repeatedly watch how ConTEXt always acts
when faced with a certain type of construction:

• First there will be a command that allows it to do so.

• Second, there is almost always a command that allows us to configure and
predetermine how the task will be carried out; a command whose name starts
with \setup and usually coincides with the basic command.

• Finally, it is often possible to create a new command to perform similar tasks,
but with a different configuration.

To see whether these commands exist or not, look up the official list of commands
(see section 3.6), which will also inform us of the configuration options that these
commands support. And although at first glance the names of these options may
seem cryptic, We will soon see that there are options that are repeated in many
commands and that work the same or very similarly in all of them. If we have
doubts about what an option does, or how it works, it will be enough to generate
a document and test it. We can also look at the abundant ConTEXt documentation.
As is common in the world of free software, “ConTEXt Standalone” includes the
sources of almost all its documentation in the distribution. A utility like “grep”
(for GNU Linux systems) can help us search whether the command or option that
we have doubts about is used in any of these source files so that we can have an
example on hand.

This is how learning ConTEXt has been conceived: the introduction explains in
detail the five (actually four) aspects that I have highlighted, and many more: as
we read, a clear picture of the sequence will form in our minds: a command to
carry out the task – a command that configures the previous one – a command
that allows us to create a similar command. We will also learn some of the main
structures of ConTEXt, and we will know what they are for.

68

Chapter 4
Source files and projects

Table of Contents: 4.1 Encoding source files; 4.2 Characters in the source
file(s) that ConTEXt treats in a special way; 4.2.1 Blank spaces (white space) and
tabs; 4.2.2 Line breaks; 4.2.3 Rules/dashes; 4.3 Simple and multifile projects;
4.4 Structure of the source file in simple projects; 4.5 Multifile manage
ment in TEX style; 4.5.1 The \input command; 4.5.2 \ReadFile and \readfile;
4.6 ConTEXt projects as such; 4.6.1 Environment files; 4.6.2 Components and
products; 4.6.3 Projects as such; 4.6.4 Common aspects of environments, components,
products and projects;

As we already know, when working with ConTEXt we always start with a text file
in which, along with the contents of the final document, a number of instructions
are included, telling ConTEXt about the transformations it must apply to generate
our final correctly formatted document in PDF from the source file.

Thinking of the readers who until now have only known how to work with word
processors, I think it is worth spending some time with the source file itself. Or
rather, source files, since there are times where there is only one source file and
others when we use a number of source files to arrive at the final document. In
this last instance we can talk about “multifile projects”.

4.1 Encoding source files
The source file(s), need to be text files. In computer terminology, this is the name
given to a file containing only human-readable text which does not include binary
code. These files are also called simple text or plain text files.

Since internally, computer systems only process binary numbers, a text file is really
made up of numbers that represent characters. A table is used to connect a number
with a character. For text files, there are several possible tables. The term text file
encoding refers to the specific character-matching table that a particular text file
uses.

The existence of different encoding tables for text files is a consequence of the history of
computer science itself. In the early stages of development, when the memory and storage
capacity of computer devices was scarce, it was decided to use a table called ASCII (standing
for “American Standard Code for Information Interchange”) that only allowed 128 characters

Chapter 4 Source files and projects 69

and was established in 1963 by the US Standards Committee. It is obvious that 128 characters
is not enough to represent all the characters and symbols used in all the languages of the world;
but it was more than enough to represent English which is, of all Western languages, the one
that has fewer characters, because it does not use any diacritics (accents and other marks
above or below or through other letters). The advantage of using ASCII was that text files
would take up very little space, as 127 (the highest number in the table) can be represented by
a 7-digit binary number, and the first computers used the byte as a unit for measuring memory,
an 8-digit binary number. Any character in the table would fit into a single byte. Since the
byte has 8 digits and ASCII used only 7 digits, there was even space left to add some other
characters to represent other languages.

But when the use of computers expanded, the inadequacy of ASCII became apparent and
it became necessary to develop alternative tables that included characters not known to the
English alphabet such as the Spanish ‘ñ’, accented vowels, the Catalan or French ‘ç’, etc. On the
other hand, there was no initial agreement as to what these alternative tables of ASCII should
be, so different specialised computer companies gradually tackled the problem on their own.
Therefore, not only were specific tables created for different languages or groups of languages,
but also different tables according to the company that had created them (Microsoft, Apple,
IBM, etc.).

It was only with the increase in computer memory and the lower cost of storage devices and
the corresponding increase in capacity that the idea of creating a single table that could be
used for all languages arose. But, once again, it was not actually a single table containing
all the characters that was created, but a standard encoding (called Unicode) along with
different ways of representing it (UTF-8, UTF-16, UTF-32, etc.) Of all these systems, the
one that has ended up becoming the de facto standard is UTF-8, which makes it possible
to represent practically any living language, and many already extinct languages, as well as
numerous additional symbols, all using numbers of variable length (between 1 and 4 bytes),
which, in turn, helps to optimise the size of text files. This size has not increased too much
compared to files using pure ASCII.

Up until XƎTEX appeared, systems based on TEX – which was also born in the US and therefore
has English as it native language – assumed the encoding was in pure ASCII; so that to use a
different encoding, you had to indicate this somehow in the source file.

ConTEXt Mark IV assumes that the encoding will be UTF-8. However, in less
up-to-date computer systems, a different encoding may still be used by default.
I am not very sure about the default encoding that Windows uses, given that
Microsoft's strategy for reaching out to the wider public consists in hiding the
complexity (but even though hidden, it does not mean it has disappeared!). There
is not much information available (or I have not been able to find it) regarding the
encoding system it uses by default.

In any case, whatever the default encoding, any text editor allows you to save the
file in the desired encoding. The source files intended to be processed by ConTEXt
Mark IV must be saved in UTF-8, unless, of course, there is a very good reason for
using a different encoding (although I cannot think what this reason might be).

If we want to write a file written in another encoding (perhaps an old file) we can

Chapter 4 Source files and projects 70

a. Convert the file to UTF-8, the recommended option, and there are various tools
for doing this; in Linux, for example, the commands iconv or recode.

b. Tell ConTEXt in the source file that the encoding is not UTF-8. To do this we
need to use the command \enableregime, the syntax of which is:

\enableregime[Encoding]

where Encoding refers to the name by which ConTEXt knows the actual encod
ing of the file in question. In the table 4.1 you will find the various encodings
and the names that ConTEXt knows them by.

Encoding Name(s) in ConTEXt Notes
Windows CP 1250 cp1250, windows-1250 Western Europe
Windows CP 1251 cp1251, windows-1251 Cyrillic
Windows CP 1252 cp1252, win, windows-1252 Western Europe
Windows CP 1253 cp1253, windows-1253 Greek
Windows CP 1254 cp1254, windows-1254 Turkish
Windows CP 1257 cp1257, windows-1257 Baltic
ISO-8859-1, ISO Latin 1 iso-8859-1, latin1, il1 Western Europe
ISO-8859-2, ISO Latin 2 iso-8859-2, latin2, il2 Western Europe
ISO-8859-15, ISO Latin 9 iso-8859-15, latin9, il9 Western Europe
ISO-8859-7 iso-8859-7, grk Greek
Mac Roman mac Western Europe
IBM PC DOS ibm Western Europe
UTF-8 utf Unicode
VISCII vis, viscii Vietnamese
DOS CP 866 cp866, cp866nav Cyrillic
KOI8 koi8-r, koi8-u, koi8-ru Cyrillic
Mac Cyrillic maccyr, macukr Cyrillic
Others cp855, cp866av, cp866mav, cp866tat, Various

ctt, dbk, iso88595, isoir111, mik, mls,
mnk, mos, ncc

Table 4.1 Main encodings in ConTEXt

ConTEXt Mk IV strongly recommends the use of UTF-8. I agree with this recom
mendation. From here on in this introduction, we can assume that the encoding
is always UTF-8.

Along with \enableregime ConTEXt includes the command \useregime which allows us to
use the code for one or other encodings as an argument. I have found no information about this
command nor how it differs from \enableregime, only some examples of its use. I suspect that
\useregime is designed for complex projects that use many source files, with the expectation
that not all of them will have the same coding. But it is only a guess.

Chapter 4 Source files and projects 71

4.2 Characters in the source file(s) that
ConTEXt treats in a special way

Special characters is the name I will give to a group of characters that are different
from reserved characters. As seen in section 3.1, they are ones that have a special
meaning for ConTEXt and so cannot be used directly as characters in the source
file. Along with these there is another group of characters that, although treated
as such by ConTEXt when it finds them in the source file, it does treat them with
special rules. This group includes blank spaces (white space), tabs, line breaks and
hyphens.

4.2.1 Blank spaces (white space) and tabs
Tabs and blank spaces are treated the same in the source file for all intents and
purposes. A tab character (the Tab key on the keyboard) will be transformed
into white space by ConTEXt. And blank spaces are absorbed into any other blank
space (or tab) immediately following them. Thus, it makes absolutely no difference
in the source file to write

Tweedledum and Tweedledee.

or

Tweedledum and Tweedledee.

ConTEXt considers these two sentences to be exactly the same. Therefore, if we
want to introduce an additional blank space between the words, we need to use
some ConTEXt commands that do this. Normally it will work with “\␣”, meaning
a \ character followed by a blank space. But there are other procedures that will
be looked at in chapter 10.3 regarding horizontal space.

The absorption of consecutive blank spaces allows us to write the source file by
visually highlighting parts we would like to highlight, simply by increasing or
decreasing the indentation used, with the peace of mind of knowing that it will
not in any way affect the final document. Thus, in the following example

The music group from Madrid at the end of the seventies {\em La Romántica
Banda Local} wrote songs of an eclectic style that were very difficult to

categorise. In their son “El Egipcio”, for example, they said:
\quotation{{\em Esto es una farsa más que una comedia, página muy seria
de la histeria musical; sueños de princesa, vicios de gitano pueden en
su mano acariciar la verdad}}, mixing word, phrases simply because they

have an internal rhythm (comedia-histeria-seria, gitano-mano).

Chapter 4 Source files and projects 72

you can see how some lines are slightly indented to the right. These are lines that
are part of the bits that will appear in italics. Having these indented helps (the
author) to see where the italics end.

Some might think, what a mess! Do I have to bother with indenting lines? The truth is that
this special indenting is done automatically by my text editor (GNU Emacs) when it is editing
a ConTEXt source file. It's that kind of small help that makes you choose to work with a certain
text editor and not another one.

The rule that blank spaces are absorbed applies exclusively to consecutive blank
spaces in the source file. Therefore, if an empty group (“{}”), is placed in the
source file between two blank spaces, although the empty group will not produce
anything in the final file, its presence will ensure that the two blanks are not
consecutive. For example, if we write “Tweedledum {} and Tweedledee”, we will
get “Tweedledum and Tweedledee”, where, if you look closely enough, you will
see two consecutive spaces between the first two words.

The same happens with the reserved “~” character, although its effect is to generate
a blank space even though it really isn't one: a blank space followed by a ~ will
not absorb the latter, and a blank space after ~ will not be absorbed either.

4.2.2 Line breaks
In most text editors, when a line exceeds the maximum width, a line break is
automatically inserted. We can also expressly insert a line break by pressing the
“Enter” or “Return” key.

ConTEXt applies the following rules to line breaks:

a. A single line break is, to all intents and purposes, equal to a blank space.
Therefore, if immediately before or after the line break there is any blank
space or tab, these will be absorbed by the line break or the first blank space,
and in the final document a simple blank space will be inserted.

b. Two or more consecutive line breaks create a paragraph break. For this, two
line breaks are considered to be consecutive if there is nothing but blank spaces
or tabs between the first and second line break (because these are absorbed
by the first line break); which, in short, means that one or more consecutive
lines that are absolutely blank in the source file (without any character in
them, or only with blank spaces or tabs) become a paragraph break.

Note that I said “two or more consecutive line breaks” and then “one or more blank
consecutive lines”, meaning that if we want to increase the separation between
paragraphs, we do not do so simply by inserting another line break. For this we
need to use the command that increases vertical space. If we only want one extra

Chapter 4 Source files and projects 73

line of separation, we can use the \blank command. But there are other procedures
for increasing vertical space. I refer to section 11.2.

On some occasions, when a line break becomes white space, we can end up with some unde
sirable and unexpected white space. Especially when we are writing macros, where it is easy
for a blank space to “sneak in” without us realising it. To avoid this we can use the reserved
character “%” which, as we know, causes the line where it appears not to be processed, which
implies that the break at the end of the line will also not be processed. So, for example, the
command

\define[3]\Test{
{\em #1}
{\bf #2}
{\sc #3}

}

that writes its first argument in italics, the second in bold and the third in small caps, would
insert a blank space between each of these arguments, while

\define[3]\Test{%
{\em #1}%
{\bf #2}%
{\sc #3}%

}

will not insert any blank space between them, since the reserved character % prevents line
breaks from being processed and just become a blank space.

4.2.3 Rules/dashes
Dashes are a good example of the difference between a computer keyboard and
printed text. On a normal keyboard, there is usually only one character for the
dash (or rule, in typographic terms) which we call the hyphen or (“-”); but a
printed text uses up to four different lengths for rules:

• Short rules (hyphens), like those used to separate syllables in hyphenation at
the end of a line (-).

• Medium-sized rules (en dashes or en rules), slightly longer than the previous
ones (–). They have a number of uses including, for some European languages
(less so in English) the beginning of a line of dialogue, or to separate the lesser
from the greater digits in a range in dates or pages; “pp. 12–33”.

• Long rules (em dashes or em rules) (—), used as parentheses to include one
sentence within another.

• Minus sign (−) to represent subtraction or a negative number.

Today, all the above and others besides are available in UTF-8 encoding. But
since they can't all be generated by a single key on the keyboard, they are not so
easy to produce in a source file. Fortunately, TEX saw the need to include more

Chapter 4 Source files and projects 74

rules/dashes in our final document than could be produced by the keyboard, and
designed a simple procedure to do so. ConTEXt has complemented this procedure
by also adding commands that generate these various kinds of rules. We can use
two approaches for generating the four kinds of rule: either the ordinary ConTEXt
way with a command, or directly from the keyboard. These procedures are shown
in table 4.2:

Type of rule Appearance Written directly Command
Hyphen - - \hyphen
En rule – -- \endash
Em rule — --- \emdash
Minus sign − $-$ \minus

Table 4.2 Rules/dashes in ConTEXt

The command names \hyphen and \minus are the ones normally used in Eng
lish. While many in the printing industry call them ‘rules’, TEX's terms, namely
\endash and \emdash are also common in typesetting terminology. The “en” and
“em” are the names of units of measure used in typography. An “en” represents
the width of an ‘n’ while an “em” is the width of an ‘m’ in the font being used.

4.3 Simple and multifile projects
In ConTEXt we can use just one source file that includes absolutely all the contents
of our final document as well as all the details relating to it, in which case we are
talking about “simple projects”, or, by contrast, we could use a number of source
files which share the contents of our final document, and in this case we are talking
about “multifile projects”.

The scenarios where it is typical to work with more than one source file are as
follows:

• If we are writing a document in which a number of authors have collaborated,
each with their own part different from the others; for example, if we are
writing a festschrift with contributions from different authors, or the number
of a journal, etc.

• If we are writing a lengthy document where each part (chapter) has relative
autonomy, so that the final arrangement of these allows for several possibil
ities and will be decided at the end. This occurs with relative frequency for
many academic texts (manuals, introductions and the like) where the order of
chapters may vary.

• If we are writing a number of related documents that share some style charac
teristics.

Chapter 4 Source files and projects 75

• If, put simply, the document we are working on is large, such that the com
puter slows down either when editing or compiling it; in this case, splitting the
material across several source files will considerably speed up the compilation
for each.

• Also, if we have written a number of macros that we want to apply in some (or
all) our documents, or if we have generated a template that controls or styles
our documents and we want to apply these to them, etc.

4.4 Structure of the source file in simple
projects

In simple projects developed in a single source file, the structure is very simple
and revolves around the “text” environment that must essentially appear in the
same file. We differentiate between the following parts of this file:

• The document preamble: everything from the first line in the file up to the
beginning of the “text” environment (\starttext).

• The body of the document: this is the contents of the “text” environment;
or in other words, everything between \starttext and \stoptext.

% First line of the document

% Preamble area:
% Containing the global configuration
% commands for the document

\starttext % The body of the document begins here

...

... % Document contents

...

\stoptext % End of the document

Figure 4.1 file containing a simple project

In figure 4.1 we see a very simple source file. Absolutely everything before the com
mand \starttext (which in the image is on line 5, counting only those with some
text), constitutes the preamble; everything between \starttext and \stoptext
constitutes the body of the document. Anything after stoptext will be ignored.

The preamble is used to include commands that are to affect the document as a
whole, the ones that determine its overall configuration. It is not essential to write

Chapter 4 Source files and projects 76

any command in the preamble. If there is none, ConTEXt will adopt a default
configuration which is not very developed but could do for many documents. In a
well-planned document, the preamble will contain all the commands affecting the
document as a whole, like macros and customised commands to be used in the
source file. In a typical preamble, this could include the following:

• An indication of the document's main language (See section 10.5).
• An indication of paper size (section 5.1) and page layout (section 5.3).
• Features of the documents main font (section 6.3).
• Customisation of the section commands to be used (section 7.4) and, if needs

be, definition of new section commands (section 7.5).
• Layout of headers and footers (section 5.6).
• Settings for our own macros (section 3.7).
• Etc.

The preamble is intended for the overall configuration of the document; therefore
nothing that is to do with the contents of the document, or processable text, should
be there. In theory, any processable text included in the preamble will be ignored,
although sometimes, if it is there, it will cause a compiling error.

The body of the document, framed between the \starttext and \stoptext
commands includes the actual contents, meaning processable text, along with Con
TEXt commands that should not affect the whole document.

4.5 Multifile management in TEX style
In order to work with more than one source file, TEX included the primitive called
\input, which also works in ConTEXt, although the latter includes two specific
commands that to some extent perfect the way \input functions.

4.5.1 The \input command
The \input command inserts the contents of the file it indicates. Its format is:

\input FileName

where FileName is the name of the file to insert. Note that it is not necessary for
the file name to be enclosed between curly brackets, even though it will not throw
an error if this is done. However, it should never be put between square brackets.
If the file extension is “.tex”, it can be omitted.

When ConTEXt is compiling a document and finds an \input command, it looks
for the file indicated and continues compiling as if this file were part of the file that
called it. When it finishes compiling it, it returns to the original file and continues

Chapter 4 Source files and projects 77

from where it left off; the practical result is, therefore, that the contents of the file
called by means of \input are inserted at the point where that is called. The file
called with \input must have a valid name in our operating system and no blank
spaces within the name. ConTEXt will look for it in the working directory, and if
it doesn't find it there, it will look for it in directories included in the variable of
the TEXROOT environment. If the file is not ultimately found, it will produce a
compilation error.

The most common use of the \input command is as follows: a file is written, let's
call it “principal.tex”, and this will be used as a container for calling, through
the \input command, the various files that make up our project. This is shown in
the following example:

% General configuration commands:

\input MyConfiguration

\starttext

\input PageTitle
\input Preface
\input Chap1
\input Chap2
\input Chap3

...

\stoptext

Note how, for the general configuration of the document, we have called the file
“MyConfiguration.tex” which we assume contains the global commands we want
to apply. Then, between the commands \starttext and \stoptext we call the
several files that contain the contents of the various parts of our document. If, at a
given moment, to speed up the compiling process, we want to leave out compiling
some files, all we need to do is put a comment mark at the beginning of the line
calling that or those files. For example, if we are writing the third chapter and we
want to compile it simply to check that there are no errors in it, we don't need to
compile the rest and therefore can write:

Chapter 4 Source files and projects 78

% General configuration commands:

\input MyConfiguration

\starttext

% \input PageTitle
% \input Preface
% \input Chap1
% \input Chap2

\input Chap3

...

\stoptext

and only Chapter 3 will be compiled. Note how, on the other hand, changing the
order of chapters is as simple as changing the order of the lines calling them.

When we exclude a file in a multifile project from being compiled, we gain in processing speed,
but as a result, all the references that the part being compiled makes to other parts not as yet
compiled will no longer work. See section 9.2.

It is important to be clear that when we are working with \input, only the main
file, the one that calls all the others, must include the \starttext and \stoptext
commands, because if the other files include them, there will be an error. This,
on the other hand, means that we cannot directly compile the different files that
make up the project, but must necessarily compile them from the main file, which
is the one that houses the basic structure of the document.

4.5.2 \ReadFile and \readfile
As we have just seen, if ConTEXt does not find the file called with \input, it will
generate an error. For the situation where we want to insert a file only if it exists,
but allowing for the possibility that it might not, ConTEXt offers a variation of
the \input command. This is

\ReadFile{FileName}

This command is similar to \input in every respect, with the only exception that
if the file to be inserted is not found, it will continue compiling without generating
any kind of error. It also differs from \input in its syntax, since we know that with
\input it is not necessary to put the file name of the file to be inserted between
curly brackets. But with \ReadFile it is necessary. If we don't use curly brackets,
ConTEXt will think that the name of the file to be sought is the same as the first
character that follows the \ReadFile command, followed by the extension .tex.
So, for example, if we write

\ReadFile MyFile

Chapter 4 Source files and projects 79

ConTEXt will understand that the file to be read is called “M.tex”, since the
character immediately after the command \ReadFile (excluding blank spaces that
are, as we know, ignored at the end of a command name) is an ‘M’. Since ConTEXt
will not normally find a file called “M.tex”, and \ReadFile does not generate an
error if it doesn't find the file, ConTEXt will continue compiling after the ‘M’ in
“MyFile”, and will insert the text “yFile”.

A more refined version of \ReadFile is \readfile whose format is

\readfile{FileName}{TextIfExists}{TextIfNotExists}

The first argument is similar to \ReadFile: the name of a file enclosed between
curly brackets. The second argument includes the text to be written if the file
exists, before inserting the contents of the file. The third argument includes the
text to be written if the file in question is not found. This means that depending on
whether or not the file entered as the first argument is found, the second argument
(if the file exists) or the third (if the file does not exist) will be executed.

4.6 ConTEXt projects as such
The third mechanism that ConTEXt offers for multifile projects is more complex
and complete: it starts by distinguishing between project files, product files, com
ponent files and environment files. To understand the relations and functioning of
each of these types of file, I think it is best to explain them each individually:

4.6.1 Environment files
An environment file is a file that stores the macros and configurations of a specific
style that is intended to be applied to several documents, whether they are com
pletely independent documents or parts of a complex document. The environment
file, therefore, can include everything we would normally write before \starttext;
that is: the general configuration of the document.

I have retained the term “environment files” for these kinds of files, in order not to depart from
the ConTEXt official terminology, even though I believe that a better term would probably be
“format files” or “global configuration files”.

Like all ConTEXt source files, the environment files are text files, and assume
that the extension will be “.tex”, although if we want we can change it, per
haps to “.env”. Usually this is not done in ConTEXt however. Most often the
environment file is identified by starting or ending the name with ‘env’. For exam
ple:“MyMacros_env.tex” or “env_MyMacros.tex”. The inside of such an environ
ment file would look something like the following:

Chapter 4 Source files and projects 80

\startenvironment MyEnvironment

\mainlanguage[en]

\setupbodyfont
[modern]

\setupwhitespace
[big]

...

\stopenvironment

Or in other words, definitions and configuration commands come within \starten
vironment and \stopenvironment. Immediately following \startenvironment
we write the name by which we want to identify the environment in question, and
then include all the commands we would like our environment to be made up of.

With regard to the name of the environment, according to my tests, the name we add imme
diately after \startenvironment is merely indicative, and if we were to give it no name, then
nothing (bad) happens.

Environment files were intended to work with components and products (explained
in the next section). This is why one or more environments can be called from a
component or a product using the \environment command. But this command
also works if it is used in the configuration area (preamble) of any ConTEXt source
file, even if it is not a source file intended to be compiled in parts.

The \environment command can be called using either of the two following for
mats:

\environment File

\environment[File]

In either case, the effect of this command will be to load the contents of the file
taken as an argument. If that file is not found, it will continue compiling in a
normal way without generating any error. If the file extension is “.tex”, it can be
omitted.

4.6.2 Components and products
If we think of a book where each chapter is in a different source file, then we would
say that the chapters are components and the book is the product. This means
that the component is an autonomous part of a product, able to have its own style
and to be compiled independently. Each component will have a different file, and,
in addition, there will be a product file that brings all the components together.

Chapter 4 Source files and projects 81

A typical component file would be as follows

\environment MyEnvironment
\environment MyMacros

\startcomponent Chapter1

\startchapter[title={Chapter 1}]

...

\stopcomponent

And a product file would look like the following:

\environment MyEnvironment
\environment MyMacros

\startproduct MyBook

\component Chapter1
\component Chapter2
\component Chapter3

...

\stopproduct

Note that the actual contents of our document will be distributed among the
various ‘component’ files and the product file is limited to establishing the order of
the components. On the other hand, the (individual) components and the products
can be compiled directly. Compiling a product will generate a PDF file containing
all the components of that product. If, on the other hand, one of the components
is compiled individually, it will generate a pdf file containing only the compiled
component.

Within a component file, and before the \startcomponent command, we can call
one or more environment files with \environmentEnvironmentName. We can do
the same in the product file before \startproduct. Several environment files can
be loaded simultaneously. We can, for example, have our favourite collection of
macros and the different styles we apply to our documents all in different files.
Please note, however, that when we use two or more environments, these are
loaded in the order in which they are called, so that if the same configuration
command has been included in more than one environment, and it has different
values, the values of the last loaded environment will apply. On the other hand,
environment files are loaded only once, so in the previous examples in which the
environment is called from the product file and from specific component files, if we
compile the product, that is the time when the environments are loaded, and in the

Chapter 4 Source files and projects 82

order indicated there; when an environment is called from any of the components,
ConTeXt will check if that environment is already loaded, in which case it will do
nothing.

The name of the component that is called from a product must be the name of
the file that contains the component in question, although, if the extension of this
file is “.tex”, it can be omitted.

4.6.3 Projects as such
The distinction between products and components is sufficient in most cases. Just
the same, ConTEXt has an even higher level where we can group a number of
products: this is the project.

A typical project file would be more or less as follows

\startproject MyCollection

\environment MyEnvironment
\environment MyMacros

\product Book01
\product Book02
\product Book03

...

\stopproject

A scenario where we would need a project would be, for example, where we need
to edit a collection of books, all with the same format specifications; or if we were
editing a journal: the collection of books, or the journal as such, would be the
project; each book or each journal issue would be a product; and each chapter of
a book or each article in a journal issue would be a component.

Projects, on the other hand, are not intended to be compiled directly. Consider that
by definition each product belonging to the project (each book in the collection,
or each journal issue) should be compiled separately and generate its own PDF.
Therefore the \product command included in it to indicate what products belong
to the project, actually does nothing: it is simply a reminder for the author.

Clearly, some could ask why we have projects if they can't be compiled: the answer
is that the project file links certain environments to the project. This is why,
if we include the \projectProjectName command in a component or product
file, ConTEXt will read the project file and automatically load the environments
linked to it. This is why the \environment command in projects has to come
after \startproject; however, in products and components, \environment has
to come before \startproduct or \startcomponent

Chapter 4 Source files and projects 83

Just like with the \environment and \component commands, the \project com
mand allows us to indicate the project name either inside square brackets or not use
square brackets at all. This means that \project FileName and \Project[File
Name] are equivalent commands.

Summary of the different ways of loading an environment

It follows from the above that an environment can be loaded by any of the following
procedures:

a. By inserting the \environment EnvironmentName command before \start
text or \startcomponent. This will load the environment for compiling the
file in question only.

b. By inserting the \environment EnvironmentName command in a product file
before \startproduct. This will load the environment when the product is
compiled, but not if its components are compiled individually.

c. By inserting the \project command in a product or environment: this will
load all environments linked to the project (in the project file).

4.6.4 Common aspects of environments,
components, products and projects

Names of environments, components, products and projects: We have
already seen that, for all these elements, after the \start command that ini
tiates a particular environment, component, product or project, its name is
entered directly. This name, as a rule, must coincide with the name of the
file containing the environment, component or product because, for example,
when ConTEXt is compiling a product and, according to the product file must
load an environment or component, we have no way of knowing which file that
environment or component is unless the file has the same name as the element
to be loaded.

Otherwise, according to my tests, the name written after \startproduct or
\startenvironment in the product and environment files is merely indicative.
If it is omitted, or does not match the name of the file, nothing bad happens.
However, in the case of components, it is important that the name of the
component matches the name of the file that contains it.

Structure of project directories: We know that by default ConTEXt looks
for files in the working directory and in the path indicated by the TEXROOT
variable. However, when we use the \project, \product, \component or \en
vironment commands it is assumed that the project has a directory structure
in which common elements are found in the parent directory, and the specific

Chapter 4 Source files and projects 84

ones in some child directory. So, if the file indicated in the working directory is
not found, it will be searched for in its parent directory, and if it is not found
there either, in that directory's parents directory, and so on.

85

II
Global aspects of the

document

86

Chapter 5
Pages and document

pagination
Table of Contents: 5.1 Page size; 5.1.1 Setting page size; 5.1.2 Using non-standard
page sizes; 5.1.3 Changing the page size at any point in the document; 5.1.4 Adjust
ing the page size to its contents; 5.2 Elements on the page; 5.3 Page layout
(\setuplayout); 5.3.1 Assigning a size to the different page components; 5.3.2 Adapt
ing the page layout; 5.3.3 Using multiple page layouts; 5.3.4 Other matters related
to page layout; A Distinguishing between odd and even pages; B Pages with more
than one column; 5.4 Page numbering; 5.5 Forced or suggested page breaks;
5.5.1 The \page command; 5.5.2 Joining certain lines or paragraphs to prevent a page
break from being inserted between them; 5.6 Headers and footers; 5.6.1 Commands
for establishing the content of headers and footers; 5.6.2 Formatting headers and foot
ers; 5.6.3 Defining specific headers and footers and linking them to section commands;
5.7 Inserting text elements in page edges and margins;

ConTEXt transforms the source document into correctly formatted pages. What
these pages look like, how the text and blank spaces are distributed and what
elements they have, are all fundamental for good typesetting. This chapter is
dedicated to all these questions, and to some other matters relating to pagination.

5.1 Page size
5.1.1 Setting page size
By default, ConTEXt assumes that documents will be of A4 size, the European
standard. We can establish a different size with \setuppapersize that is the
typical command found in the document preamble. The normal syntax of this
command is:

\setuppapersize[LogicalPage][PhysicalPage]

Chapter 5 Pages and document pagination 87

where both arguments take symbolic names.1 The first argument, that I have called
LogicalPage, represents the page size to be taken into consideration for typesetting;
and the second argument, PhysicalPage, represents the size of the page it will be
printed on. Normally both sizes are the same, and the second argument can then
be omitted; however, on occasions the two sizes can be different, as, for example,
when printing a book in sheets of 8 or 16 pages (a common printing technique,
especially for academic books until approximately the 1960s). In these cases, Con
TEXt allows us to distinguish both sizes; and if the idea is that several pages are
to be printed on a single sheet of paper, we can also indicate the folding scheme to
be followed by using the \setuparranging command (which will not be explained
in this introduction).

For typesetting size we can indicate any of the predefined sizes used by the paper
industry (or by ourselves). This includes:

• Any of the A, B and C series defined by the ISO-216 (from A0 to A10, from
B0 to B10 and from C0 to C10), generally in use in Europe.

• Any of the US standard sizes: letter, ledger, tabloid, legal, folio, executive.

• Any of the RA and RSA sizes defined by the ISO-217 standard.

• The G5 and E5 sizes defined by the Swiss SIS-014711 standard (for doctoral
theses).

• For envelopes: any of the sizes defined by the North American standard (enve
lope 9 to envelope 14) or by the ISO-269 standard (C6/C5, DL, E4).

• CD, for CD covers.

• S3 – S6, S8, SM, SW for screen sizes in documents not intended to be printed
but shown on screen.

Together with the paper size, with \setuppapersize we can indicate page orien
tation: “portrait” (vertical) or “landscape”(horizontal).

Other options that \setuppapersize allows, according to the ConTEXt wiki, are “rotated”,
“90”, “180”, “270”, “mirrored” and “negative”. In my own tests I have only noticed some
perceptible changes with “rotated” that inverts the page, although it is not exactly an inver
sion. The numerical values are supposed to produce the equivalent degree of rotation, on their
own or in combination with “rotated”, but I have been unable to get them to work. Nor have
I exactly discovered what “mirrored” and “negative” are for.

1 Recall that in section 3.5 I indicated that the options taken by ConTEXt commands are basically
of two kinds: symbolic names, whose meaning is already known to ConTEXt, or variable that we
must explicitly assign some value to.

Chapter 5 Pages and document pagination 88

The second argument of \setuppapersize, that I have already said can be omit
ted when the print size is no different from the typesetting size, can take the
same values as the first, indicating paper size and orientation. It can also take
“oversized” as a value that – according to ConTEXt wiki – adds a centimetre and
a half to each corner of the paper.

According to the wiki there are other possible values for the second argument: “undersized”,
“doublesized” and “doubleoversized”. But in my own tests I have not seen any change
after using any of these; nor does the official definition of the command (see section 3.6)
mention these options.

5.1.2 Using non-standard page sizes
If we want to use a non-standard page size, there are two things we can do:

1. Use an alternative syntax of \setuppapersize that allows us to introduce the
height and width of the paper as dimensions.

2. Define our own page size, assigning a name to it and using it as if it were a
standard paper size.

Alternative syntax of \setuppapersize

Other than the syntax we have already seen, \setuppapersize allows us to use
this other one:

\setuppapersize[Name][Options]

where Name is an optional argument that represents the name assigned to a pa
per size with \definepapersize (that we will look at next), and Options are of
the kind where we assign an explicit value. Among the allowable options we can
highlight the following:

• width, height that represent, respectively, the width and height of the page.

• page, paper. The first refers to the size of the page to be typeset, and the
second to the size of the page to be physically printed on. This means that
“page” is equivalent to the first argument of \setuppapersize in its normal
syntax (explained above) and “paper” to the second argument. These options
can take the same values indicated earlier (A4, S3, etc.).

• scale, indicates a scaling factor for the page.

• topspace, backspace, offset, additional distances.

Defining a customised page size
To define a customised page size, we use the \definepapersize command, whose
syntax is

Chapter 5 Pages and document pagination 89

\definepapersize[Name][Options]

where Name refers to the name given to the new size and Options can be:

• Any of the allowable values for \setuppapersize in its normal syntax (A4,
A3, B5, CD, etc).

• Measurements of width (of the paper), height (of the paper) and offset (dis
placement), or a scaled value (“scale”).

What is not possible is to mix the values allowed for \setuppapersize with mea
surements or scale factors. This is because in the first case the options are symbolic
words and in the second, variables given an explicit value; and in ConTEXt, as I
have already said, it is not possible to mix both kinds of options.

When we use \definepapersize to indicate a paper size that coincides with some
of the standard measurements, in actual fact, rather than defining a new paper
size, what we are doing is defining a new name for an already existing paper size.
This can be useful if we want to combine a paper size with an orientation. So, for
example, we can write

\definepapersize[vertical][A4, portrait]
\definepapersize[horizontal][A4, landscape]

5.1.3 Changing the page size at any point in the
document

In most cases documents only have one page size and this is why \setuppapersize
is the typical command we include in the preamble and use only once in each
document. However, on some occasions it might be necessary to change the size
at some point in the document; for example, if from a certain point onwards an
annex is included in which the sheets are landscape.

In such cases we can use \setuppapersize at the precise point where we want
the change to happen. But since the size would change immediately, to avoid
unexpected results we would normally insert a forced page break before \setup
papersize.

If we only need to change the page size for an individual page, instead of using
\setuppapersize twice, once to change to the new size, and the second to return
to the original size, we can use \adaptpapersize that changes the page size, and,
a page later, automatically resets the value prior to it being called. And just the
same as we did with \setuppapersize, before using \adaptpapersize we should
insert a forced page break.

Chapter 5 Pages and document pagination 90

5.1.4 Adjusting the page size to its contents
There are three environments in ConTEXt that generate pages of the exact size for
storing their contents. These are \startMPpage, \startpagefigure and \start
TEXpage. The first generates a page that contains a graphic generated with Meta
Post, a graphic design language that integrates with ConTEXt, but which I will
not deal with in this introduction. The second does the same with an image and
perhaps some text beneath it. It takes two arguments: the first identifies the file
containing the image. I will deal with this in the chapter dedicated to external
images. The third (\startTEXpage) contains the text which is its contents on a
page. Its syntax is:

\startTEXpage[Options] ... \stopTEXpage

where the options can be any of the following:

• strut. I am not sure about the usefulness of this option. In ConTEXt terminol
ogy, a strut is a character lacking width, but with maximum height and depth,
but I don't quite see what that has to do with the overall usefulness of this
command. According to the wiki this option allows for the values “yes”, “no”,
“global” and “local”, and where the default value is “no”.

• align. Indicates text alignment. This can be “normal”,“flushleft”,
“flushright”, “middle”, “high”, “low” or “lohi”.

• offset to indicate the amount of white space around the text. It can be “none”,
“overlay” if an overlay effect is desired, or an actual dimension.

• width, height where we can indicate a width and height for the page, or the
value “fit” so that the width and height are those required by the text that
is included in the environment.

• frame that is “off” by default but can take the value “on” if we want a border
around the text on the page.

5.2 Elements on the page
ConTEXt recognises different elements on pages, whose dimensions can be con
figured with \setuplayout. We will look at this immediately, but beforehand it
would be best to describe each of the page elements, indicating the name that
\setuplayout knows each of them by:

• Edges: white space surrounding the text area. Although most word processors
call them “margins”, using ConTEXt's terminology is preferable since it enables
us to differentiate between edges as such, where there is no text (although in

Chapter 5 Pages and document pagination 91

electronic documents there can be navigation buttons and the like), and mar
gins where certain text elements can sometimes be located, like, for example,
margin notes.

– The height of the upper edge is controlled by two measurements: the up
per edge itself (“top”) and the distance between the upper edge and the
header (“topdistance”). The sum of these two measurements is called
“topspace”.

– The size of the left and right edges depends on the “leftedge” “rightedge”
measurements respectively. If we want both to be of the same length we can
configure them simultaneously with the “edge” option.

In documents intended for double-sided printing, we don't talk about left
and right edges but inner and outer ones; the first is the edge closest to the
point where the sheets will be stapled or sewn, i.e. the left edge on odd-
numbered pages and the right edge on even-numbered pages. The outer
edge is the opposite of the inner edge.

– The height of the lower edge is called “bottom”.

• Margins properly so called. ConTEXt only calls side margins (left and right)
margins. Margins are located between the edge and the main text area and
are intended to host certain text elements such as, for example, margin notes,
section titles or their numbers.

The dimensions that control margin size are:

– margin: used when we want to simultaneous set the margins at the same
size.

– leftmargin, rightmargin: set the size of the left and right margins re
spectively.

– edgedistance: Distance between the edge and the margin.

– leftedgedistance, rightedgedistance: Distance between the edge and
the left and right margins respectively.

– margindistance: Distance between the margin and the main text area.

– leftmargindistance, rightmargindistance: Distance between the main
text area and right and left margins respectively.

– backspace: this measurement represents the space between the left corner
of the paper and the beginning of the main text area. Therefore it is made
up of the sum of “leftedge” + “leftedgedistance” + “leftmargin” +
“leftmargindistance”.

Chapter 5 Pages and document pagination 92

• Header and footer: The header and footer of a page are two areas that are
located, respectively, in the top or bottom of the written area of the page.They
usually contain information that helps to contextualise the text, such as the
page number, the name of the author, the title of the work, the title of the
chapter or section, etc. In ConTEXt these areas on the page are affected by the
following dimensions:

– header: Height of the header.

– footer: Height of the footer

– headerdistance: Distance between the header and the page's main text
area.

– footerdistance: Distance between the footer and the page's main text
area.

– topdistance, bottomdistance: Both mentioned previously. They are the
distance between the upper edge and header or the lower edge and footer,
respectively.

• Main text area: this is the widest area on the page, holding the document's
text. It size depends on the “width” and “textheight” variables. The “height”
variable, for its part, measures the sum of “header”, “headerdistance”,
“textheight”, “footerdistance” and “footer”.

We can see all these areas in image 5.1 along with the names given to the corre
sponding measurements, and arrows indicating their extent. The thickness of the
arrows together with the size of the names of the arrows are intended to reflect the
importance of each of these distances for the page layout. If we look closely, we will
see that this image shows that a page can be represented as a table with 9 rows
and 9 columns, or, if we do not take into account the separation values between
the different areas, there would be five rows and five columns of which there can
only be text in three rows and three columns. The intersection of the middle row
with the middle column constitutes the main text area and will normally take up
the majority of the page.

In the layout phase of our document, we can see all the page measurements with
\showsetups. To see the main outlines of text distribution indicated visually on
the page, we can use \showframe; and with \showlayout we can get a combination
of the previous two commands.

Chapter 5 Pages and document pagination 93

Figure 5.1 Areas and measurements on a page

5.3 Page layout (\setuplayout)
5.3.1 Assigning a size to the different page com

ponents
Page design involves assigning specific sizes to the respective areas of the page.
This is done with \setuplayout. This command allows us to alter any of the
dimensions mentioned in the previous section. Its syntax is as follows:

\setuplayout[Name] [Options]

where Name is an optional argument used only for the case where we have designed
multiple layouts (see section 5.3.3), and the options are, besides others we will
see later, any of the measurements previously mentioned. Bear in mind, however,
that these measurements are inter-related since the sum total of the components
affecting width, of those affecting height must coincide with the width and height
of the page. In principle this will mean that when changing a horizontal length,
we must adjust the remaining horizontal lengths; and the same when adjusting a
vertical length.

Chapter 5 Pages and document pagination 94

By default, ConTEXt only carries out automatic adjustments of dimensions in some
cases which, on the other hand, are not indicated in any complete or systematic
way in its documentation. By carrying out several tests I was able to verify, for
example, that a manual increase or decrease in the height of the header or footer
entails an adjustment in “textheight”; however a manual change of some of the
margins does not automatically adjust (according to my tests) the text width
(“width”). This is why the most efficient way to not generate any inconsistency
between the page size (set with \setuppapersize) and the size of its respective
components, is:

• Regarding horizontal measurements:

– By adjusting “backspace” (that includes “leftedge” and “leftmargin”).

– By adjusting “width” (text width) not with a dimensions but with the
“fit” or “middle” values:

⋆ fit calculates the width of the text on the basis of the width of the rest
of the page's horizontal components.

⋆ middle does the same, but first makes right and left margins equal.

• Regarding vertical measurements:

– By adjusting “topspace”.

– By adjusting the “fit” or “middle” values to “height”. These work the
same way as in the case of width. The first calculates the height based on
the rest of the components, and the second first makes the upper and lower
margins equal, and then calculates the text height.

– Once “height” is adjusted, by adjusting the height of the header or footer
if necessary, knowing that in such cases “textheight” will be automatically
readjusted.

• Another possibility for indirectly determining the height of the main text area,
is by indicating the number of lines that are to fit in it (bearing in mind the
current interline space and font size). This is why \setuplayout includes the
“lines” option.

Placing the logical page on the physical page

In the case where the logical page size is not the same as the physical page size
(see section 5.1.1) \setuplayout allows us to configure some additional options
affecting the placement of the logical page on the physical page:

Chapter 5 Pages and document pagination 95

• location: This option determines the place where the page will be placed
on the physical page. Its possible values are left, middle, right, top, bottom,
singlesided, doublesided or duplex.

• scale: Indicates a scaling factor for the page before placing it on the physical
page.

• marking: Will print visual marks on the page to indicate where the paper is to
be cut.

• horoffset, veroffset, clipoffset, cropoffset, trimoffset, bleed
offset, artoffset: A series of measures indicating different displacements
in the physical page. Most of these are explained in the 2013 reference manual.

These \setuplayout options must be combined with indications from \setupar
ranging that indicates how logical pages are to be ordered on the physical sheet
of paper. I will not explain these commands in this introduction, since I haven't
carried out any tests on them.

Getting the width and heights of the text area
The \textwidth and \textheight commands return the width and height of the
text area respectively. The values these commands offer cannot be directly shown
in the final document, but they can be used for other commands to set their width
or height measurements. So, for example, to indicate that we want an image whose
width will be 60% of the width of the line, we need to indicate as the value of the
image's “width” option: “width=0.6\textwidth”.

5.3.2 Adapting the page layout
It could be that our page layout on a particular page produces an undesired result;
like, for example, the final page of a chapter with only one or two lines, which is
neither typographically or aesthetically desirable. To solve these cases, ConTEXt
provides the \adaptlayout command that allows us to alter the size of the text
area on one or more pages. This command is intended to be used only when
we have already finished writing our document and are making some small final
adjustments. Therefore, its natural location is in the preamble to the document.
The command's syntax is:

\adaptlayout[Pages] [Options]

where Pages refers to the number of the page or pages whose layout we want to
change. It is an optional argument that is to be used only when \adaptlayout is
placed in the preamble. We can indicate just one page, or several pages, separating
the numbers with comnmas. If we omit this first argument, \adaptlayout will
exclusively affect the page on which it finds the command.

Chapter 5 Pages and document pagination 96

As for the options, they can be:

• height: Allows us to indicate, as a dimensions, the height the page in question
should have. We can indicate an absolute height (e.g. “19cm”) or a relative
height (e.g. “+1cm”, “-0.7cm”).

• lines: We can include the number of lines to add or subtract. To add lines
the value is preceded by a +, and to subtract lines, by the − sign (not just a
hyphen).

Consider that when we change the number of lines on a page, this could affect the
pagination of the rest of the document. this is why it is recommended that we use
\adaptlayout only at the end, when the document will not have further changes,
and to do it in the preamble. Then we go to the first page we wish to adapt, do
so and check how it affects the pages that follow; if it affects it in such a way that
another page needs adapting, we add its number and compile once again, and so
on.

5.3.3 Using multiple page layouts
If we need to use different layouts in different parts of the document, the best way
is to begin by defining the general layout and then the various alternative ones,
those that only change the dimensions that need to be different. These alternative
layouts will inherit all the features of the overall layout which will not change as
part of its definition. To specify an alternative layout and give it a name we can
later call it with, we use the \definelayout command whose general syntax is:

\definelayout[Name/Number] [Configuration]

where Name/Number is the name associated with the new design, or the page
number where the new layout will be automatically activated, and Configuration
will contain the aspects of the layout that we wish to change by comparison with
the overall layout.

When the new layout is associated with a name, to call it at a particular point in
the document we use:

\setuplayout[LayoutName]

and to return to the general layout:

\setuplayout[reset]

If, on the other hand, the new layout was associated with a specific page number, it
will be automatically activated when the page is reached. However, once activated,
to return to the general design we will have to explicitly indicate this, even though

Chapter 5 Pages and document pagination 97

we can semi-automate this. For example, if we want to apply a layout exclusively
to pages 1 and 2, we can write in the document's preamble:

\definelayout[1][...]
\definelayout[3][reset]

The effect of these commands will be that the layout defined in the first line is
activated on page 1 and on page 3 another layout is activated the function of which
is only to return to the general layout.

With \definelayout[even] we create a layout that is activated on all even pages;
and with \definelayout[odd] the layout will be applied to all odd pages.

5.3.4 Other matters related to page layout

A. Distinguishing between odd and even pages

In double-sided printed documents it is often the case that the header, page num
bering and side margins differ between odd and even pages. Even-numbered pages
are also called left hand (verso) pages and odd pages, right hand (recto) pages. In
these cases it is also usual for the terminology regarding margins to change, and
we talk about inner and outer margins. The former is located at the closest point
to where the pages will be sewn or stapled and the latter on the opposite side. On
odd-numbered pages, the inner margin corresponds to the left margin and on even
pages the outer margin corresponds to the right margin.

\setuplayout does not have any option expressly allowing us to tell it that we
want to differentiate between the layout for odd and even pages. This is because
for ConTEXt the difference between both kinds of pages is set with a different
option: \setuppagenumbering that we will see in section 5.4. Once this has been
set, ConTEXt assumes that the page described with \setuplayout was the odd
page, and builds the even page by applying the inverted values for the odd page
to it: the specifications applicable on the odd-numbered page apply to the left, on
the even-numbered page they apply to the right; and vice versa: those applicable
on the odd-numbered page on the right, apply to the even-numbered page on the
left.

B. Pages with more than one column

With \setuplayout we can also see that the text of our document is distributed
across two or more columns, in the way that newspapers and some magazines do,
for example. This is controlled by the “columns” option the value of which has to
be a whole number. When there is more than one column, the distance between
the columns is indicated by the “columndistance” option.

Chapter 5 Pages and document pagination 98

This option is intended for documents in which all the text (or most of it) is
distributed across multiple columns. If, in a document that is mainly a one column
document, we want a particular part to be two or three columns, we do not need to
alter the page layout but simply use the “columns” environment (see section 12.2).

5.4 Page numbering
By default, ConTEXt uses Arabic numbers for page numbering and the number
appears centred in the header. To alter these features, ConTEXt it has different
procedures which, in my opinion, make it unnecessarily complex where this matter
is concerned.

Firstly, the fundamental characteristics of numbering are controlled by two differ
ent commands: \setuppagenumbering and \setupuserpagenumber.

\setuppagenumbering allows the following options:

• alternative: This option controls whether the document is designed so that
the header and footer are identical on all pages (“singlesided”), or whether
they differentiate odd and even pages (“doublesided”). When this option takes
the latter value, automatically the page layout values introduced by “setup
layout” are affected, so that it is assumed that what is indicated in “setup
layout” refers only to odd-numbered pages, and therefore what is arranged for
the left margin actually refers to the inner margin (which on even-numbered
pages is on the right) and that what is arranged for the right side actually
refers to the outer margin, which on even-numbered pages is on the left.

• state: Indicates whether or not the page number will be displayed. It allows
two values: start (page number will be displayed) and stop (page numbers
will be suppressed). The name of these values (start and stop) could make us
think that when we have “state=stop” pages stop being numbered, and when
“state=start” numbering begins again. But this is not so: these values only
affect whether the page number is shown or not.

• location: indicates where it will be displayed. Normally we need to indicate
two values in this option, separated by a comma. First of all we need to specify
if we want the page number in the header (“header”) or the footer (“footer”),
and then, where in the header or footer: it could be “left”, “middle”, “right”,
“inleft”, “inright”, “margin”, “inmargin”, “atmargin” or “marginedge”.
For example: to show right-aligned numbering in the footer we should indicate
“location={footer,right}”. See, on the other hand, how we have surrounded
this option with curly brackets so ConTEXt can correctly interpret the sepa
rating comma.

Chapter 5 Pages and document pagination 99

• style: indicates font size and style to be used for page numbers.

• color: Indicates the colour to be applied to the page number.

• left: picks up the command or text to be executed to the left of the page
number.

• right: picks up the command or text to be executed to the right of the page
number.

• command: picks up a command to which the page number will be passed as a
parameter.

• width: indicates the width taken up by the page number.

• strut: I am not so sure about this. In my tests, when “strut=no”, the number
is printed exactly on the upper edge of the header or on the bottom of the
footer, while when “strut=yes” (default value) a space is applied between the
number and the edge.

\setupuserpagenumber, allows these extra options:

• numberconversion: controls the kind of numbering that can be arabic (“n”,
“numbers”), lower case (“a”, “characters”), upper case (“A”,“Characters”),
small caps (“KA”), lower case roman (“i”, “r”, “romannumerals”), uppercase
roman (“I”, “R”, “Romannumerals”) or small caps roman (“KR”).

• number: indicates the number to assign to the first page, on the basis of which
the rest will be calculated.

• numberorder: if we assign “reverse” to this as a value, page numbering will
be in decreasing order; this means the last page will be 1, the second-last 2,
etc.

• way: allows us to indicate how numbering will proceed. It can be: byblock,
bychapter, bysection, bysubsection, etc.

• prefix: allows us to indicate a prefix to page numbers.

• numberconversionset: Explained in what follows.

In addition to these two commands, it is also necessary to take into account the con
trol of numbers involving the document's macrostructure (see section 7.6). From
this point of view, \defineconversionset allows us to indicate a different kind
of numbering for each of the macrostructure blocks. For example:

Chapter 5 Pages and document pagination 100

\defineconversionset
[frontpart:pagenumber][][romannumerals]

\defineconversionset
[bodypart:pagenumber][][numbers]

\defineconversionset
[appendixpart:pagenumber][][Characters]

will see that the first block in our document (frontmatter) is numbered with lower
case Roman numbers, the central block (bodymatter) with Arabic numbers and
the appendices with upper case letters.

We can use the following commands to get the page number:

• \userpagenumber: returns the page number just as it was configured with
\setuppagenumbering and with \setupuserpagenumber.

• \pagenumber: returns the same number as the previous command but still in
Arabic numbers.

• \realpagenumber: returns the real number of the page in Arabic numbers
without taking any of these specifications into account.

To get the number of the final page in the document there are three commands
that are parallel to the previous ones. They are: \lastuserpagenumber,\lastpa
genumber and \lastrealpagenumber.

5.5 Forced or suggested page breaks
5.5.1 The \page command
The algorithm for text distribution in ConTEXt is quite complex, and is based
on a multitude of calculations and internal variables that tell the program where
the best possible point is for introducing an actual page break from the perspec
tive of typographical correctness. The \page command allows us to influence this
algorithm:

a. By suggesting certain points as the best or the most inappropriate place for
including a page break.

Chapter 5 Pages and document pagination 101

– no: indicates that the place where the command is located is not a good
candidate for inserting a page break, so, as far as possible, the break should
be made at another point in the document.

– preference: tells ConTEXt that the point where it encounters the command
is a good place for attempting a page break, although it will not force one
there.

– bigpreference: indicates that the point where it encounters the command
is a very good place for attempting a page break, but it too does not go as
far as forcing it.

Note that these three options neither force nor prevent page breaks, but only
tell ConTEXt that when looking for the best place for a page break, it should
take into account what is indicated in this command. In the final instance,
however, the place where the page break will happen will continue to be decided
by ConTEXt.

b. By forcing a page break at a certain point; in this case we can also indicate
how many page breaks should be made as well as certain features of the pages
to be inserted.

– yes: force a page break at this point.
– makeup: similar to “yes”, but the forced break is immediate, without first

placing any floating objects whose placement is pending (see section 13.1).
– empty: insert a completely blank page in the document.
– even: insert as many pages as necessary to make the next page an even

page.
– odd: insert as many pages as necessary to make the next page an odd page.
– left, right: similar to the two previous options, but applicable only to

double-sided printed documents, with different headers, footers or margins
depending on whether the page is odd or even.

– quadruple: insert the number of pages needed for the next page to be a
multiple of 4.

Along with these options which specifically control pagination, \page includes
other options that affect the way this command functions. Especially the
“disable” option that causes ConTEXt to ignore the \page commands it finds
from there on, and the “reset” option that produces the opposite effect, restoring
the effectiveness of future \page commands.

5.5.2 Joining certain lines or paragraphs to pre
vent a page break from being inserted be
tween them

Sometimes, if we want to prevent a page break between several paragraphs, the use
of the \page command can be laborious, as it would have to be written at every

Chapter 5 Pages and document pagination 102

point where it was possible for a page break to be inserted. A simpler procedure
for this is to place the material we want to keep on the same page in what TEX
calls a vertical box.

At the beginning of this document (on page 20) I indicated that internally, everything is a
box for TEX. The box notion is fundamental in TEX for any kind of advanced operation; but
managing it is too complex to include in this introduction. This is why I only make occasional
references to boxes.

TEX boxes, once created, are indivisible, meaning that we cannot insert a page
break that would split a box in two. This is why, if we put the material we want
kept together in an invisible box, we avoid a page break being inserted that would
split this material. The command for doing this is \vbox, the syntax for which is

\vbox{Material}

where Material is the text we want to keep together.

Some of ConTEXt's environments do put their contents in a box. For example,
“framedtext”, so if we frame the material we want kept together in this environ
ment and also see that the frame is invisible (which we do with the frame=off
option), we will have achieved the same thing.

5.6 Headers and footers
5.6.1 Commands for establishing the content of

headers and footers
If we have assigned a certain size to the header and footer in page layout, we
can include text in them with the \setupheadertexts and \setupfootertexts
commands. The two commands are similar, the only difference being that the
former activates header content and the latter the footer content. Both have from
one to five arguments.

1. Used with a single argument this will contain the text of the header or footer
that will be placed in the centre of the page. For example: \setupfooter
texts[pagenumber] will write the page number at the centre of the footer.

2. Used with two arguments, the content of the first argument will be placed
on the left side of the header or footer, and that of the second argument on
the right side. For example \setupheadertexts[Preface][pagenumber] will
typeset a page header in which the word “preface” is written on the left side
and the page number is printed on the right side.

3. If we use three arguments, the first will indicate the area in which the other two
are to be printed. By area I am referring to the areas of the page mentioned in

Chapter 5 Pages and document pagination 103

section 5.2, in other words: edge, margin, header... The other two arguments
contain the text to be placed in the left edge, margin and right edge, margin.

Using it with four or five arguments is equivalent to using it with two or three ar
guments, in cases where a distinction is made between even and odd pages, which
occurs, as we know, when “alternative=doublesided” with \setuppagenum
bering has been set. In this case, two possible arguments are added to reflect the
content of the left and right sides of the even pages.

An important characteristic of these two commands is that when they are used
with two arguments, the previous central header or footer (if it existed) is not
rewritten, which allows us to write a different text in each area as long as we first
write the central text (calling the command with a single argument) and then
write the texts for either side (calling it again, now with two arguments). So, for
example, if we write the following commands

\setupheadertexts[and]
\setupheadertexts[Tweedledum][Tweedledee]

The first command will write “and” in the centre of the header and the second
will write “Tweedledum” on the left and “Tweedledee” on the right, leaving the
centre area untouched, since it has not been ordered to be rewritten. The resulting
header will now show up as

Tweedledum and Tweedledee

The explanation I have just given of the operation of these commands is my conclusion after
many tests. The explanation of these commands provided in ConTEXt excursion is based on
the version with five arguments; and the one in the 2013 reference manual is based on the
version with three arguments. I think mine is clearer. On the other hand, I have not seen an
explanation of why the second command call does not overwrite the previous call, but this is
how it works if we first write the central item in the header or footer and then the ones either
side. But if we write the items either side first in the header/footer, the subsequent call to the
command to write the central item will delete the previous headers or footers. Why? I have
no idea. I think these small details introduce unnecessary complication and should be clearly
explained in the official documentation.

Moreover, we can indicate any combination of text and commands as the actual
content of the header or footer. But also the following values:

• date, currentdate: will write (either of them) the current date.

• pagenumber: will write the page number.

• part, chapter, section...: will write the title corresponding to part, chap
ter, section... or whatever structural division there is.

• partnumber, chapternumber, sectionnumber...: will write the number of
the part, chapter, section... or whatever structural division there is.

Chapter 5 Pages and document pagination 104

Attention: These symbolic names (date, currentdate, pagenumber, chap
ter, chapternumber, etc.) are only interpreted as such if the symbolic name itself
is the only content of the argument; but if we add some other text or formatting
command, these words will be interpreted literally, and so, for example, if we
write \setupheadertexts[chapternumber] we will get the number of the cur
rent chapter; but if we write \setupheadertexts[Chapter chapternumber] we
will end up with: “Chapter chapternumber”. In these cases, when the content of
the command is not just the symbolic word, we must:

• For date, currentdate and pagenumber use, not the symbolic word but the
command with the same name (\date, \currentdate or \pagenumber).

• For part, partnumber, chapter, chapternumber, etc. use the \getmark
ing[Mark] command that returns the contents of the Mark that is asked for.
So, for example, \getmarking[chapter] will return the title of the current
chapter, while \getmarking[chapternumber] will return the number of the
current chapter.

To disable headers and footers on a particular page, use the \noheaderand
footerlines command that acts exclusively on the page where it is located. If
we only want to delete the page number on a particular page, we must use the
\page[blank] command.

5.6.2 Formatting headers and footers
The specific format in which the text of the header or footer is shown can be
indicated in the arguments for \setupheadertexts or \setupfootertexts by
using the corresponding format commands. However, we can also configure this
globally with \setupheader and \setupfooter that allow the following options:

• state: allows for the following values: start, stop, empty, high, none,
normal or nomarking.

• style, leftstyle, rightstyle: configuration of the header and footer text
style. style affects all pages, leftstyle the even pages and rightstyle the
odd pages.

• color, leftcolor, rightcolor: header or footer colour. It can affect all
pages (color option) or only the even pages (leftcolor) or odd pages (right
color)

• width, leftwidth, rightwidth: width of all headers and footers (width) or
headers/footers on even pages (leftwidth) or odd ones (rightwidth).

• before: command to be executed before writing the header or footer.

Chapter 5 Pages and document pagination 105

• after: command to be executed after writing the header or footer.

• strut: if “yes”, a vertical separation space is established between the header
and the edge. When it is “no”, the header or footer runs up against the edges
of the upper or lower edge areas.

5.6.3 Defining specific headers and footers and
linking them to section commands

ConTEXt's header and footer system allows us to automatically change the text
in the header or footer when we change chapters or sections; or when we change
pages, if we have set different headers or footers for odd and even pages. But what
it does not allow is to differentiate between the first page (of the document, or of
a chapter or section) and the rest of the pages. To achieve the latter we must:

1. Define a specific header or footer.
2. Link it to the section it applies to.

The definition of specific headers or footers is done with the \definetext com
mand, whose syntax is:

\definetext
[Name] [Type]
[Content1] [Content2] [Content3]
[Content4] [Content5]

where Name is the name assigned to the header or footer we are dealing with;
Type can be header or footer, depending on which of the two we are defining,
and the remaining five arguments contain the contents we want for the new header
or footer, in a similar way to how we have seen \setupheadertexts and \setup
footertexts function. Once we have done this, we need to link the new header
or footer to some particular section with \setuphead by using the header and
footer options (that are not explained in Chapter 7).

Thus, the following example will hide the header on the first page of each chapter
and a centred page number will appear as the footer:

\definetext[ChapterFirstPage] [footer] [pagenumber]
\setuphead
[chapter]
[header=high, footer=ChapterFirstPage]

Chapter 5 Pages and document pagination 106

5.7 Inserting text elements in page edges
and margins

The top and bottom edges and the right and left margins usually do not contain
text of any kind. However, ConTEXt allows some text elements to be placed there.
In particular, the following commands are available for this purpose:

• \setuptoptexts: allows us to place text at the top edge of the page (above
the header area).

• \setupbottomtexts: allows us to place text at the bottom edge of the page
(below the footer area).

• \margintext, \atleftmargin, \atrightmargin, \ininner, \ininneredge,
\ininnermargin, \inleft, \inleftedge, \inleftmargin, \inmargin,
\inother, \inouter, \inouteredge, \inoutermargin, \inright, \inright
edge, \inrightmargin: allow us to place text in the side edges and margins
of the document.

The first two commands function exactly like \setupheadertexts and \setup
footertexts, and the format of these texts can even be configured in advance with
\setuptop and \setupbottom similar to how \setupheader allows us to configure
the texts for \setupheadertexts. For all this I refer to what I have already said
in section 5.6. The only little detail that needs to be added is that the text set
up for \setuptoptexts or \setupbottomtexts will not be visible if no space has
been reserved in the page layout for the upper (top) or lower (bottom) edges. For
this, see section 5.3.1.

As for the commands aimed at placing text in the margins of the document, they
all have a similar syntax:

\CommandName[Reference][Configuration]{Text}

where Reference and Configuration are optional arguments; the first is used for
possible cross-referencing and the second allows us to set up the marginal text.
The last argument, enclosed in curly brackets, contains the text to be placed in
the margin.

Of these commands, the more general one is \margintext as it allows text to be
placed in any of the margins or side edges of the page. The remaining commands,
as their name indicates, place the text in the margin itself (right or left, inner
or outer), or the edge (right or left, inner or outer). These commands are closely
related to page layout because if, for example, we use \inrightedge but have not
reserved any space in the page layout for the right edge, nothing will be seen.

Chapter 5 Pages and document pagination 107

The configuration options for \margintext are as follows:

• location: indicates what margin the text will be placed in. It can be left,
right or, in double-sided documents, outer or inner. By default it is left in
single-sided documents and outer in double-sided ones.

• width: width available for printing the text. By default, the full width of the
margin will be used.

• margin: indicates whether the text will be placed in the margin itself or in the
edge.

• align: text alignment. The same values are used here as in \setupalign 11.6.1.

• line: allows us to indicate a number of lines of displacement of the text in the
margin. So, line=1 will displace the text by one line below and line=-1 by
one line above.

• style: command or commands for indicating the style of text to be placed in
the margins.

• color: the colour of marginal text.

• command: name of a command to which the text to be placed in the margin
will be passed as an argument. This command will be executed before writing
the text. For example, if we want to draw a frame around the text, we could
use “[command=\framed]{Text}”.

The remaining commands allow the same options, except for location and mar
gin. In particular, the \atrightmargin and \atleftmargin commands place the
text completely attached to the body of the page. We can establish a separation
space with the distance option, which I did not mention when talking about
\margintext because I saw no effect on that command in my tests.

In addition to the above options, these commands also support other options (strut, an
chor, method, category, scope, option, hoffset, voffset, dy, bottomspace,
threshold and stack) that I have not mentioned because they are not documented and
frankly, I am not very sure what they are for. Ones with names like distance we can guess,
but the rest? The wiki only mentions the stack option, saying that it is used to emulate the
\marginpars command in LATEX, but this does not seem very clear to me.

The \setupmargindata command allows us to globally configure the texts in each
margin. So, for example,

\setupmargindata[right][style=slanted]

will ensure that all texts in the right margin are written in slanted style.

We can also create our own customised command with

\definemargindata[Name][Configuration]

108

Chapter 6
Fonts and colours in

ConTEXt
Table of Contents: 6.1 Typographical fonts included in “ConTEXt Stand
alone”; 6.2 Font features; 6.2.1 Fonts, styles and style variants; 6.2.2 Font size;
6.3 Setting the document's main font; 6.4 Changing font or some font fea
tures; 6.4.1 The \setupbodyfont and \switchtobodyfont commands; 6.4.2 Quickly
changing style, alternative and size; 6.4.3 Defining commands and key words for font
sizes, styles and alternatives; 6.5 Other matters relating to the use of some
alternatives; 6.5.1 Italic, slanted and emphasis; 6.5.2 Small caps and fake small
caps; 6.6 Use and configuration of colours; 6.6.1 Procedures for typesetting
text fragments in colour; 6.6.2 Changing the document's background and foreground
colour; 6.6.3 Commands for colouring particular text fragments; 6.6.4 Predefined
colours; 6.6.5 To see available colours; 6.6.6 Defining our own colours;

6.1 Typographical fonts included in
“ConTEXt Standalone”

ConTEXt's fonts system offers many possibilities, but it also quite complex. I will
not be analysing all the advanced font possibilities in this manual, but will limit
myself to assuming we are working with some of the 21 fonts provided with the
installation of ConTEXt Standalone, the ones shown in table 6.1.

The central column of table 6.1 indicates the name or names by which ConTEXt
knows the font in question. When there are two names, they are synonymous. The
last column has an example of the font in use. As for the order in which the fonts are
shown, the first is the font that ConTEXt uses by default, and the remaining fonts
are in alphabetical order, while the last three fonts are specifically designed for
mathematics. Note that the Euler font cannot directly represent accented letters,
so we get Bront's, not Brontë's.

For readers coming from the Windows world and its default fonts, I will indicate
that heros is equivalent to Arial in Windows, while termes is the same as Times
New Roman. They are not exactly the same but similar enough, to the point where
one would need to be very observant to tell the difference.

Chapter 6 Fonts and colours in ConTEXt 109

Official name Name(s) in ConTEXt Example
Latin Modern modern, modern-base Emily Brontë's book
Antykwa Poltawskiego antykwapoltawskiego Emily Brontë's book
Antykwa Toruńska antykwa Emily Brontë's book
Cambria cambria Emily Brontë's book
DejaVu dejavu Emily Brontë's book
DejaVu Condensed dejavu-condensed Emily Brontë's book
Gentium gentium Emily Brontë's book
Iwona iwona Emily Brontë's book
Latin Modern Variable modernvariable, modern-variable Emily Brontë's book
PostScript postscript Emily Brontë's book
TeX Gyre Adventor adventor, avantgarde Emily Brontë's book
TeX Gyre Bonum bonum, bookman Emily Brontë's book
TeX Gyre Cursor cursor, courier Emily Brontë's book
TeX Gyre Heros heros, helvetica Emily Brontë's book
TeX Gyre Schola schola, schoolbook Emily Brontë's book
Tex Gyre Chorus chorus, chancery Emily Brontë's book
Tex Gyre Pagella pagella, palatino Emily Brontë's book
Tex Gyre Termes termes, times Emily Brontë's book
Euler eulernova Emily Bront's book
Stix2 stix Emily Brontë's book
Xits xits Emily Brontë's book

Table 6.1 Fonts included in the ConTEXt distribution

Fonts used by Windows are not free software (in fact almost nothing in Windows is free
software), so they cannot be included in a ConTEXt distribution. However, if ConTEXt is installed
in Windows, then these fonts are already installed and can be used like any other font installed
on the system running ConTEXt. In this introduction, though, I will not deal with how to use
fonts already installed on the system. Help can be found for this on the ConTEXt wiki.

6.2 Font features
6.2.1 Fonts, styles and style variants
The terminology regarding fonts is somewhat confusing, since at times what is
called a font is really a font family that includes different styles and variants that
share a basic design. I will not enter into the question of which terminology is the
more correct; I am only interested in clarifying the terminology used in ConTEXt.
There, it makes a distinction between fonts, styles and variants (or alternatives)
for each style. The fonts included in the ConTEXt distribution (in fact they are
font families) are the ones we saw in the previous section. We will look now at
styles and alternatives.

Font styles
Donald E. Knuth designed the Computer Modern font for TEX, giving it three
distinct styles called roman, sans serif and teletype. The roman style is a design

https://www.contextgarden.net/

Chapter 6 Fonts and colours in ConTEXt 110

where the characters have decorative flourishes known in typological terminology
as serifs, which is why this font style is also known as serif. This style was considered
to be the normal or default style. The sans serif style, as its name indicates,
lacks these flourishes, and hence is a simpler, more stylised font, sometimes known
by other names, e.g. in Spanish, paloseco; this font can be the principal font in
the document, but it is also appropriate for use in certain fragments of a text
whose principal font is in roman style, like, for example, title or page headers.
Finally, the teletype style was included in Computer Roman since this had been
designed for writing books to do with computer programming, involving large
sections in computer code which is conventionally represented, in printed material,
in a monospaced style that imitates computer terminals and the old typewriters.

A fourth style intended for maths fragments could be added to these three font styles. But since
TEX automatically uses this style when it enters maths mode, and does not include commands
to expressly enable or disable it, nor does it have the variants or alternatives of the other styles,
it is not usual to think of it as a style properly so called.

ConTEXt includes commands for two possible additional styles: handwritten and calligraphic.
I am not exactly sure about the difference between them since, on the one hand, none of
the fonts included in the ConTEXt distribution include these styles in their design, and on the
other hand, as I see it, calligraphic writing is also handwritten. These commands that ConTEXt
includes to enable such styles, if used with a font that does not implement them, will not cause
any error when compiling: it is simply that nothing happens.

Alternative font forms

Each style allows a number of alternative forms, and that is what ConTEXt calls
them, (alternative):

– Regular or normal (“tf”, from typeface).
– Bold (“bf”, from boldface).
– Italic (“it” from italic)
– BoldItalic (“bi” from bold italic)
– Slanted (“sl” from slanted)
– BoldSlanted (“bs” from bold slanted)
– Small caps (“sc” from small caps)
– Medieval (“os” from old style)

These alternatives, as their name indicates, are mutually exclusive: when one is
enabled, the others are disabled. This is why ConTEXt provides commands for
enabling them but not for disabling them; because when we enable an alternative,
we disable the one we were using until then; and so, for example, if we are writing
in italic and enable bold, then italic will be disabled. If we want to use bold and
italic simultaneously, we do not have to enable one and then the other, but rather
enable the alternative that includes both (“bi”).

Chapter 6 Fonts and colours in ConTEXt 111

On the other hand, it must be born in mind that although ConTEXt assumes
that every font will have these alternatives, and therefore provides commands to
enable them, in order to function and produce some perceptible effect in the final
document, these commands need the font to have specific forms in their design for
each style and alternative.

In particular, many fonts do not differentiate in their design between slanted and italic letters,
or do not include special forms for small caps.

Difference between italics and slanted

The similarity in the typographical function performed by italics and slanted letters
leads many people to confuse these two alternatives. The slanted letter is obtained
by slightly rotating the regular shape. But italics implies – at least in certain fonts
– a different design in which the letters seem to be tilted because they have been
drawn to look like it; but in reality there is no authentic tilt. This can be seen in
the following example, in which we have written the same word three times at the
same size large enough to make it easy to appreciate the differences. In the first
version the regular form is used, in the second the slanted, and in the third italics:

italics – italics – italics

Note how the design of the characters is the same in the first two examples, but in
the third there are subtle differences in the strokes of some letters, which is very
obvious, especially in how the ‘a’ is drawn, although the differences actually occur
in almost all characters.

The usual uses of italic and slanted letters are similar and each person decides
whether to use one or the other. Here there is freedom, although we should point
out that a document will be better typeset and will look better if the use of italic
and slanted lettering is consistent. In many fonts, moreover, the design difference
between italic and slanted is negligible, so it makes no difference whether we use
one or the other.

On the other hand, both italic and slanted are font alternatives, which mainly
means two things:

1. We can only use them when they are defined in the font.

2. When enabling one of them we are disabling the alternative that was being
used up until then.

Together with the commands for italic and slanted, ConTEXt offers an additional
commands for emphasising a particular text. Its use implies subtle differences by
comparison with italic or slanted. See section 6.5.1.

Chapter 6 Fonts and colours in ConTEXt 112

6.2.2 Font size
All the fonts handled by ConTEXt are based on vector graphics, so that in theory
they can be displayed at any font size, although as we will see, this depends on
the actual instructions we use to determine font size. Unless otherwise stated, it
is assumed that the font size will be 12 points.

All fonts used by ConTEXt are based on vector graphics, and are therefore Opentype or Type 1
fonts, which implies that fonts whose origins predate this technology have been reimplemented.
In particular, the TEX default font, Computer Modern, designed by Knuth, only existed in certain
sizes, so was reimplemented in a design called Latin Modern used by ConTEXt, although in
many documents it continues to be called Computer Modern due to the strong symbolism that
font still has for TEX systems, since these started out and were developed by Knuth along with
another program called MetaFont, aimed at designing fonts that could work with TEX.

6.3 Setting the document's main font
By default, unless some other font is indicated, ConTEXt will use Latin Modern
Roman at 12 point as the main font. This font was originally designed by Knuth
to be implemented in TEX. It is an elegant roman-style font with great propor
tional and decorative “flourishes” – called serifs – in certain strokes, which is very
appropriate both for printed texts and for display on screen; although – and this
is a personal opinion – it is not so suitable for small screens like the smartphone,
because the serifs or flourishes tend to pile up, making reading difficult.

To set up a different font we use \setupbodyfont that allows us not only to change
the actual font, but also its size and style. When we want this to apply to the whole
document, we need to include it in the source file's preamble. But if we simply
wish to change the font at a certain point, this is where we need to include what
follows.

The \setupbodyfont format is:

\setupbodyfont[Options]

where the command's various options allow us to indicate:

• The font name, that can be any of the symbolic font names found in table 6.1.

• The size, which can be indicated either by its dimensions (using the point as
the unit of measurement) or by certain symbolic names. But note that even
though earlier I said that fonts used by ConTEXt can be scaled to practically
any size, in \setupbodyfont only sizes consisting of whole numbers between
4 and 12, as well as the values 14.4 and 17.3, are supported in ConTEXt. By
default it assumes the size is 12 points.

Chapter 6 Fonts and colours in ConTEXt 113

\setupbodyfont, establishes what we could call the base size of the document;
in other words the normal character size on the basis of which other sizes are
calculated, for example titles and footnotes. When we change the main size
with \setupbodyfont all other sizes calculated on the basis of the main font
are also changed.

Besides directly indicated the character size (10pt, 11pt, 12pt, etc.) we can also
use some symbolic names that calculate the character size to apply, based on
the current size. The symbolic names in question are, from largest to smallest:
big, small, script, x, scriptscript and xx. So, for example, if we want to set body
text with \setupbodyfont which is larger than 12 points, we can do so with
“big”.

• font style, which, just as we have indicated, can be roman (with serifs), or
without serifs (san serif), or typewriter style, and for some fonts, handwrit
ten and calligraphic style. \setupbodyfont allows different symbolic names to
indicate different styles. These are found in table 6.2:

Style Symbolic names allowed
Roman rm, roman, serif, regular
Sans Serif ss, sans, support, sansserif
Monospaced tt, modo, type, teletype
Handwritten hw, handwritten
Calligraphic cg, calligraphic

Table 6.2 Styles in setupbodyfont

As far as I can tell, the different names supported for each of the styles are
completely synonymous.

See what a font looks like
Before deciding to use a particular font in our document, we would normally want
to see what it looks like. This can almost always be done from the operating system
as there is usually some utility to examine the appearance of the fonts installed on
the system; but for convenience, ConTEXt itself offers a utility that allows us to see
the appearance of any of the fonts enabled in ConTEXt. This is \showbodyfont,
that generates a table with examples of the font we indicate.

The format of \showbodyfont is as follows:

\showbodyfont[Options]

where we can indicate as options precisely the same symbolic names as in \setup
bodyfont. So, for example, \showbodyfont[schola, 8pt] will show us the table
below, in which there are different examples of the schola font at a base size of 8
points:

Chapter 6 Fonts and colours in ConTEXt 114

[schola] [schola,8pt]

\tf \tf \bf \sl \it \bs \bi \tfx \tfxx \tfa \tfb \tfc \tfd

\rm Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\ss Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\tt Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\mr Ag Ag 𝐀𝐠 𝐴𝑔 𝐴𝑔 𝑨𝒈 𝑨𝒈 𝐴𝑔 𝐴𝑔 𝐴𝑔 𝐴𝑔 𝐴𝑔 𝐴𝑔

Note that there are certain commands in the first row and column of the table.
Further on, when the meaning of these commands has been explained, we will take
another look at the tables generated by \showbodyfont.

If we want to see the complete range of characters in a specific font, we can use
the \showfont[FontName] command. This command will show the main design
of each of the characters without applying commands for styles and alternatives.

6.4 Changing font or some font features
6.4.1 The \setupbodyfont and \switchtobodyfont

commands
To change font, style or size, we can use the same command with which we es
tablished the font at the beginning of the document, when we don't want to use
ConTEXt's default font: \setupbodyfont. All we need to do is to place this com
mand at the point in the document where we wish to change font. It will produce
a permanent change of font, meaning that it will directly affect the main font, and
indirectly all fonts related to it.

Very similar to \setupbodyfont is \switchtobodyfont. Both commands allow
us to change the same aspects of the font (the font itself, style and size) but
internally they function differently and are intended for different uses. The first
one, (\setupbodyfont) is meant for establishing the main font (and normally the
only one) in the document; it is neither common nor typographically correct for a
document to have more than one main font (which is why it is called main font).
By contrast, \switchtobodyfont is intended for writing some parts of a text in a
different font, or to assign a particular font to a special kind of paragraph we want
to define in our document.

Apart from the above – which actually affects the internal functioning of each of
these two commands – from the user's point of view there are some differences
between the use of one or the other command. In particular:

Chapter 6 Fonts and colours in ConTEXt 115

1. As we already know \setupbodyfont is limited to a particular range of sizes,
whereas \switchtobodyfont allows us to indicate practically any size, so that
if the font is not available in that size, it will scale to it.

2. \switchtobodyfont does not affect text elements in any way other than where
it is used, unlike \setupbodyfont which, as mentioned above, establishes the
main font and, by altering this, also alters the font of all textual elements whose
font is calculated on the basis of the main font.

Both commands, on the other hand, change not only the font, style and size, but
also other aspects associated with the font such as, for example, interline space.

\setupbodyfont generates a compiling error if a non-allowed font size is requested; but does
not generate one if a non-existent font is requested, in which case the default (Latin Modern
Roman) font will be enabled. \switchtobodyfont acts the same way with regard to the font,
and in terms of size, as I have already said, tries to achieve this by scaling the font. However,
there are fonts that cannot be scaled to certain sizes, in which case the default font would
once again be enabled.

6.4.2 Quickly changing style, alternative and size

Changing style and alternative

As well as \switchtobodyfont, ConTEXt provides a set of commands that allow
us to quickly change the style, alternative or size. With regard to these commands,
the ConTEXt wiki warns us that sometimes, when they appear at the beginning
of a paragraph, they can produce some unwanted side effects, so it recommends
that in such cases the command in question be preceded by the \dontleavehmode
command.

Style Commands that enable it
Roman \rm, \roman, \serif, \regular
Sans Serif \ss, \sans, \support, \sansserif
Monospaced \tt, \mono, \teletype,
Handwritten \hw, \handwritten,
Calligraphic \cf, \calligraphic

Table 6.3 Commands for changing between different styles

Table 6.3 contains the commands that allow us to change style, without altering
any other aspect; and table 6.4 contains the commands that allow us to exclusively
alter the alternative.

All these commands retain their effectiveness until another style or alternative
is explicitly enabled, or the group within which the command is declared ends.
Therefore, when we want the command to affect only a part of the text, what we
must do is to enclose that part within a group, as in the following example, where

Chapter 6 Fonts and colours in ConTEXt 116

Alternative Commands that enable it
Normal \tf, \normal
Italic \it, \italic
Bold \bf, \bold
Bold-italic \bi, \bolditalic, \italicbold
Slanted \sl, \slanted
Bold-slanted \bs, \boldslanted, \slantedbold
Small caps \sc, \smallcaps
Medieval \os, \mediaeval
Table 6.4 Commands for enabling a particular alternative

each time the word thought appears when it is a noun, not a verb, it is in italics,
creating a group for it.

I thought a {\it thought} but
the {\it thought} I thought wasn't
the {\it thought} I thought I thought.
If the {\it thought} I thought I thought
had been the {\it thought} I thought
I wouldn't have thought so much!

I thought a thought, but the thought I thought,
wasn't the thought I thought I thought. If the
thought I thought I thought had been the thought
I thought I wouldn't have thought so much!

Suffixes for changing alternative and size at the same time

The commands that change style or alternative in their two-letter version (\tf,
\it, \bf, etc.) allow a range of suffixes that affect font size. The suffixes a, b, c
and d increase the font size, multiplying it by 1.2, 1.22 (= 1.44), 1.23 (= 1.728) or
1.24 (= 2.42) respectively. See an example:

\tf test, \tfa test, \tfb test, \tfc test, \tfd test

test, test, test, test, test
the suffixes x and xx reduce font size, multiplying it by 0.8 and 0.6 respectively:

\tf test, \tfx test, \tfxx test

test, test, test

The suffixes ‘x’ and ‘xx’ applied to \tf allow us to shorten the command, so that
\tfx can be written as \tx and \tfxx as \txx.

The availability of these different suffixes depends on the actual implementation
of the font. According to the ConTEXt 2013 reference manual (intended mostly for
Mark II) the only suffix guaranteed to always work is ‘x’, and the others might or
might not be implemented; or they might be just for some alternatives.

Chapter 6 Fonts and colours in ConTEXt 117

At any rate, to avoid doubts, we can use \showbodyfont that I spoke of previously
(in section). This command displays a chart that not only allows us to appreciate
the appearance of the font, but also to see what the font looks like in each of its
styles and alternatives, as well as what resizing suffixes are available.

Let us look at the table showing \showbodyfont once more:

[modern]

\tf \tf \bf \sl \it \bs \bi \tfx \tfxx \tfa \tfb \tfc \tfd

\rm Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\ss Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\tt Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag Ag
\mr Ag Ag 𝐀𝐠 𝐴𝑔 𝐴𝑔 𝑨𝒈 𝑨𝒈 𝐴𝑔 𝐴𝑔 𝐴𝑔 𝐴𝑔 𝐴𝑔 𝐴𝑔

If we look closely at the table, we can see that the first column contains the font
styles (\rm, \ss and \tt). The first row contains, on the left, the alternatives (\tf,
\sc, \sl, \it, \bf, \bs and \bi), while the right side of the first row contains the
other available suffixes, although only with the regular alternative.

It is important to note that a change in font size made by any of these suffixes will
only change the font size in the strict sense, leaving intact other values normally
associated with font size such as line spacing.

Customising the scaling factor of the suffixes

To customise the scaling factor we can use \definebodyfontenvironment whose
format can be:

\definebodyfontenvironment[particular size][scaled]
\definebodyfontenvironment[default][scaled]

In the first version we would redefine the scaling for a particular size of the main
font set by \setupbodyfont or by \switchtobodyfont. For example:

\definebodyfontenvironment[10pt][a=12pt,b=14pt,c=2, d=3]

would ensure that when the main font is 10 points, suffix ‘a’ would change it to 12
points, suffix ‘b’ to 14, suffix ‘c’ would multiply the original font by 2 and suffix
‘d’ by 3. Note that for a and b a fixed dimension has been indicated, but for c and
d a multiplication factor of the original size has been indicated.

Chapter 6 Fonts and colours in ConTEXt 118

But when the first argument of \definebodyfontenvironment is equal to
“default”, then we will be redefining the scaling value for all possible font sizes,
and as a scaling value we can only enter a multiplier number. So if, for example,
we write:

\definebodyfontenvironment[default][a=1.3,b=1.6,c=2.5,d=4]

we will be indicating that whatever the size of the main font, the a suffix should
be multiplied by 1.3, the b by 1.6, the c by 2 and the d by 4.

As well as the suffixes xx, x, a, b, c and d, with \definebodyfontenvironment we
can assign a scaling value to the “big”, “small”, “script” and “scriptscript”
key words. These values are assigned to all sizes associated with these key words in
\setupbodyfont and \switchtobodyfont. They are also applied in the following
commands, whose usefulness can be deduced (I think) from their name:

• \smallbold
• \smallslanted
• \smallboldslanted
• \smallslantedbold
• \smallbolditalic
• \smallitalicbold
• \smallbodyfont
• \bigbodyfont

If we want to see the default sizes of a particular font, we can use \showbody
fontenvironment[Font]. This command, applied to the modern font, for example,
gives the following result:

Chapter 6 Fonts and colours in ConTEXt 119

[modern]

text script scriptscript x xx small big
10pt 7pt 5pt 8pt 6pt 8pt 12pt
11pt 8pt 6pt 9pt 7pt 9pt 12pt
12pt 9pt 7pt 10pt 8pt 10pt 14.4pt
14.4pt 11pt 9pt 12pt 10pt 12pt 17.3pt
17.3pt 12pt 10pt 14.4pt 12pt 14.4pt 20.7pt
20.7pt 14.4pt 12pt 17.3pt 14.4pt 17.3pt 20.7pt
4pt 4pt 4pt 4pt 4pt 4pt 6pt
5pt 5pt 5pt 5pt 5pt 5pt 7pt
6pt 5pt 5pt 5pt 5pt 5pt 8pt
7pt 6pt 5pt 6pt 5pt 5pt 9pt
8pt 6pt 5pt 6pt 5pt 6pt 10pt
9pt 7pt 5pt 7pt 5pt 7pt 11pt

6.4.3 Defining commands and key words for font
sizes, styles and alternatives

The predefined commands for changing font size, styles and variants are enough.
Furthermore, ConTEXt allows us:

1. To add our own command for changing font style, size or variant.

2. To add synonyms to style or variant names recognised by \switchtobodyfont.

It provides the following commands to do this:

• \definebodyfontswitch: allows us to define a command to change font size.
For example, if we want to define the \eight command (or the \viiicommand1)
to set an 8 pt font we need to write:

\definebodyfontswitch[eight][8pt] or \definebodyfontswitch[viii][8pt]

• \definefontstyle: allows us to define one or more words that can be used in
\setupbodyfont or \switchtobodyfont to set a particular font style; so, for
example, if we wanted to call the sans serif something else (e.g. in Spanish it
is called “paloseco”) we can write

1 Remember that except for the case of control symbols, ConTEXt command names can only consist
of letters.

Chapter 6 Fonts and colours in ConTEXt 120

\definefontstyle[paloseco][ss]

A peculiarity of \definefontstyle is that it allows several words to be associ
ated simultaneously with the same style, so, to continue the Spanish example:

\definefontstyle[paloseco, sosa, sinrebordes][ss]

• \definealternativestyle: allows us to associate a name with a font variant.
This name could function as a command or be recognised by the style option
of the commands that allow us to configure the style to be applied. So, for
example, the following fragment

\definealternativestyle[strong][\bf][]

will enable the \strong command and the key word “strong” that will be
recognised by the style option of the commands that allow this option. We
could have said “bold” but this word is already in use for ConTeXt, so I have
chosen a term used in HTML, namely, “strong” as an alternative

I do not know what the third argument of \definealternativestyle does. It is not
optional and therefore cannot be omitted; but the only information I found on it is in the
ConTEXt reference manual where this third argument is said to be relevant only to chapter
and section titles “where, apart from \cap, we must obey the font used here” (??)

6.5 Other matters relating to the use of
some alternatives

Among the different alternatives of a font, there are two whose use requires certain
clarifications:

6.5.1 Italic, slanted and emphasis
Both italics and slanted letters are used mainly for typographically highlighting a
fragment of the text to draw attention to it. In other words, to emphasise it.

We can, of course, emphasise a text by explicitly enabling italic or slanted. But
ConTEXt offers an alternative command that is much more useful and interest
ing and is intended specifically for emphasising a text fragment. This is the \em
command from the word emphasis. By contrast to \it and \sl, that are purely
typographical commands, \em is a conceptual command; it works differently, so is
more versatile, to the point where the ConTEXt documentation recommends using
\em in preference to \it or \sl. When we use these two latter commands we are
telling ConTEXt what font alternative we want to use; but when we use \em we are
telling it what effect we want produced, leaving it up to ConTEXt to decide how to
do this. Normally, to achieve the effect of emphasising or highlighting something

Chapter 6 Fonts and colours in ConTEXt 121

we would enable italic or slanted, but this depends on the context. So if we use
\em in a text that is already in italic – or is slanted – the command will highlight
that in the opposite way – in upright text in this case.

Hence the following example:

{\em One of the most beautiful
orchids in the world is the
{\em Thelymitra variegata}
or Southern Queen of Sheba.}

One of the most beautiful orchids in the world
is the Thelymitra variegata or Southern Queen
of Sheba.

Note that the first \em enables italics (actually, slanted, but see below) and that
the second \em disables this and instead puts the words “Thelymitra variegata”
in normal upright style.

Another advantage of \em is that it is not an alternative, so does not disable the
alternative we had before and so, for example, in a text that is in bold, with \em
we will get bold slanted without the need to explicitly call on \bs. Similarly, if the
\bf command appears in a text that is emphasised already, this emphasis will not
cease.

By default \em enables slanted rather than italic, but we can change this with
\setupbodyfontenvironment[default][em=italic].

6.5.2 Small caps and fake small caps
Small caps is a typographical resource that is often much better than using upper
case (capital) letters. Small caps give us the shape of the capital letter but keep the
height the same as lower case letters on the line. This is why small caps is a stylistic
variant of lower case. Small caps replace capital letters in certain contexts, and are
especially useful for writing Roman numerals, or chapter titles. In academic texts
it is also customary to use small caps to write the names of the authors cited.

The problem is that not all fonts implement small caps, and those that do, do not
always do so for some of their font styles. Moreover, as small caps are an alternative
to italic, bold or slanted, in accordance with the general rules we have set out in
this chapter, all these typographical features could not be used simultaneously.

These problems can be resolved by using fake small caps that ConTEXt allows us
to create with the \cap and \Cap commands; in this regard see section 10.2.1.

6.6 Use and configuration of colours
ConTEXt provides commands for changing the colour of an entire document, some
of its elements, or certain parts of the text. It also provides commands for uploading

Chapter 6 Fonts and colours in ConTEXt 122

hundreds of predefined colours into memory, and for seeing what their components
are.

6.6.1 Procedures for typesetting text fragments
in colour

Most of ConTEXt's configurable commands allow an option called “color” that
allows us to indicate the colour in which the text affected by that command should
be written. Thus, for example, to indicate that chapter titles are written in blue,
we only need to write:

\setuphead
[chapter]
[color=blue]

Using this procedure we can colour titles, headings, footnotes, margin notes, bars
and lines, tables, table or image titles, etc. The advantage of using this procedure
is that the final result will be consistent (all texts that fulfil the same function will
be written with the same colour) and easier to change globally.

We can also colour a portion or fragment of text directly, although, to avoid a too-
variegated use of colours, which is not pleasant from a typographical perspective,
or an inconsistent use, in general it is recommended to avoid direct colouring and
to use what we could call semantic colouring, that is, instead of, for example,
writing

\color[red]{Very important text}

we define a command for very important text that is given a colour. For example

\definehighlight[important][color=red]
\important{Very important text}

6.6.2 Changing the document's background and
foreground colour

If we want to change the colour of the whole document, depending on whether we
want to alter the colour of the background or the colour of the foreground (text),
we will use \setupbackgrounds or \setupcolors. So, for example

\setupbackgrounds
[page]
[background=color,backgroundcolor=blue]

This command will set the background colour of pages as blue. As a value for
“backgroundcolor” we can use the name of any of the predefined colours.

Chapter 6 Fonts and colours in ConTEXt 123

To globally change the foreground colour throughout the document (from the point
where the command is inserted) use \setupcolors, where the “textcolor” option
controls the text colour. For example:

\setupcolors[textcolor=red]

will see that the text colour is red.

6.6.3 Commands for colouring particular text
fragments

The general command for colouring small portions of text is

\color[ColourName]{Text to colour}

For larger portions of text it is preferable to use

\startcolor[ColourName] ... \stopcolor

Both are named after some predefined colour. If we want to define the colour on
the fly, we can use the \colored command. For example:

Three \colored[r=0.1, g=0.8, b=0.8]
{coloured} cats

Three coloured cats.

6.6.4 Predefined colours
ConTEXt loads the most common predefined colours listed in table 6.5.1

Name Light tone Medium tone Dark tone
black
white
gray lightgray middlegray darkgray
red lightred middlered darkred
green lightgreen middlegreen darkgreen
blue lightblue middleblue darkblue
cyan middlecyan darkcyan
magenta middlemagenta darmagenta
yellow middleyellow darkyellow

Table 6.5 ConTEXt's predefined colours

1 This list can be found in the reference manual and ConTEXt wiki but I am fairly sure it is an
incomplete list since in this document, for example, without having loaded any additional colour,
we use “orange” – which is not in the table 6.5– for section titles.

Chapter 6 Fonts and colours in ConTEXt 124

There are other colour collections not loaded by default but which can be loaded
with the command

\usecolors[CollectionName]

where CollectionName can be

• “crayola”, 235 colours imitating marker shades.
• “dem”, 91 colours.
• “ema”, 540 colour definitions based on colours used by Emacs.
• “rainbow”, 91 colours for use in maths formulas.
• “ral”, 213 colour definitions from the Deutsches Institut für Gütesicherung

und Kennzeichnung (German Institute for Quality Assurance and Labelling).
• “rgb”, 223 colours.
• “solarized”, 16 colours based on the solarized scheme.
• “svg”, 147 colours.
• “x11”, 450 standard colours for X11.
• “xwi”, 124 colours.

The colour definition files are included in the “context/base/mkiv” directory of the distri
bution and its name responds to the “colo-imp-NOMBRE.mkiv” scheme. The information I
have just provided on the different collections of predefined colours is based on my particular
distribution. The specific collections, or the number of colours defined in them, could change
in future versions.

To see what colours each of these collections contains we can use the \show
color[CollectionName] command described in what follows. To use some of
these colours we first need to load them into memory with the (\usecolors[Col
lectionName]) command and then we have to tell the \color or \startcolor
commands the name of the colour. For example the following sequence:

\usecolors[xwi]
\color[darkgoldenrod]{Tweedledum and Tweedledee}

will write

Tweedledum and Tweedledee

6.6.5 To see available colours
The \showcolor command shows a list of colours in which you can see the ap
pearance of the colour, its appearance when the colour is used in grey scale, the
red, green and blue components of the colour, and the name by which ConTEXt
knows it. Used without any argument \showcolor will show the colours used in
the current document. But as an argument we can indicate any of the predefined

Chapter 6 Fonts and colours in ConTEXt 125

collections of colours that were discussed in section 6.6.4, and so, for example,
\showcolor[solarized] will show us the 16 solarized colours in that collection:

0.561 0.514 0.580 0.588 base0
0.460 0.396 0.482 0.514 base00
0.409 0.345 0.431 0.459 base01
0.162 0.027 0.212 0.259 base02
0.123 0.000 0.169 0.212 base03
0.615 0.576 0.631 0.631 base1
0.909 0.933 0.910 0.835 base2
0.965 0.992 0.965 0.890 base3
0.457 0.149 0.545 0.824 blue
0.487 0.165 0.631 0.596 cyan
0.510 0.522 0.600 0.000 green
0.429 0.827 0.212 0.510 magenta
0.422 0.796 0.294 0.086 orange
0.395 0.863 0.196 0.184 red
0.473 0.424 0.443 0.769 violet
0.530 0.710 0.537 0.000 yellow

If we want to see the rgb components of a particular colour, we can use \show
colorcomponents[ColourName]. This is useful if we are trying to define a specific
colour, to see the composition of some colour that is close to it. For example,
\showcolorcomponents[darkgoldenrod] will show us:

color name transparency specification
white black darkgoldenrod r=0.720,g=0.530,b=0.040

6.6.6 Defining our own colours
\definecolor allows us to either clone an existing colour or define a new colour.
Cloning an existing colour is as simple as creating an alternative name for it. To
do this you would have to write:

\definecolor[New colour][Old colour]

This will ensure that “New colour” is exactly the same colour as “Old colour”.

But the main use of \definecolor is for creating new colours. To do so the
command must be used in the following way:

\definecolor[ColourName][Definition]

where Definition can be done by applying up to six different colour generation
schemes:

Chapter 6 Fonts and colours in ConTEXt 126

• RGB colours: The definition of RGB colours is one of the most widespread;
it is based on the idea that it is possible to represent a colour by mixing, by
addition, the three primary colours: red (‘r’ for red), green (‘g’ for green) and
blue (‘b’ for blue). Each of these components is indicated as a decimal number
between 0 and 1.

\definecolor[lime 1][r=0.75, g=1, b=0]: Text in “lime 1”.

• Hex colours: This way of representing the colours is also based on the RGB
scheme, but the red, green and blue components are indicated as a three-byte
hexadecimal number in which the first byte represents the value of red, the
second the value of green and the third the value of blue. For example:

\definecolor[lime 2][x=BFFF00]: Text in “lime 2”.

• CMYK colours: This model of colour generation is what is called a
“subtractive model” and is based on the mixture of pigments of the following
colours: cyan (‘c’), magenta (‘m’), yellow (‘y’, from yellow) and black (‘k’, from
key). Each of these components is indicated as a decimal number between 0
and 1:

\definecolor[lime 3][c=0.25, m=0, y=1, k=0]: Text in “lime 3”.

• HSL/HSV: This colour model is based on measuring the hue (‘h’, from hue),
saturation (‘s’) and luminescence (‘l’ or sometimes ‘v’, from value). Hue corre
sponds to a number between 0 and 360; saturation and luminescence must be
a decimal number between 0 and 1. For example

\definecolor[lime 4][h=75, s=1, v=1]: Text in “lime 4”

• HWB colours: The HWB model is a suggested standard for CSS4 which mea
sures the hue (‘h’, from hue), and the level of white (‘w’, from whiteness) and
black (‘b’, from blackness). Hue corresponds to a number between 0 and 360,
while whiteness and blackness are represented by a decimal number between 0
and 1.

\definecolor[Azure][h=75, w=0.2, b=0.7] Text in “Azure”.

• Greyscale: based on a component called (‘s’, from scale) that measures the
amount of grey. It needs to be a number between 0 and 1. For example:

\definecolor[light grey][s=0.65]: Text in “light grey”.

It is also possible to define a new colour from another colour. For example, the
colour in which titles are written in this introduction is defined as

\definecolor[maincolour][0.6(orange)]

127

Chapter 7
Document structure

Table of Contents: 7.1 Structural divisions in documents; 7.2 Section types
and their hierarchy; 7.3 Syntax common to section commands; 7.4 Format
and configuration of sections and their titles; 7.4.1 The \setuphead and \se
tupheads commands; 7.4.2 Parts of a section title; 7.4.3 Controlling the numbering
(in numbered sections); 7.4.4 Title colour and style; 7.4.5 Location of number and
title text; 7.4.6 Commands or actions to be carried out before or after printing the title;
7.4.7 Other configurable features; 7.4.8 Other \setuphead options; 7.5 Defining
new section commands; 7.6 The document's macrostructure;

7.1 Structural divisions in documents
Except for very short texts (like a letter, for example), a document is usually
structured into blocks or text groupings that generally follow a hierarchical order.
There is no standard way of naming these blocks: in novels, for example, the
structural divisions are usually called “chapters” although some – the longer ones –
have larger blocks usually called “parts” that group a number of chapters together.
Theatrical works distinguish between “acts” and “scenes”. Academic manuals are
divided (sometimes) into “parts” and “lessons”, “topics” or “chapters” which in
turn often have internal divisions as well; the same kind of complex hierarchical
divisions often exist in other academic or technical documents (such as texts like
the present one dedicated to explaining a computer program or system. Even
laws are structured into “books” (the longest and most complex, such as Codes),
“titles”,“chapters”, “sections”, “subsections”. Scientific and technical documents
can also reach up to six, seven or on occasions even eight levels of nesting depth
for these kinds of divisions.

This chapter focuses on analysing the mechanism ConTEXt offers for supporting
these structural divisions. I will refer to them with the overall term of “sections”.

There is no clear term that allows us to refer generically to all these kinds of structural divisions.
The term “section”, that I have opted for, focuses on structural division rather than anything
else, though a drawback is that one of ConTEXt's predetermined structural divisions is called a
“section”. I hope it does not cause confusion, believing that it will be easy enough to determine
from the context if we are speaking of section as a generic and overall reference to structural
divisions, or of a specific division which ConTEXt calls a section.

Chapter 7 Document structure 128

Each “section” (generically speaking) implies:

• A reasonably large structural division of a document which may, in turn, in
clude other lower-level divisions. From this perspective “sections” imply text
blocks with a hierarchical relationship between them. From the point of view
of its sections, the document as a whole can be viewed as a tree. The document
per se is the trunk, each of its chapters a branch, which in turn can have twigs
that can also subdivide and so on.

Having a clear structure is very important for the document to be read and
understood. This task is up to the author, however, not the typesetter. And
although it is not up to ConTEXt to make us better authors than we are, the
full range of section commands it includes, where the hierarchy among them is
quite clear, could help us to write better-structured documents.

• A structure name that we could call its “title” or “label”. This structure name
is printed:

– Always (or almost always) at the point in the document where the structural
division begins.

– At times also in the table of contents, in the header or footer of the pages
occupied by the section in question.

ConTEXt allows us to automate all these tasks in such a way that the formatting
features with which the title of a structural unit should be printed only have to
be indicated once, and whether it should or should not also be included in the
table of contents, or in the headers or footers. To do this ConTEXt only needs
to know where each structural unit begins and ends, what it is called and what
hierarchical level it is at.

7.2 Section types and their hierarchy
ConTEXt distinguishes between numbered and unnumbered sections. The former,
as their name suggests, are numbered automatically and sent to the table of con
tents, as well as, sometimes, to page headers and/or footers.

ConTEXt has hierarchically-ordered predefined section commands found in ta
ble 7.1.

With regard to the predefined sections, the following clarifications should be made:

Chapter 7 Document structure 129

Level Numbered sections Unnumbered sections
1 \part –
2 \chapter \title
3 \section \subject
4 \subsection \subsubject
5 \subsubsection \subsubsubject
6 \subsubsubsection \subsubsubsubject
...

Table 7.1 Section commands in ConTEXt

• In table 7.1 the section commands are shown in their traditional form. But we
will immediately see that they can also be used as environments (\startchap
ter ... \stopchapter, for example) and that this is the approach that is
actually recommended.

• The table contains only the first 6 section levels. In my tests, however, I found
up to 12 levels: After \subsubsubsection comes \subsubsubsubsection, and
so on as far as \subsubsubsubsubsubsubsubsubsection, or \subsubsubsub
subsubsubsubsubsubject.

But we should bear in mind that the kind of (excessively deep) lower levels indicated above
are hardly likely to improve comprehension of a text! First of all we are likely to have large
sections inevitably dealing with several matters and this will make it difficult for the reader
to grasp their content. Going to excessive depth in levels can also mean that the reader
loses an overall sense of the text, and the effect produced is one of excessive fragmentation
of the material involved. My understanding is that in general, four levels are sufficient; very
occasionally one might need to go to six or seven levels, but any greater depth would rarely
be a good idea.

From the perspective of writing the source file, the fact that to create further sub-
levels means adding yet another “sub” to the previous level can make the source file
almost unreadable: it is no joke trying to work out the level of a command named
“subsubsubsubsubsection” since I have to count all the “subs”! So my advice is that if we
really need so many levels of depth, from the fifth level onwards (subsubsection) we would
be better off defining our own section commands (see section 7.5) giving them names that
are clearer than the predefined ones.

• The highest section level (\part) only exists for numbered titles and has the
peculiarity that the part title is not printed. However, even if the title is not
printed, a blank page is introduced (on which we can assume that the title is
printed once the user has reconfigured the command) and the numbering of
the part is taken into account to calculate the numbering of the chapters and
other sections.

The reasons why the default version of \part does not print anything is because, according
to the ConTEXt wiki, almost always the title at this level requires a specific layout; and

Chapter 7 Document structure 130

while this is true, it doesn't seem a good enough reason to me, since, in practice, chapters
and sections are also often redefined, and the fact that the parts do not print anything
forces the novice user to dip into the documentation to see what is going wrong.

• Although the first sectioning level is the “part”, this is only theoretical and
abstract. In a specific document, the first sectioning level will be the one cor
responding to the first sectioning command in the document. That is, in a
document that does not include parts but chapters, chapter will be the first
level. But if the document does not include chapters either, only sections, the
hierarchy for that document will start with the sections.

7.3 Syntax common to section commands
All section commands, including any levels created by the user (see section 7.5),
allow the following alternative forms of syntax (if, for example, we are using the
“section” level):

\section [Label] {Title}
\section [Options]
\startsection [Options] [Variables] ... \stopsection

In the three ways above, arguments between square brackets are optional and can
be omitted. We will look at them separately, but first of all it helps to make it clear
that in Mark IV it is the third of these three approaches that is recommended.

• In the first syntax form, which we could call the “classic” one, the command
takes two arguments, one optional between square brackets, and the other oblig
atory between curly brackets. The optional argument is there to associate the
command with a label that will be used for internal references (see section 9.2).
The obligatory one between curly brackets is the section title.

• The other two forms of syntax are more the ConTEXt style: everything the com
mand needs to know is communicated through values and options introduced
between square brackets.

Recall that in sections 3.3.1 and 3.4 I said that in ConTEXt, the scope of the command
is indicated in curly brackets, and its options in square brackets. But if we think about
it, the title of a particular sectioning command is not the scope of its application, so to
be consistent with the general syntax, it should not be introduced between curly brackets,
but as an option. ConTEXt allows for this exception because it is the classic way of doing
things in TEX, but it provides the alternative forms of syntax that are more consistent with
its overall design.

The options are of the value assignment kind (OptionName=Value), and are
as follows:

Chapter 7 Document structure 131

– reference: Label for cross-references.

– title: The section title that will be printed in the body of the document.

– list: The section title that will be printed in the table of contents.

– marking: The section title to be printed in page headers or footers.

– bookmark: The section title to be converted into a bookmark in the PDF
file.

– ownnumber: This option is used in the case of a section that is not automat
ically numbered; in this case, this option will include the number assigned
to the section in question.

Of course, the “list”, “marking” and “bookmark” options should only be used
if we want to use a different title to replace the main title set with the “title”
option. This is very useful, for example, when the title is too long for the
header; although to achieve this we can also use the \nomarking and \nolist
commands (something very similar). On the other hand, we need to bear in
mind that if the title text (the “title” option) includes any commas, then it
will need to be enclosed within curly brackets, both the complete text and the
comma, to ensure that ConTeXt knows that the comma is part of the title. The
same applies to the options: “list”, “marking” and “bookmark”. Therefore, in
order not to have to keep an eye on whether or not there are any commas in
the title, I think it is a good idea to get into the habit of always enclosing the
value of any of these options between curly brackets.

So, for example, the following lines will create a chapter entitled “A Test Chap
ter” associated with the “test” label for cross-references, while the header will be
“Chapter test” instead of “A Test Chapter”.

\chapter
[
title={A Test Chapter},
reference={test},
marking={Chapter test}

]

The \startSectionType syntax turns the section into an environment. It is more
consistent with the fact that, as I said at the beginning, in the background each
section is a differentiated block of text, although ConTEXt, by default, does not
consider environments generated by section commands to be groups. Just the same,
this procedure is what Mark IV recommends; quite possibly because this way of
establishing sections requires us to expressly state where each section begins and
ends, which makes it easier for the structure to be consistent, and most probably

Chapter 7 Document structure 132

has better support for XML and EPUB output. In fact, for XML output, it is
essential.

When we use \startSectionName one or more variables are allowed as arguments
between square brackets. Their value can then be used later at other points in the
document with the \structureuservariable command.

Having user variables allows for very advanced uses in ConTEXt by dint of the fact that decisions
can be taken regarding whether or not to compile a fragment, or in what we way to do so, or
with what template depending on the value of a particular variable. These ConTEXt utilities,
however, go beyond the scope of the material I wish to deal with in this introduction.

7.4 Format and configuration of sections
and their titles

7.4.1 The \setuphead and \setupheads commands
By default, ConTEXt assigns certain features to each level of sectioning that mainly
(but not only) affect the format in which the title is displayed in the main body
of the document, but not the way the title is displayed in the table of contents or
headers and footers. We can change these features with the \setuphead command,
whose syntax is:

\setuphead[Sections][Options]

where

• Sections refers to the name of one or more sections (separated by commas)
to be affected by the command. This can be:

– Any of the predefined sections (part, chapter, title, etc.), in which case we
can refer to them either by name or by their level. To refer to them by
their level we use the word “section-NumLevel”, where NumLevel is the
level number of the section concerned. So, “section-1” is equal to “part”,
“section-2” is equal to “chapter”, etc.

– Any kind of section we ourselves have defined. In this regard, see section 7.5.

• Options are the configuration options. These are of the explicit value assign
ment kind (OptionName=value). The number of eligible options is very high
(over sixty) and I will therefore explain them by grouping them into categories
according to their function. I must point out, however, that I have not managed
to determine what some of these options are for or how they are used. I will
not talk about those options.

Chapter 7 Document structure 133

Previously I said that \setuphead affects the sections that are expressly indi
cated. But this does not mean that the modification of a particular section should
not affect the others in any way unless they have been expressly mentioned in
the command. In fact, the opposite is true: the modification of a section affects
other sections that are linked to it, even if this has not been made explicit in the
command. The linkage between the different sections is of two kinds:

• The unnumbered commands are linked to the corresponding numbered com
mand of the same level so that a change in the appearance of the numbered
command will affect the unnumbered command of the same level; but not the
other way around: the change in the unnumbered command does not affect the
numbered command. This means, for example, that if we change some aspect of
“chapter” (level 2) we are also changing that aspect in “title”; but changing
“title” will not affect “chapter”.

• The commands are linked hierarchically, such that if we change certain features
in a particular level, the change will affect all levels that come after it. This
only happens with certain features. Colour, for example: if we establish that
subsections will display in red, we are also changing subsubsections, subsub
subsections, etc. to red. But the same does not happen with other features like
font style for example.

Along with \setuphead ConTEXt provides the \setupheads command which glob
ally affects all section commands. The ConTEXt wiki says, in reference to this com
mand, that some people have said it does not work. According to my tests, this
command works for some options but not others. In particular it does not work
with the “style” option, which is striking, since the style for titles is most likely
the one thing we would like to change globally so it affects all titles. But it does
work, according to my tests, with other options such as, for example, “number” or
“color”. So, for example, \setupheads[color=blue] will ensure that all titles in
our document are printed in blue.

Since I am a bit too lazy to bother testing every option to see if it works or not
with \setupheads (remember that there are more than sixty of them) in what
follows I will refer only to \setuphead.

Finally: before examining the specific options, we should note something that is
said in ConTEXt wiki, although it is probably not said in the right place: some
options only work if we are using the \startSectionName syntax.

This information is contained in connection with \setupheads, but not \setuphead which is
where the bulk of the options are explained and where, if it is only to be said in one place, it
seems the most reasonable place to say it. On the other hand, the information only mentions
the “insidesection” option, without making it clear whether or not it also happens with
other options.

Chapter 7 Document structure 134

7.4.2 Parts of a section title
Before going into the specific options that allow us to configure the appearance of
titles, it is advisable to start by pointing out that a section title can have up to
three different parts, which ConTEXt allows us to format together or separately.
These title elements are as follows:

• The title itself, meaning the text it is made up of. In principle this title is
always displayed, except for sections of the “part” kind where the title is not
displayed by default. The option that controls whether the title is displayed
or not is “placehead” whose values can be “yes”, “no” “hidden”, “empty” or
“section”. The meaning of the first two is clear. But I am not so sure about
the results of the remaining values of this option.

Therefore, if we want the title to be displayed in the first level sections, our
setting should be:

\setuphead
[part]
[placehead=yes]

The title of certain sections, as we already know, can be automatically sent
to headers and the table of contents. Using the list and marking options
of section commands, we can indicate an alternative title to be sent instead.
It is also possible, when writing the title, to use the \nolist or \nomarking
commands to have certain parts of the title replaced by ellipses in the table of
contents or header. For example:

\chapter{Influences of \nomarking{19th century} impressionism \nomarking{in
the 21st century}}

Will write “Influences of ... impressionism ...” in the header.

• Numbering. This is only the case for numbered sections (part, chapter, sec
tion, subsection...), but not for unnumbered ones (title, subject, subsubject). In
fact, whether a particular section is numbered or not depends on the “number”
and “incrementnumber” options whose possible values are “yes” and “no”. In
numbered sections both these are set as yes and in unnumbered sections, as
no.

Why are there two options to control the same thing? Because in fact the two options
control two things; one is whether the section is numbered or not (incrementnumber) and
the other is whether the number is displayed or not (number). If incrementnumber=yes
and number=no are set for a section, we will get a section that is unnumbered outwardly
(visually) but still counted internally. This would be useful for including such a section in

Chapter 7 Document structure 135

the table of contents, since ordinarily this would only include numbered sections. In this
regard see subsection A in section 8.1.7.

• The label for the title. In principle this element in titles is empty. But we can
associate a value with it, in which case, prior to the number and the actual title,
the label we have assigned to this level will be printed. For example, in chapter
titles we might want the word “Chapter” to be printed, or the word “Part”
for parts. We do not use \setuphead to do this but the \setuplabeltext
command.This command allows us to assign a textual value to the labels of
the different sectioning levels. So, for example, if we want to write “Chapter”
in our document before the chapter titles, we should set:

\setuplabeltext
[chapter=Chapter~]

In the example, after the assigned name, I have included the reserved “~”
character that inserts an unbreakable blank space after the word. If we don't
mind a line break happening between the label and the number, we could
simply add a blank space. But this blank space (either kind) is important;
without it the number will be connected to the label and we would see, for
example, “Chapter1” instead of “Chapter 1”.

7.4.3 Controlling the numbering
(in numbered sections)

We already know that the predefined numbered sections (part, chapter, section...)
and whether or not a particular section is numbered or not, depends on the
“number” and “incrementnumber” options set up with \setuphead.

By default, the numbering of the various levels is automatic, unless we have as
signed the value of “yes” to the “ownnumber” option. When “ownumber=yes” the
number assigned to each command must be indicated. This is done:

• If the command is invoked using the classic syntax, by adding an argument
with the number before the title text. For example:
\chapter{13}{Chapter title} will generate a chapter that has manually
been assigned the number 13.

• If the command has been invoked with the syntax specific to ConTEXt
(\SectionType [Options] or \startSectionType [Options]), with the
“ownnumber” option. For example:
\chapter[title={Chapter title}, ownnumber=13], will generate a chapter
that has manually been assigned the number 13.

Chapter 7 Document structure 136

When ConTEXt automatically does the numbering, it uses internal counters that
store the numbers of the different levels; thus there is a counter for parts, another
for chapters, another for sections, etc. Each time ConTEXt finds a section command
it carries out the following actions:

• It increases the counter associated with the level corresponding to that com
mand by ‘1’.

• It resets the associated counters at all levels below that of the command in
question to 0.

This means, for example, that each time a new chapter is found, the chapter
counter is increased by 1 and all the section, subsection, subsubsection etc. com
mands are returned to 0; but the counter for parts is not affected.

To alter the number from which to start counting, use the \setupheadnumber
command as follows:

\setupheadnumber[SectionType][Number from which to count]

where Number from which to count is the number from which sections of any type
will be counted. So if Number from which to count is equal to zero, the first section
will be 1; if it is equal to 10, the first section will be 11.

This command also allows us to alter the pattern for the automatic increment;
so we can, for example, get the chapters or sections to be counted in pairs, or in
threes. So, \setupheadnumber[section][+5] will see chapters numbered as 5 out
of five; and \setupheadnumber[chapter][14, +5] will see that the first chapter
begins with 15 (14+1), the second will be 20 (15+5), the third 25, etc.

By default, section numbering displays Arabic numbers, and the numbering of
all previous levels is included. That is to say: in a document in which there are
parts, chapters, sections and sub-sections, a specific sub-section will indicate to
which part, chapter and section it corresponds. Thus the fourth sub-section of the
second section of the third chapter of the first part will be “1.3.2.4”.

The two basic options controlling how numbers are displayed are:

• conversion: It controls the type of numbering that will be used. It allows
numerous values depending on the type of numbering we want:

– Numbering with Arabic numbers: The classic numbering: 1, 2, 3, ... is
obtained with the values n, N or numbers.

– Numbering with Roman numbers. Three ways of doing this:

⋆ Upper case Roman numbers: I, R, Romannumerals.
⋆ Lower case Roman numbers: i, r, Romannumerals.

Chapter 7 Document structure 137

⋆ Roman numbers in small caps: KR, RK.

– Numbering with letters. Three ways of doing this:

⋆ Upper case letters: A, Character
⋆ Lower case letters: a, character
⋆ Letters in small caps: AK, KA

– Numbering in words. Meaning we write the word that designates the
number. So, for example, ‘3’ becomes ‘Three’. There are two ways of doing
this:

⋆ Words beginning with a capital letter: Words.
⋆ Words all in lower case: words.

– Numbering with symbols: Symbol-based numbering uses different sets
of symbols in which each symbol is assigned a numerical value. As the
symbol sets used by ConTEXt have a very limited number of them, it is
only appropriate to use this type of numbering when the maximum number
to be reached is not too high. ConTEXt provides for four different sets
of symbols: set 0, set 1, set 2 and set 3 respectively. Below are the
symbols that each of these sets uses for numbering. Note that the maximum
number that can be reached is 9 in set 0 and set 1 and 12 in set 2 and
set 3:

Set 0: • – ⋆ ⊳ ∘ ◯ ◯ □ ✓
Set 1: ⋆ ⋆⋆ ⋆ ⋆ ⋆ ‡ ‡‡ ‡‡‡ ∗ ∗∗ ∗∗∗
Set 2: ∗ † ‡ ∗∗ †† ‡‡ ∗∗∗ ††† ‡‡‡ ∗∗∗∗ †††† ‡‡‡‡
Set 3: ⋆ ⋆⋆ ⋆ ⋆ ⋆ ‡ ‡‡ ‡‡‡ ¶ ¶¶ ¶¶¶ § §§ §§§

• sectionsegments: This option allows us to control whether or not to dis
play the numbering for the preceding levels. We can indicate which pre
vious levels will be displayed. This is done by identifying the initial level
and the final level to be displayed. The identification of the level can be
done by its number (part=1, chapter=2, section=3, etc.), or name (part,
chapter, section, etc.). So, for example, “sectionsegments=2:3” indicates
that chapter and section numbering should be displayed. It is exactly the
same as saying “sectionsegments=chapter:section”. If we want to indi
cate that all numbers above a certain level are displayed we can use, as a
value of “optionsegments” Initial Level:all, or InitialLevel:*. For example,
“sectionsegments=3:*” indicates that numbering is displayed starting from
level 3 (section).

Chapter 7 Document structure 138

So, for example, imagine that we want the parts to be numbered with Roman nu
merals in capital letters; the chapters with Arabic numerals, but without including
the number of the part to which they belong; the sections and subsections with
Arabic numerals including the chapter and section numbers, and the subsections
with capital letters. We should write the following:

\setuphead[part][conversion=I]
\setuphead[chapter] [conversion=n, sectionsegments=2]
\setuphead[section] [conversion=n, sectionsegments=2:3]
\setuphead[subsection] [conversion=n, sectionsgments=2:4]
\setuphead[subsubsection][conversion=A, sectionsegments=5]

7.4.4 Title colour and style
We have the following options to control style and colour:

• The style is controlled with the “style”, “numberstyle” and “textstyle”
options depending on whether we want to affect the whole title, only the num
bering, or only the text. By means of any of these options we can include
commands that affect the font; namely: specific font, style (roman, sans serif
or typewriter), alternative (italic, bold, slanted...) and size. If we only want to
indicate one style feature we can do this either by using the name of the style
(for example, “bold” for bold), or by indicating its abbreviation (“bf”), or the
command that generates it (\bf, in the case of bold). If we want to indicate
several features simultaneously, we must do it by means of the commands that
generate them, writing them one after the other. Bear in mind, on the other
hand, that if we indicate only one feature, the rest of the style features will
be established automatically with the default values of the document, which is
why it is rarely advisable to establish only one style feature.

• The colour is set with the “color”, “numbercolor” and “textcolor” options
depending on whether we want to set the colour of the whole title, or just the
colour of the numbering or the text. The colour indicated here can be one of
ConTEXt's predefined colours, or some other colour we have defined ourselves
and previously assigned a name to. However, we cannot directly use a colour
definition command here.

In addition to these six options, there are still five more options avail
able for establishing some more sophisticated features with which we can
do virtually anything we want. These are: “command”, “numbercommand”,
“textcommand”,“deepnumbercommand” and “deeptextcommand”. Let's begin by
explaining the first three:

Chapter 7 Document structure 139

• command indicates a command that will take two arguments, the number and
the section title. It can be a normal ConTEXt command or a command we have
defined ourselves.

• numbercommand is similar to “command”, but this command only takes an ar
gument with the section number.

• textcommand is also similar to “command”, but it only takes an argument with
the title text.

These three options allow us to do practically anything we want. For example, if
I want the sections to be right-aligned, enclosed in a frame and with a line break
between the number and the text, I can simply create a command that does that,
and then indicate that command as the value of the “command” command. This
would be achieved with the following lines:

\define[2]\AlignSection
{\framed[frame=on, width=broad,align=flushright]{#1\\#2}}

\setuphead
[section]
[command=\AlignSection]

When we simultaneously set the “command” and the “style” options, the command
is applied to the title with its style. This means, for example, that if we we have
set “textstyle=\em”, and “textcommand=\WORD”, the command \WORD (which
capitalizes the text it takes as an argument) will be applied to the title with its
style, i.e.: \WORD{\em Title text}.If we want it to be done the other way around,
i.e. that the style is applied to the content of the title once the command has
been applied, we should use, instead of the “textcommand” and “numbercommand”
options, the “deeptextcommand” and “deepnumbercommand” options. This, in the
example given above, would generate “{\em\WORD{Title text}}”.

In most cases there would be no difference in doing it one way or the other. But
in some cases there may be.

7.4.5 Location of number and title text
The “alternative” option controls two things simultaneously: the location of
the numbering with respect to the title's text, and the location of the title itself
(including number and text) with respect to the page on which it is displayed and
the contents of the section. They are two different things, but as they are both
governed by the same option, they are controlled simultaneously.

The location of the title in relation to the page and the first paragraph of the
section content is controlled by the following possible values of “alternative”:

Chapter 7 Document structure 140

• text: The section title is integrated with the first paragraph of its contents.
The effect is similar to what is produced in LATEX with \paragraph and \sub
paragraph.

• paragraph: The section title will be an independent paragraph.

• normal: The section title will be placed in the default location provided
by ConTEXt for the particular type of section in question. Normally it is
“paragraph”.

• middle: The title is written as an autonomous, centred paragraph. If it is a
numbered command, the number and the text are separated on different lines,
both centred.

An effect similar to what is obtained with “alternative=middle” is obtained
with the “align” option that controls title alignment. It can take the values
“left”, “middle” or “flushright”. But if we centre the title with this option,
the number and the text will appear on the same line.

• margintext: This option causes the entire title (numbering and text) to be
printed in the space reserved for the margin.

The location of the number in relation to the title text is indicated by the following
possible values of “alternative”:

• margin/inmargin: The title is a separate paragraph. The numbering is written
in the space reserved for the margin. I haven't figured out the difference between
using “margin” and using “inmargin”.

• reverse: The title makes up a separate paragraph, but the normal order is
reversed, and the text is printed first, then the number.

• top/bottom: In titles whose text occupies more than one line, these two options
control whether the numbering will be aligned with the first line of the title or
with the last line respectively.

7.4.6 Commands or actions to be carried out be
fore or after printing the title

It is possible to indicate one or more commands that are executed before printing
the title (“before” options) or after (“after” option). These options are widely
used to visually mark the title. For example: if we want to add more vertical
space between the title and the text that precedes it, “before=\blank” will add a
blank line. To add even more space we could write “before={\blank[3*big]}”.
In this case we have surrounded the value of the option with curly brackets to
avoid an error. We could also visually indicate the distance between the previous

Chapter 7 Document structure 141

text and the following one with “before=\hairline, after=\hairline”, which
would draw a horizontal line before and after the title.

Very similar to the “before” and “after” options are the “commandbefore” and
“commandafter” ones. According to my tests I deduce that the difference is that
the former two execute actions before and after starting to typeset the title as
such, while the latter two refer to commands that will be executed before and
after typesetting the title text.

If we want to insert a page break before the title, we have to use the “page” option
that allows, among other values, “yes” for inserting a page break, “left” to insert
as many page breaks as necessary to ensure that the title starts on an even page,
“right” to ensure that the title starts on an odd page, or “no” if what we want is
to disable the forced page break. This option, on the other hand, for levels below
“chapter”, will only work if the “continue=no” is used, otherwise it will not work
if the section, subsection or command is on the first page of a chapter.

By default, chapters start on a new page in ConTEXt. If it is established that the sections also
start a new page, the problem arises of what to do with the first section of a chapter which,
perhaps, is at the beginning of the chapter: if that section also starts a page break, we end up
with the page which opens the chapter only containing the title of the chapter, which is not
very aesthetic. This is why we can set the “continue” option, a name, I have to say, that is
not very clear to me: if “continue=yes”, the page break will not apply to the sections that
are on the first page of a chapter. If “continue=no” the page break will still be applied.

If, instead of section commands we use section environments (\start ... \stop),
we also have the “insidesection” option, by which we can indicate one or more
commands that will be executed once the title has been typeset and we are already
inside the section. This option would allow us, for example, to make sure that im
mediately after starting a chapter, a table of contents will be typeset automatically
with (“insidesection=\placecontent”)

7.4.7 Other configurable features
As well as those we have already seen, we can configure the following additional
features with \setuphead:

• Interlined. Controlled by the “interlinespace” which takes as its value the
name of an interline command previously created with \defineinterline
space and configured with \setupinterlinespace.

• Alignment. The “align” option affects the alignment of the paragraph con
taining the title. Among others it can have the following values: “flushleft”
(left), “flushright” (right), “middle” (centred), “inner” (inner margin) and
“outer” (outer margin).

• Margin. With the “margin” option we can manually set the title's margin.

Chapter 7 Document structure 142

• Indenting the first paragraph. The value of the “indentnext” option (that
can be “yes”, “no” or “auto”) controls whether or not the first line of the first
paragraph of the section will be indented. Whether or not it should be indented
(in a document where the first line of the paragraphs is generally indented) is
a matter of taste.

• Width. By default, titles take up the width they need unless this is greater
than the width of the line, in which case the title will take up more than one
line. But with the “width” option we can assign a particular width for the
title. The “numberwidth” and “textwidth” options respectively, assign the
numbering width or the width of the title's text.

• Separating number and text. The “distance” and “textdistance” op
tions allow us to control the distance separating the number from its text.

• Style of section headers and footers. For this we use the “header” and “footer”
options

7.4.8 Other \setuphead options
With the options we already seen, we can see that the configuration possibilities
for section titles are almost unlimited. However, \setuphead has around thirty
options that I have not mentioned. Most because I have not discovered what they
are for or how they are used, a few because their explanation would force me to
go into aspects that I do not intend to deal with in this introduction.

7.5 Defining new section commands
We can define our own section commands with \definehead whose syntax is:

\definehead[CommandName][Model][Configuration]

where

• CommandName represents the name the new section command will have.

• Model is the name of an existing section command that will be used as a
model from which the new command will initially inherit all its characteristics.

In fact, the new command inherits much more than its initial characteristics from the
model: it becomes a kind of customised instance of the model, but shares with it, for
example, the internal counter that controls the numbering.

• Configuration is the customised configuration of our new command. Here we
can use exactly the same options as in \setuphead.

Chapter 7 Document structure 143

It is not necessary to configure the new command at the time of its creation. This
can be done later with \setuphead and, in fact, in the examples given in the
ConTEXt manuals and its wiki, this seems to be the normal way.

7.6 The document's macrostructure
Chapters, sections, subsections, titles..., structure the document; they organise it.
But together with the structure resulting from these kinds of commands, in certain
printed books, especially those coming from the academic world, there is a kind
of macro-ordering of the book's material, taking into account not its content but
the function that each of these large parts performs in the book. This is how we
differentiate between:

• The initial part of the document containing the title page, acknowledgement
page, a dedication page, the table of contents, perhaps a preface, presentation
page, etc.

• The main body of the document, which contains the fundamental text of the
document, divided into parts, chapters, sections, subsections, etc. This part is
usually the most extensive and important.

• Additional material made up of appendices or annexes that develop or exem
plify some issue dealt with in the main body, or provide additional documen
tation not written by the author of the main body, etc.

• The final part of the document where we can find the bibliography, indexes,
glossaries, etc.

In the source file we can demarcate each of these parts through the environments
seen in table 7.2.

Part of the document Command
Initial part \startfrontmatter [Options] ... \stopfrontmatter
Main body \startbodymatter [Options] ... \stopbodymatter
Appendices \startappendices [Options] ... \stopappendices
Final part \startbackmatter [Options] ... \stopbackmatter

Table 7.2 Environments that reflect the document's macrostructure

The four environments allow the same four options: “page”, “before”, “after”
and “number”, and their values and usefulness are the same as those found in \se
tuphead (see section 7.4), though we should note that here the “number=no” option
will eliminate the numbering of all sectioning commands within the environment.

To include any of these large sections in our document only makes sense if it is
to establish some kind of differentiation between them. Perhaps headers or page

Chapter 7 Document structure 144

numbering in frontmatter. Configuration of each of these blocks is achieved by
\setupsectionblock whose syntax is:

\setupsectionblock[Block name] [Options]

where Block name can be frontpart, bodypart, appendix or backpart and
the options can be the same as just mentioned: “page”,“number”, “before” and
“after”. So, for example, to ensure that in frontmatter the pages are numbered
with Roman numbers, in the preamble of our document we should write:

\setupsectionblock
[frontpart]
[
before={\setuppagenumbering[conversion=Romannumerals]}

]

ConTEXt's default configuration for these four blocks implies that:

• The four blocks begin a new page.

• Section numbering changes in each of these blocks:

– In frontmatter and backmatter by default all numbered sections are un
numbered.

– In bodymatter chapters have Arabic numbering.

– In appendices chapters are numbered with upper case letters.

It is also possible to create new section blocks with \definesectionblock.

145

Chapter 8
Table of contents, indexes,

lists
Table of Contents: 8.1 Table of contents; 8.1.1 Overall view of the table of con
tents; 8.1.2 Completely automatic table of contents with a title; 8.1.3 Automatic table
of contents without a title; 8.1.4 Elements to incorporate in the TOC: the criterium
option; 8.1.5 Layout of the table of contents: the alternative option; 8.1.6 Format
of TOC entries; 8.1.7 Manual adjustments to the table of contents; A Including un
numbered sections in the TOC; B Manually adding entries to the TOC; C Exclude a
particular section from the TOC belonging to a section type that is included in the TOC;
D Section title text which differs in the TOC from the title in the body of the document;
8.2 Lists, combined lists and table of contents based on a list; 8.2.1 Lists in
ConTEXt; 8.2.2 Lists or indexes of images, tables and other items; 8.2.3 Combined lists;
8.3 Index; 8.3.1 Generating the index; A The prior definition of the entries in the
index and the marking of the points in the source file that refer to them; B Generating
the final index; 8.3.2 Formatting the subject index; 8.3.3 Creating other indexes;

A table of contents and an index are a global aspect of a document. Almost all
documents will have a table of contents, while, only some documents will have an
index. For many languages (but not for English) both the table of contents and
the index come under the general term ‘index’. For English readers, a table of
contents will normally come at the beginning (of a document, or possibly in some
cases at the beginning of chapters as well), and the index will come at the end.

Either of these imply a particular application of the mechanism for internal refer
ences whose explanation is included in section 9.2.

8.1 Table of contents
8.1.1 Overall view of the table of contents
In the previous chapter we examined the commands that allow the structure of a
document to be established as it has been written. This section focuses on the table
of contents and the index, which in some way mirror the document's structure.
The table of contents is very useful for getting an idea of the document as a whole
(it helps contextualise information) and for searching the exact point where a

Chapter 8 Table of contents, indexes, lists 146

particular passage might be located. Books with a very complex structure, with
many sections and subsections with various levels of depth, seem to require a
different kind of table of contents, since a poorly detailed one (perhaps with only
the first two or three levels of sectioning) helps a lot to get an overall idea of the
contents of the document, but is not very useful for locating a particular passage;
unlike a very detailed table of contents, on the other hand, where it is easy to miss
the forest for the trees and lose the overall view of the document. This is why,
sometimes, books with a particularly complex structure include more than one
table of contents: one not too detailed at the beginning showing the main parts,
and a more detailed table of contents at the beginning of each chapter as well as,
perhaps, an index at the end.

These can all be generated by ConTEXt automatically with relative ease. We can:

• Generate a complete or partial table of contents at any point in the document.

• Decide on the contents of either.

• configure their appearance down to the last detail.

• Include hyperlinks in the table of contents that allow us to jump directly to
the section in question.

In fact this last utility is included by default in all tables of contents provided that
the interactivity function has been enabled in the document. See, in this respect,
section 9.3.

The explanation of this in the ConTEXt reference manual is, in my opinion, some
what confusing, which I think is due to the fact that too much information is
introduced at once. The mechanism for building ConTEXt tables of contents has
many pieces to it; and it is difficult for a text that tries to explain them all at
once to be clear. Especially for the reader who is new to the scene. By contrast,
the explanation in wiki, is practically limited to examples: very useful for learn
ing tricks but inadequate – I think – for understanding the mechanism and how it
works. this is why the strategy I have decided to use to explain things in this intro
duction begins by assuming something that is not strictly true (or not completely
true): that there is something in ConTEXt called the table of contents. Starting
with this, the normal commands for generating the table of contents are explained,
and when these commands and their configuration are well known, I think this is
the moment for introducing – though at a theoretical rather than more practical
level – the information on those pieces of the mechanism that have been omitted
up till then. Knowledge of these additional pieces allows us to create much more
customised tables of contents than the ones we can call the normal ones created
with the commands explained up to that point; however, in most cases we will not
need to do this.

Chapter 8 Table of contents, indexes, lists 147

8.1.2 Completely automatic table of contents with
a title

The basic commands for generating an automatically generated table of contents
(TOC) from the numbered sections of a document (part, chapter, section, etc.)
are \completecontent and \placecontent. The main difference between the two
commands is that the first adds a title to the TOC; to do so, immediately before
the TOC it inserts an unnumbered chapter whose default title is Table of Contents.

Therefore \completecontent:

• Inserts, at the point where it is found, a new unnumbered chapter entitled
“Table of Contents”.

We recall that in ConTEXt the command used to generate an unnumbered section at the
same level as chapters, is \title (see section 7.2). Therefore in reality \completecontent
does not insert a Chapter (\chapter) but a Title (\title). I have not said so because
I think it may be confusing for the reader to use the names of the unnumbered section
commands here, since the term Title also has a broader sense, and it is easy for the reader
not to identify it with the concrete level of sectioning we are referring to.

• This chapter (actually, \title) is formatted exactly the same as the rest of
the unnumbered chapters in the document; which by default includes a page
break.

• The table of contents is printed immediately after the title.

Initially the generated TOC is complete, as we can deduce from the command
name that generates it (\completecontent). But on the one hand we can limit
the level of depth of the TOC as explained in section 8.1.3 and, on the other, since
this command is sensitive to the place it is found in the source file (see what is
said further on about \placecontent), if \completecontent is not found at the
beginning of the document it is possible that the TOC generated is not complete;
and in some points of the source file it is even possible that the command is
apparently ignored. If this happens, the solution is to invoke the command with
the “criterium=all” option. Regarding this option, also see section 8.1.3.

To change the default title assigned to the TOCs we use the \setupheadtext
command whose syntax is:

\setupheadtext[Language][Element=Name]

where Language is optional and refers to the language identifier used by ConTEXt
(see section 10.5), and Element refers to the element whose name we want to
change (“content” in the case of the table of contents) and Name is the name or
title we want to give our TOC. For example

Chapter 8 Table of contents, indexes, lists 148

\setupheadtext[en][content=Contents]

will ensure that the TOC generated by \completecontent is entitled “Contents”
instead of “Table of Contents”.

Moreover, \completecontent allows the same configuration options as \place
content, for the explanation of which I refer to (the next section).

8.1.3 Automatic table of contents without a title
The general command for inserting a TOC without a title, generated automatically
from the document's sectioning commands, is \placecontent, whose syntax is:

\placecontent[Options]

In principal, the table of contents will contain absolutely all numbered sections,
although we can limit its level of depth with the \setupcombinedlist command
(that we will speak of further on). So, for example:

\setupcombinedlist[content][list={chapter,section}]

will limit the contents of the TOC to chapters and sections.

A peculiarity of this command is that it is sensitive to its location in the source
file. This is very easy to explain with a few examples, but much more difficult if we
want to specify exactly how the command works and which headings are included
in the TOC in each case. So let's start with the examples:

• \placecontent placed at the beginning of the document, before the first sec
tion command (part, chapter or section, according to the situation) will gener
ate a complete table of contents.

I am not really sure that the table of contents generated by default is complete, I believe
it does include enough levels of sectioning to be complete in most cases; but I suspect it
will not go beyond the eighth level of sectioning. In any case, as mentioned above, we can
adjust the sectioning level the TOC reaches with

\setupcombinedlist[content][list={chapter, section, subsection, ...}]

• By contrast, this same command located inside a part, chapter or section will
exclusively generate a TOC of the content of that element, or in other words
chapters, sections and other lower levels of sectioning of a specific part, or
sections (and other levels) of a specific chapter, or subsections of a specific
section.

As for the technical and detailed explanation, in order to understand the de
fault operation of \placecontent properly, it is essential to remember that the
various sections are, in fact, environments for ConTEXt Mark IV that start with

Chapter 8 Table of contents, indexes, lists 149

\startSectionType and end with \stopSectionType and can be contained within
other lower level section commands. So, taking that into account, we can say that
\placecontent generates by default a table of contents that will only include:

• Elements that belong to the environment (section level) where the command
is placed. This means that the command when placed in a chapter will not
include sections or subsections from other chapters.

• Elements that have a sectioning level lower than the level corresponding to the
point where the command is located. Meaning that if the command is in a
chapter, only sections, subsections and other lower levels are included; but if
the command is in a section, it will be split to make the TOC of the subsection
level.

Furthermore, for the table of contents to be generated, it is required that \place
content be found before the first section of the chapter in which it is located, or
before the first subsection of the section in which it is located, etc.

I'm not sure I was clear in the explanation above. Perhaps with a somewhat more detailed
example than the previous ones we can better understand what I mean: let's imagine the
following structure of a document:

• Chapter 1
– Section 1.1
– Section 1.2
⋆ Subsection 1.2.1
⋆ Subsection 1.2.2
⋆ Subsection 1.2.3

– Section 1.3
– Section 1.4

• Chapter 2

So: \placecontent placed before Chapter 1 will generate a complete table of contents, similar
to the one generated by \completecontent but without a title. But if the command is placed
within Chapter 1 and before section 1.1, the table of contents will be only of the chapter; and
if it is placed at the beginning of section 1.2, the table of contents will be only the content of
that section. But if the command is placed, for example, between sections 1.1 and 1.2 it will
be ignored. It will also be ignored if it is placed at the end of a section, or at the end of the
document.

All of this, of course, refers only to the case where the command does not include
options. In particular, the criterium option will alter that default behaviour.

Of the options allowed by \placecontent I will only explain two of them, the
most important ones for setting up the TOC, and, moreover, the only ones that are
(partially) documented in the ConTEXt reference manual. The criterium option,
which affects the content of the TOC in relation to the place in the source file

Chapter 8 Table of contents, indexes, lists 150

where the command is located; and the alternative option, which affects the
general layout of the TOC to be generated.

8.1.4 Elements to incorporate in the TOC: the
criterium option

The default operation of \placecontent in relation to the position of the command
in the source file has been explained above. The criterium option alters this
operation. Among others, it can take the following values:

• all: the TOC will be complete, regardless of the place in the source file where
the command is found.

• previous: the TOC will only include the section commands (of the level we
are at) previous to \placecontent. This option is intended for TOCS that are
written at the end of the document or section in question.

• part, chapter, section, subsection...: implies that the TOC should be
limited to the sectioning level indicated.

• component: in multifile projects (see section 4.6), it will generate only the TOC
corresponding to the component where the \placecontent or \completecon
tent command is found.

8.1.5 Layout of the table of contents: the alter
native option

The alternative option controls the overall layout of the table of contents. Its
main values can be see in table 8.1.

alternative Contents of TOC entries Notes
a Number – Title – Page One line per entry
b Number – Title – Spaces – Page One line per entry
c Number – Title – Leader dots – Page One line per entry
d Number – Title – Page Continuous TOC
e Title Framed
f Title Left aligned,

right aligned or centred
g Title Centred

Table 8.1 Ways of formatting the table of contents

The first four alternative values provide all the information of each section (its
number, its title and the page number where it begins), and are therefore suitable
for both paper and electronic documents. The last three alternatives only inform
us about the title, so they are only suitable for electronic documents where it is

Chapter 8 Table of contents, indexes, lists 151

not necessary to know the page number where a section begins, provided that the
TOC includes a hyperlink to it, which happens by default in ConTEXt.

Furthermore, I believe that in order to truly appreciate the differences between the
various alternatives, it is best for the reader to generate a test document where he
or she can analyse them in detail.

8.1.6 Format of TOC entries
We have seen that the alternative option of \placecontent or \completecon
tent allows us to control the general layout of the table of contents, i.e. what
information will be shown for each heading, and whether or not there will be line
breaks separating the different headings. Final adjustments to each TOC entry are
made with the \setuplist command whose syntax is as follows:

\setuplist[Element][Configuration]

where Element refers to a particular kind of section. This could be part, chapter,
section, etc. We can also configure more than one element at the same time,
separating them with commas. Configuration has up to 54 possibilities, many of
them, as usual, not expressly documented; but this does not prevent those that are
documented, or the ones that are not clear enough from allowing full adjustment
of the TOC.

I will now explain the most important options, grouping them according to their
usefulness, but before going into them let us remember that a TOC entry, depend
ing on the value of the alternative, can have up to three different components:
The section number, the title of the section, and the page number. The configura
tion options allow us to configure the various components globally or separately:

• Inclusion (or not) of the different components: If we have chosen an alternative
that includes, in addition to the title, the section number and the page number
(alternatives ‘a’ ‘b’ ‘c’ or ‘d’), the options headnumber=no or pagenumber=no,
it means that for the specific level we are configuring, the section number
(headnumber) or the page number (pagenumber) is not displayed.

• Colour and style: We already know that the entry that generates a specific
section in the TOC may have (depending on the alternative) up to three dif
ferent components: section number, title and page number. We can jointly
indicate the style and the colour for the three components using the style
and color options, or do it individually for each component by means of num
berstyle, textstyle or pagestyle (for the style) and numbercolor, text
color or pagecolor for the colour.

To control the appearance of each entry, in addition to the style itself, we can
apply some command to the whole entry or to one of its different elements. For

Chapter 8 Table of contents, indexes, lists 152

this there are the command, numbercommand, pagecommand and textcommand
options. The command indicated here can be a standard ConTEXt command
or a command of our own creation. Section number, title text and page number
will be passed as arguments to the command option, while the section title will
be passed as an argument to textcommand and page number to pagecommand.
So, for example, the following sentence will ensure that section titles are written
in (fake) small caps:

\setuplist[section][textcommand=\Cap]

• Separation of the other TOC elements: The before and after options allow
us to indicate the commands that will be executed before (before) and after
(after) typesetting the TOC entry. Normally these commands are used to
set either the spacing or some separating element between the previous and
subsequent entries.

• Indenting an element: set with the margin option which allows us to set the
amount of left indentation that the entries of the level we are configuring will
have.

• Hyperlinks embedded in the TOC: By default the index entries include a hy
perlink to the document page where the section in question begins. Using the
interaction option we can disable this function (interaction=no) or limit
the part of the index entry where the hyperlink will be, which can be the
section number (interaction=number or interaction=sectionnumber), the
section title (interaction=text or interaction=title) or the page number
(interaction=page or interaction=pagenumber).

• Other aspects:

– width: specifies the separation distance between the number and title of
the section. It can be a dimension, or the keyword fit that sets the exact
width of the section number.

– symbol: allows the section number to be replaced by a symbol. Three pos
sible values are supported: one, two and three. The value none for this
option removes the section number from the TOC.

– numberalign: indicates the alignment of numbering elements; it can be left,
right, middle, flushright, flushleft.

Among the multiple configuration options of the TOC, there are none that allows
us to directly control the interline spacing. This will be, by default, the one that
applies to the document as a whole. Often, however, it is preferable that lines in
the TOC are slightly tighter than the rest of the document. To achieve this we
should enclose the command that generates the table of contents (\placecontent

Chapter 8 Table of contents, indexes, lists 153

or \completecontent) within of a group where a different interline spacing is
established. For example:

\start
\setupinterlinespace[small]
\placecontent

\stop

8.1.7 Manual adjustments to the table of contents
We have already explained the two fundamental commands for generating tables
of contents (\placecontent and \completecontent), as well as their options.
With these two commands, TOCs are automatically generated, constructed from
the existing numbered sections in the document, or in the block or segment of the
document to which the table of contents refers. I will now explain certain settings
that we can make so that the content of the TOC is not so automatic. This implies:

• The possibility of also including some unnumbered section titles in the TOC.

• The possibility of manually sending a particular entry to the TOC that does
not correspond to the presence of a numbered section.

• The possibility of excluding a particular numbered section from the TOC.

• The possibility that the title for a particular section reflected in the TOC does
not coincide exactly with the title included in the body of the document.

A. Including unnumbered sections in the TOC
The mechanism by which ConTEXt builds the TOC means that all numbered
sections are automatically included, which, as I have already said (see section 7.4.2)
depends on the two (number and incrementnumber) options that we can change
with \setuphead for each kind of section. It was also explained there that a section
type where incrementnumber=yes and number=no would be an internally but not
externally numbered section.

Therefore, if we want a particular unnumbered section type – for example, title
– to be included in the TOC, we must change the value of the incrementnumber
option for that section type, setting it to yes and then include that section type
among those to be displayed in the TOC, which is done, as explained above, with
\setupcombinedlist:

\setuphead
[title]
[incrementnumber=yes]

\setupcombinedlist
[content]

Chapter 8 Table of contents, indexes, lists 154

[list={chapter, title, section, subsection, subsubsection}]

We can then, if we wish, format this entry using \setuplist in exactly the same
way as any of the others; for example:

\setuplist[title][style=bold]

Note: The procedure just explained will include all instances in our document of
the unnumbered section type concerned (in our example the title type sections).
If we only wish to include a particular occurrence of that section type in the TOC,
it is preferable to do so by the procedure explained below.

B. Manually adding entries to the TOC

We can send either an entry (simulating the existence of a section that does not
really exist) or a command to the table of contents, from any point in the source
file.

To send an entry that simulates the existence of a section that does not really
exist, use the \writetolist whose syntax is:

\writetolist[SectionType][Options]{Number}{Text}

in which

• The first argument indicates the level that this section entry must have in the
TOC: chapter, section, subsection, etc.

• The second argument, which is optional, allows this entry to be configured in
a particular way. If the manually sent input is omitted, it will be formatted as
are all the entries of the level indicated with the first argument; although, I
must point out that in my tests I have not managed to make it work.

Both in the official list of ConTEXt commands (see section 3.6) and in the wiki we are told
that this argument allows the same values as \setuplist which is the command that
allows us to format the different TOC entries. But, I insist, in my tests I have not managed
to change the appearance of the TOC entry sent manually in any way.

• The third argument is supposed to reflect the numbering that the element sent
to the TOC has, but I couldn't get this to work in my tests either.

• The last argument includes the text to be sent to the TOC.

This is useful, for example, if we want to send a particular unnumbered section,
but only that to the TOC. In section A it explains how to get an entire category
of unnumbered sections to be sent to the table of contents; but if we only want to
send a particular occurrence of a section type to it, it is more convenient to use
the \writetolist command. And so, for example, if we want the section of our

Chapter 8 Table of contents, indexes, lists 155

document containing the bibliography not to be a numbered section, but still to
be included in the TOC, we would write:

\subject{Bibliography}
\writetolist[section]{}{Bibliography}

See how we are using the unnumbered version of section, which is subject, for
the section but we are sending it to the index, manually, as if it were a numbered
section (section).

Another command intended to influence the table of contents manually is \write
betweenlist which is used to send not an entry itself, but a command to the table
of contents, from a particular point in the document. For example, if we want to
include a line between two items in the TOC, we could write the following at any
point in the document located between the two sections concerned:

\writebetweenlist[section]{\hrule}

C. Exclude a particular section from the TOC belonging to
a section type that is included in the TOC

The table of contents is constructed from section types established, as we already
know, by the list option of \setupcombinedlist, so if a certain section type
must appear in the TOC, there is no way of excluding a particular section from it
that for whatever reasons we don't want in the TOC.

Normally, if we don't want a section to appear there, what we would do is to use its
unnumbered equivalent meaning, for example, title instead of chapter, subject
instead of section, etc. These sections are not sent to the TOC, and neither are
they numbered.

However, if for any reason we want a certain section to be numbered but not
appear in the table of contents, even if other types of this kind do, we can use a
trick which consists of creating a new section type that is a clone of the section in
question. For example:

\definehead[MySubsection][subsection]
\section{First section}
\subsection{First subsection}
\MySubsection{Second subsection}
\subsection{Third subsection}

This will ensure that when inserting a section type MySubsection the subsection
counter will increase, since this section is a clone of the subsections, but the TOC
will not be altered, since by default it does not include MySubsection types.

Chapter 8 Table of contents, indexes, lists 156

D. Section title text which differs in the TOC from the title
in the body of the document

If we do not want the title of a particular section included in the TOC to be
identical to the one displayed in the body of the document, we have two procedures
available to us:

• Creating the section not with traditional syntax (SectionType{Title}) but
with \SectionType [Options], or with \startSectionType [Options], and
assign the text we want to be written in the TOC to the list option (see
section 7.3).

• When writing the title of the section in question in the body of the docu
ment, use the \nolist command: this command causes the text it takes as an
argument to be replaced in the TOC by an ellipsis. For example:

\chapter
[title={An \nolist{approximate and slightly repetitive}

introduction to the reality of the obvious}]

would typeset as the chapter title in the body of the document, “An approx
imate and slightly repetitive introduction to the reality of the obvious”, but
would send the following text to the TOC “An ... introduction to the reality
of the obvious”.

Attention: What I have just pointed out about the \nolist command is stated in both
the ConTEXt reference manual and the wiki. For me, however, it produces a compiling
error, telling me that the \nolist command is undefined.

8.2 Lists, combined lists and table of con
tents based on a list

Internally, for ConTEXt, a table of contents is nothing more than a combined list,
which, in turn, as its name suggests, consists of a combination of simple lists.
Therefore the basic notion from which ConTEXt builds the table of contents is
that of a list. Several lists are combined to form a table of contents. By default,
ConTEXt contains a predefined combined list called “content” and this is what the
commands examined so far work with: \placecontent and \completecontent.

8.2.1 Lists in ConTEXt
In ConTEXt, a list is a range of numbered elements about which we need to re
member three things:

https://wiki.contextgarden.net/Command/nolist

Chapter 8 Table of contents, indexes, lists 157

1. The number.

2. The name or title.

3. The page where it is found.

This happens with numbered sections; but also with other elements of the doc
ument such as images, tables, etc. In general, those elements for which there is
a command whose name begins with \place which places them as \placetable,
\placefigure, etc.

In all these cases, ConTEXt automatically generates a list of the different times the
type of element in question appears, its number, title and page. Thus, for example,
there is a list of chapters, called chapter, another of sections, called section; but
also another of tables (called table) or images (called figure). Lists generated
automatically by ConTEXt are always called the same as the item they store.

A list will also be automatically generated if we create, for example, a new type
of numbered section: when we create it we will be implicitly creating also the list
that stores them. And if for a non-numbered section by default, we set the option
incrementnumber=yes, making it a numbered section, we will also be implicitly
creating a list with that name.

Together with the implicit lists (automatically defined by ConTEXt) we can create
our own lists with \definelist, whose syntax is

\definelist[ListName][Configuration]

Items on the list are added:

• In lists predefined by ConTEXt, or created by it as a result of creating a new
floating object (see section 13.5), automatically each time an item from the
list is inserted into the document, either by a sectioning command or by the
\placeWhatever command for other types of lists, for example: \placefigure,
will insert any image in the document, but it will also insert the corresponding
entry in the list.

• Manually in any kind of list with \writetolist[ListName], already explained
in subsection B of section 8.1.7. The \writebetweenlist command is also
available. It too was explained in that section.

Once a list has been created and all its items included in it, the three basic com
mands related to it are \setuplist, \placelist and \completelist. The first
allows us to configure what the list looks like; the last two insert the list in ques
tion at the point in the document where it finds them. The difference between
\placelist and \completelist is similar to the difference between \placecon
tent and \completecontent (see sections 8.1.2 and 8.1.3).

Chapter 8 Table of contents, indexes, lists 158

So, for example,

\placelist[section]

will insert a list of the sections, including a hyperlink to them if the document's
interactivity is enabled and if, in \setuplist, we have not set interaction=no. A
list of sections is not exactly the same as a table of contents based on sections: the
idea of a table of contents usually includes the lower levels as well (sub-sections,
subsubsections, etc.). But a list of sections will include only the sections themselves.

The syntax of these commands is:

\placelist[ListName][Options]

\setuplist[ListName][Configuration]

The \setuplist options have already been explained in section 8.1.6, and the
options for \placelist are the same as for \placecontent (see section 8.1.3).

8.2.2 Lists or indexes of images, tables and other
items

From what has been said so far, it can be seen that, since ConTEXt auto
matically creates a list of images placed in a document with the \placefig
ure command, generating a list or index of images at a particular point in
our document is as simple as using the \placelist[figure] command. And
if we want to generate a list with a title (similar to what we get with \com
pletecontent) we can do it with \completelist[figure]. We can do simi
larly with the other four predefined kinds of floating objects in ConTEXt: ta
bles (“table”), Graphics (“graphic”), intermezzos (“intermezzo”) and chemi
cal formulas (“chemical”), although for specific cases of these, ConTEXt already
includes a command that generates them without a title: (\placelistoffig
ures, \placelistoftables, \placelistofgraphics, \placelistofintermezzi
and \placelistofchemicals), and another that generates them with a title:
(\completelistoffigures, \completelistoftables, \completelistofgraph
ics, \completelistofintermezzi and \completelistofchemicals), in a similar
way to \completecontent.

In the same way, for floating objects we ourselves have created (see section 13.5)
the \placelistof<FloatName> and \completelistof<FloatName> will be auto
matically created.

For lists we have created with \definelist we can create an index with
\placelist[ListName] or with \completelist[ListName].

Chapter 8 Table of contents, indexes, lists 159

8.2.3 Combined lists
A combined list is, as its name suggests, a list that combines items from different
previously defined lists. By default, ConTEXt defines a combined list for tables of
content whose name is “content”, but we can create other combined lists with
\definecombinedlist whose syntax is:

\definecombinedlist[Name][Lists][Options]

where

• Name: is the name the new combined list will have.

• Lists: refers to the names of lists to be combined, separated by commas.

• Options: Configuration options for the list. They can be indicated at the time
of defining the list, or, probably preferably, when the list is invoked. The main
options (which have already been explained) are criterium (subsection 8.1.4
of section 8.1.3) and alternative (in subsection 8.1.5 in the same section).

A collateral effect of creating a combined list with \definecombinedlist is that
it also creates a command called \placeListName which serves to invoke the list,
that is: to include it in the output file. So for example,

definecombinedlist[TOC]

will create the command \placeTOC; and

definecombinedlist[content]

will create the command \placecontent

But wait, \placecontent! Isn't this the command that is used to create a normal
table of contents? Indeed: this means that the standard table of contents is actually
created by ConTEXt by means of the following command:

\definecombinedlist
[content]
[part, chapter, section, subsection,
subsubsection, subsubsubsection,
subsubsubsubsection]

Once our combined list is defined, we can configure it (or reconfigure it) with
\setupcombinedlist which allows the already explained options criterium (see
subsection 8.1.4 in section 8.1.3) and alternative (see subsection 8.1.5 in the same
section), as well as the list option to change the lists included in the combined
list.

Chapter 8 Table of contents, indexes, lists 160

The official list of ConTEXt commands (see section 3.6) does not mention the list option
among the options allowed for \setupcombinedlist, but it is used in several examples of the
use of this command in the wiki (which, moreover, does not mention it in the page devoted to
this command either). I have also checked that the option works.

8.3 Index
8.3.1 Generating the index
A subject index consists of a list of significant terms, usually located at the end of
a document, indicating the pages where such a subject can be found.

When books were put typeset by hand, generating a subject index was a complex
task, as well as a tedious one. Any change in the pagination could affect all the
entries in the index. Therefore, they were not very common. Today, the computer
mechanisms for typesetting mean that, while the task is likely to continue being
tedious, it is no longer so complex given that it is not so difficult for a computer
system to maintain an up-to-date list of data associated with an index entry.

To generate a subject index we need:

1. Determine which words, terms or concepts are to be part of it. This is a task
that only the author can do.

2. Check at which points in the document each entry in the future index appears.
Although, to be precise, more than checking the places in the source file where
the concept or issue is discussed, what we do when we work with ConTEXt is
to mark those spots, inserting a command that will then serve to generate the
index automatically. This is the tedious part.

3. Finally, we generate and format the index by placing it at the point of our
choice in the document. The latter is quite simple with ConTEXt and requires
only one command: \placeindex.

A. The prior definition of the entries in the index and the
marking of the points in the source file that refer to
them

The fundamental work is in the second step. It is true that computer systems also
facilitate it in the sense that we can do a global text search to locate the places in
the source file where a specific subject is treated. But we should also not blindly
rely on such text searches: a good subject index must be able to detect every spot
where a particular subject is being discussed, even if this is done without using
the standard term to refer to it.

Chapter 8 Table of contents, indexes, lists 161

To mark an actual point in the source file, associating it with a word, term or
idea that will appear in the index, we use the \index command whose syntax is
as follows:

\index[Alphabetical]{Index entry}

where Alphabetical is an optional argument that is used to indicate an alternative
text to that of the index entry itself in order to sort it alphabetically, and Index
entry is the text that will appear in the index, associated with this mark. We can
also apply the formatting features that we wish to use, and if reserved characters
appear in the text, they must be written in the usual way in ConTEXt.

The possibility of alphabetising an index entry in a way different from how it is actually written,
is very useful. Think, for example, of this document, if I want to generate an entry in the index
for all references to the \TeX command. For example, the sequence \index{\backslash TeX}
will list the command not by the ‘t’ in ‘TeX’, but among the symbols, since the term sent to
the index begins with a backslash. This is done by writing \index[tex]{\backslash TeX}.

The index entries will be the ones we want. For a subject index to be really useful
we have to work a little harder at asking what concepts the reader of a document
is most likely to look for; so, for example, it may be better to define an entry
as “disease, Hodgkins” than defining it as “Hodgkin's disease”, since the more
inclusive term is “disease”.

By convention, entries in a subject index are always written in lower case, unless they are proper
names.

If the index has several levels of depth (up to three are allowed) to associate a
particular index entry with a specific level the ‘+’ character is used. As follows:

\index{Entry 1+Entry 2}
\index{Entry 1+Entry 2+Entry 3}

In the first case we defined a second level entry called Entry 2 that will be a sub-
entry of Entry 1. In the second case we defined a third level entry called Entry 3
that will be a sub-entry of Entry 2, which in turn is a sub-entry of Entry 1. For
example

My \index{dog}dog, is a \index{dog+greyhound}greyhound called Rocket.
He does not like \index{cat+stray}stray cats.

It is worth noting some details of the above:

• The \index command is usually placed before the word it is associated with
and is normally not separated from it by a a blank space. This is to ensure
that the command is on the exact same page as the word it is linked to:

Chapter 8 Table of contents, indexes, lists 162

– If there were a space separating them, there could be the possibility that
ConTEXt would choose just that space for a line break which could also end
up being a page break, in which case the command would be on one page
and the word it is associated with on the next page.

– If the command were to come after the word, it would be possible for this
word to be broken by syllables and a line break inserted between two of
its syllables that would also be a page break, in which case the command
would be pointing to the next page beginning with the word it points to.

• See how second level terms are introduced in the second and third appearances
of the command.

• Also check how, in the third use of the \index command, although the word
that appears in the text is “cats”, the term that will be sent to the index is
“cat”.

• Finally: see how three entries for the subject index have been written in just
two lines. I said before that marking the precise places in the source file is
tedious. I will now add that marking too many of them is counter-productive.
Too extensive an index is by no means preferable to a more concise one in
which all the information is relevant. That is why I said before that deciding
which words will generate entry in the index should be the result of a conscious
decision by the author.

If we want our index to be truly useful, terms that are used as synonyms must be
grouped in the index under one head term. But since it is possible for the reader to
search the index for information by any of the other head terms, it is common for
the index to contain entries that refer to other entries. For example, the subject
index of a civil law manual could just as easily be something like

contractual invalidity
see nullity.

We achieve this not with the \index command but with \seeindex whose format
is:

\seeindex[Alphabetical] {Entry1} {Entry2}

where Entry1 is the index entry that will refer to the other; and Entry2 is the
reference target. In our previous example we would have to write:

\seeindex{contractual invalidity}{nullity}

Chapter 8 Table of contents, indexes, lists 163

In \seeindex we can also use the ‘+’ sign to indicate sub-levels for either of its
two arguments in square brackets.

B. Generating the final index

Once we have marked all the entries for the index in our source file, the actual
generation of the index is carried out using the \placeindex or \completindex
commands. These two commands scan the source file for the \index commands,
and generate a list of all the entries that the index should have, associating a term
with the page number corresponding to where it found the \index command. Then
they alphabetically order the list of terms that appear in the index and merge cases
where the same term appears more than once, and finally, they insert the correctly
formatted result in the final document.

The difference between \placeindex and \completeindex is similar to the differ
ence between \content and \completecontent (see section 8.1.2): \placeindex
is limited to generating the index and inserting it, while \completeindex previ
ously inserts a new chapter in the final document, called “Index” by default, inside
which the index will be typeset.

8.3.2 Formatting the subject index
Subject indexes are a particular application of a more general structure ConTEXt
calls “register”; therefore the index is formatted with the command:

\setupregister[index][Configuration]

With this command we can:

• Determine what the index will look like with its different elements. Namely:

– The index headings which are usually letters of the alphabet. By default
these are in lower case. With alternative=A we can set them to be in
upper case.

– The entries themselves, and their page number. The appearance depends on
the textstyle, textcolor, textcommand and deeptextcommand options
for the actual entry, and pagestyle, pagecolor and pagecommand, for the
page number. With pagenumber=no we can also generate a subject index
without page numbers (although I don't know if this could be useful).

– The distance option measures the width of separation between the name
of an entry and the page numbers; but it also measures the amount of
indentation for subentries.

Chapter 8 Table of contents, indexes, lists 164

The names of the style, textstyle, pagestyle, color, textcolor, and page
color options are clear enough to tell us what each one does I think. For com
mand, pagecommand, textcommand and deeptextcommand, I refer to the expla
nation for similarly named options in section 7.4.4, regarding the configuration
of section commands.

• To set the general appearance of the index, which includes, among others the
commands to execute before (before) or after(after) the index, the number
of columns it needs to have (n), whether the columns should be equal or not
(balance), the alignment of entries (align), etc.

8.3.3 Creating other indexes
I have explained the subject index as if only one such index would be possible in a
document; but the truth is that documents can have as many indexes as desired.
There could be an index of personal names, for example, which collects the names
of people mentioned in the document, with an indication of the place where they
are cited. These are still a kind of index. In a legal text we could also create a
special index for mentions of the Civil Code; or, in a document like the present
one, an index of macros explained in it, etc.

To create an additional index in our document we use the \defineregister com
mand whose syntax is:

\defineregister[IndexName] [Configuration]

where IndexName is the name the new index will have, and Configuration controls
how it works. It is also possible to configure the index later on by means of

\setupregister[IndexName] [Configuration]

Once a newly named index IndexName has been created we will have the \In
dexName command at our disposal to mark the entries that this index will have
in a similar way to the way entries are marked with \index. The seeIndexName
command also lets us create entries that refer to other entries.

For example: we could create an index of ConTEXt commands in this document
with the command:

\defineregister[macro]

that would create the \macro command. This lets me mark all the references
to ConTEXt commands as an index entry, and then generate the index with
\placemacro or \completemacro.

Creating a new index enables the \IndexName command to mark it entries, and the \pla
ceIndexName and \completeIndexName commands for generating the index. But these latter
two commands are actually abbreviations of two more general commands applied to the in
dex in question. Thus, \placeIndexName is equivalent to \placeregister[IndexName] and
\completeIndexName is equivalent to \completeregister[IndexName].

165

Chapter 9
References and hyperlinks

Table of Contents: 9.1 Reference types; 9.2 Internal references; 9.2.1 The
label in the reference target; 9.2.2 Commands at the reference point of origin for re
trieving data from the target point; A Basic commands for retrieving information from
a label; B Retrieving information associated with a label with the \ref command;
C Detecting where the link leads to; 9.2.3 Automatic generation of prefixes to avoid
duplicate labels; 9.3 Interactive electronic documents; 9.3.1 Enabling interac
tivity in documents; 9.3.2 Basic configuration for interactivity; 9.4 Hyperlinks to
external documents; 9.4.1 Commands that help typeset the hyperlinks but do not
create them; 9.4.2 Commands that establish the link; 9.5 Creating bookmarks in
the final PDF;

9.1 Reference types
Scientific and technical documents abound in references:

• Sometimes they refer to other documents that are the basis for what is being
said, or that contradict what is being explained, or that develop or further
nuance the idea being dealt with, etc. In these cases the reference is said to
be external and, if the document is to be academically rigorous, the reference
takes the form of citations from the literature.

• But it is also common for a document, in one of its sections, to refer to another
of its sections, in which case the reference is said to be internal. There is also
an internal reference when a point in the document comments on some aspect
of a particular image, table, note, or element of a similar nature, referring to
it by its number or by the page on which it is found.

For the purposes of precision, internal references need to be aimed at an exact
and easily identifiable place in the document. Hence these kinds of references
are always a reference to either numbered elements (as, for example, when
we say “see table 3.2”, or “Chapter 7”), or page numbers. Vague references
of the “as we have already said” or “as we will see further on” kind are not
true references, and there is no special requirement for typesetting them, nor
is there any special tool for doing so. Also, I personally dissuade my PhD or
MA students from any habitual use of this practice.

Chapter 9 References and hyperlinks 166

Internal references are also commonly called “cross references” though in this document I
will simply use the term “references” in general, and “internal references” when I wish to
be specific.

In order to clarify the terminology I am using for references, I will call the point in
the document where a reference is introduced the origin, and the location to which
it points, the target. Seen this way, we would say that a reference is an internal
one when the origin and target are in the same document, and an external one
when origin and target are in different documents.

From the point of view of typesetting the document:

• External references pose no special problem and therefore, in principle, do
not require any tool to introduce them: all the data I need from the target
document are available to me and I can use them in the reference. However,
if the document of origin is an electronic document and the target document
is also available on the Web, then it is possible to include a hyperlink in the
reference that allows one to jump directly to the target. In these cases the
document of origin can be said to be interactive.

• By contrast, internal references do pose a challenge for typesetting the docu
ment, since anyone who has experience in the preparation of moderately long
scientific and technical documents knows that it is almost inevitable that num
bering of pages, sections, images, tables, theorems or similar to what is indi
cated in the reference, will change during the document's preparation, which
makes it very difficult to keep it up to date.

In pre-computer times, authors avoided internal references; and those that were inevitable,
such as the table of contents (which, if accompanied by the page number of each section,
is an example of an internal reference), were written at the end.

Even the most limited typesetting systems, such as word processors, allow for the
inclusion of some kind of internal cross-references such as tables of contents. But
that is nothing compared to the comprehensive reference management mechanism
included in ConTEXt, which can also combine the internal reference management
mechanism aimed at keeping references up to date, with the use of hyperlinks
which is obviously not exclusive to external references.

9.2 Internal references
Two things are needed to establish an internal reference:

1. A label or identifier at the target point. While compiling, ConTEXt, will as
sociate particular data with this label. What data will be associated depends
on the kind of label it is; it can be the section number, the note number, the

Chapter 9 References and hyperlinks 167

image number, the number associated with a particular item in a numbered
list, the section title, etc.

2. A command at the point of origin that reads the data associated with the label
linked to the target point and inserts it at the point of origin. The command
varies depending on which data from the label we want to insert at the point
of origin.

When we think about a reference, we do so in terms of “origin ⟶ target”, so it
might seem that matters relating to the origin should be explained first, and then
those relating to target. However, I believe that it is easier to understand the logic
of references if the explanation is reversed.

9.2.1 The label in the reference target
In this chapter, by label I mean a text string that will be associated with the target
point of a reference and used internally to retrieve certain information regarding
the target point of a reference such as, for example, page number, section number
etc. In fact, the information associated with each label depends on the procedure
for creating it. ConTEXt calls these labels references, but I think that this latter
term, as it has a much broader meaning, is less clear.

The label associated with the target reference:

• Needs each potential target in the document to be a unique one so it can be
identified without doubt. If we use the same label for different targets, Con
TEXt will not throw a compiling error but it will cause all references to point to
the first label it finds (in the source file) and this will have the side effect that
some of our references may be wrong, and, worse still, that we do not notice
them. Therefore, it is important to make sure, when creating a label, that the
new label we are assigning has not already been assigned before.

• It can contain letters, digits, punctuation marks, blank spaces, etc. Where
there happen to be blank spaces, ConTEXt's general rules regarding these kinds
of characters still apply (see section 4.2.1), so that, for example, “My nice
label” and “My nice label” are seen as the same, even though a different
number of blank spaces is used in both.

Since there is no limitation as to which characters can be part of the label and how
many there are, my advice is to use label names that are clear, and will help us
to understand the source file when, perhaps, we read it long after it was originally
written. That's why the example I gave before (“My nice label”) is not a good
example, as it does not tell us anything about the target the label is pointing to.
For this heading, for example, the label ‘sec:Target labels’ would be better.

To associate a particular target with a label there are basically two procedures:

Chapter 9 References and hyperlinks 168

1. By means of an argument or command option used to create the element to
which the label will point. From this point of view, all the commands that create
some kind of structure or text element open to being a reference target include
an option called “reference” that is used to include the label. Occasionally,
in place of the option the label is the content of the whole argument.

We find a good example of what I am trying to say in the section commands
that, as we know from (section 7.3), allow for several kinds of syntax. In the
classic syntax the command is written as:

\section[Label]{Title}

and in the syntax specific to ConTEXt the command is written as

\startsection
[title=Title, reference=Label, ...]

In both cases the command foresees the introduction of a label that will be
associated with the section (or chapter, subsection, etc) in question.

I said that this possibility is found in all commands that allow us to create a text
element open to being a target of a reference. These are all text elements that
can be numbered, including among others, sections, floating objects of all kinds
(tables, images and similar), footnotes or end notes, quotations, numbered lists,
descriptions, definitions, etc.

When the label is entered directly with an argument, and not as an option to which a value
is assigned, it is possible with ConTEXt to associate several labels with a single target. For
example:

\chapter[label1, label2, label3] {My chapter}

I am not clear what the advantage could be to have a number of different labels for the
one target and suspect that it can be done not because it offers advantages but due to
some internal requirement of ConTEXt applicable to certain kinds of arguments.

2. By means of the \pagereference, \reference, or \textreference commands
whose syntax is:

\pagereference[Label]
\reference[Label]{Text}
\textreference[Label]{Text}

– The label created with \pagereference allows us to retrieve the page num
ber.

– Labels created with \reference and \textreference allow us to retrieve
the page number as well as the text associated with them that is included
as an argument.

Chapter 9 References and hyperlinks 169

In both \reference and \textreference the text that is linked to the
label disappears as such from the final document at the point where the
command is located (reference target), but can be retrieved and reappear
at the point of origin of the reference.

I said earlier that each label is associated with certain information regarding the
target point. What that information is depends on the type of label it is:

• All labels remember (in the sense that they make it possible to retrieve) the
page number of the command that created them. For labels attached to sections
that may have several pages, that number will be the page number where the
section in question begins.

• Labels inserted with the command that creates a numbered text element (sec
tion, note, table, image, etc.) remember the number associated with that ele
ment (section number, note number, etc.)

• If this element has a title, as is the case, for example, for sections, but also
tables if they have been inserted using the \placetable command, they will
remember this title.

• Labels created with \pagereference only remember the page number.

• Those created with \reference or \textreference also remember the text
associated with them that these commands take as an argument.

In fact I am not sure of the real difference between the \reference and \textrefer
ence commands. I think it is possible that the design of the three commands that allow
the creation of labels attempts to run parallel with the three commands that allow the
retrieval of information from the labels (which we will see in a moment); but the truth
is that, according to my tests, \reference and \textreference seem to be redundant
commands.

9.2.2 Commands at the reference point of origin
for retrieving data from the target point

The commands that I will explain next retrieve information from the labels and,
in addition, if our document is interactive, generate a connection to the reference
target. But the important thing about these commands is the information that
is retrieved from the label. If we only want to generate the connection, without
retrieving any information from the label, we must use the \goto command ex
plained in section 9.4.2.

A. Basic commands for retrieving information from a label
Bearing in mind that each label associated with a target point can store different
items of information, it is logical that ConTEXt includes three different commands

Chapter 9 References and hyperlinks 170

for retrieving such information: depending on which information from a reference
target point we want to retrieve, we use one or other of these commands:

• The \at command allows us to retrieve the label's page number.

• For labels that remember an element number (section number, note number,
item number, table number, etc.) in addition to the page number, the \in
command allows us to retrieve this number.

• Finally, for labels that remember a text associated with a label (a section title,
image title inserted with \placefigure, etc.) the \about command allows us
to retrieve this text.

The three \at \in \about commands have the same syntax:

\at{Text}[Label]
\in{Text}[Label]
\about{Text}[Label]

• Label is the label from which we want to retrieve information.

• Text is the text written just before the information we want to retrieve with
the command. Between the text and the data of the label that the command
retrieves, a non-separable space will be inserted and if the interactivity function
is enabled in such a way that the command, besides retrieving the information,
generates a link that allows us to jump to the target point, the text included
as an argument will be part of the link (it will be clickable text).

So, in the following example we see how \in retrieves the section number and \at
the page number.

In \in{section}[sec:target labels], that
begins on \at{page}
[sec:target labels], the
characteristics of labels used for
internal references are explained.

In section 9.2.1, that begins on page 167, the
characteristics of labels used for internal refer
ences are explained.

Note that ConTEXt has automatically created hyperlinks (see section 9.3), and
that the text taken as an argument by \in and \at is part of the link. But had
we written it otherwise, the result would be:

In section \in{}[sec:target
labels], that begins on page \at{}
[sec:target labels], the
characteristics of labels used for
internal references are explained.

In section 9.2.1, that begins on page 167, the
characteristics of labels used for internal refer
ences are explained.

Chapter 9 References and hyperlinks 171

The text remains the same, but the words section and page that precede the
reference are not included in the link as they are no longer part of the command.

If ConTEXt is unable to find the label that the \at, \in or \about commands
point to, no compiling error will result but where the information retrieved by
these commands should appear in the final document we will see “??” written.

There are two reasons why ConTEXt cannot find a label:

1. We made a mistake when writing it.

2. We are compiling only a part of the document, and the label points to the part not yet
compiled (see sections 4.5.1 and 4.6).

In the first case the error will need to be fixed. Therefore, it is a good idea when we finish
compiling the complete document (and the second case is no longer possible), to look for
all the appearances of “??” in the PDF to check that there are no broken references in the
document.

B. Retrieving information associated with a label with the
\ref command

Each of \at, \in and \about retrieve some elements of a label. Another command
is available that allows us to rescue some element of the label that is indicated.
This is the \ref command whose syntax is:

\ref[Element to retrieve][Label]

where the first argument can be:

• text: returns the text associated with a label.

• title: returns the title associated with a label.

• number: returns the number linked to a label. For example, in sections, the
section number.

• page: returns the page number.

• realpage: returns the actual page number.

• default: returns what ConTEXt considers to be the natural element of the
label. Generally this coincides with what is returned by number.

In fact, \ref is much more precise than \at, \in or \about, and thus, for example,
it differentiates between the page number and the actual page number. The page
number may not coincide with the actual number if, for example, the page num
bering of the document started at 1500 (because this document is the continuation

Chapter 9 References and hyperlinks 172

of a previous one) or if the pages of the preamble were numbered with Roman nu
merals and seeing this the numbering was restarted. Similarly, \ref differentiates
between the text and the title associated with a reference, something that \about,
for example, does not do.

If \ref is used to get information from a label that lacks such information (e.g.
the title of a label associated with a footnote), the command will return an empty
string.

C. Detecting where the link leads to

ConTEXt also has two commands that are sensitive to the link address. With “link
address” my intention is to determine whether the link target in the source file is
found before or after the origin. For example: we are writing our document and we
want to refer to a section that could still come before or after the one we are writing
in the final table of contents. We just haven't decided yet. In this situation it would
be useful to have a command that writes one or other depending on whether the
target ultimately comes before or after the origin in the final document. For needs
like this, ConTEXt provides the \somewhere command whose syntax is:

\somewhere{Text if before}{Text if after}[Label].

For example, in the following text:

The hyperlink's address can also be detected by the \type{\somewhere} command.
This way we can also find chapters or other text elements
\somewhere {before}{after} [sec:references] and discuss their descriptions
in some other place \somewhere{before}{after} [sec:interactivity].

The hyperlink's address can also be detected by the \somewhere command. This way we
can find chapters or other text elements before and discuss their descriptions in some other
place after.

For this example I have used two actual labels in this chapter in the source file.

Another command capable of detecting whether the label it points to comes before
or after, is \atpage whose syntax is:

\atpage[label]

This command is quite similar to the previous one, but instead of allowing us to
write the text ourselves, depending on whether the label comes before or after,
\atpage inserts a default text for each of the two cases and, if the document is
interactive, also inserts a hyperlink.

The text that \atpage inserts is the one associated with the “precedingpage”
labels in case the label it takes as an argument is before the command, and
“hereafter” in the opposite case.

Chapter 9 References and hyperlinks 173

When I arrived at this point, I was betrayed by a previous decision: in this chapter I decided
to call what ConTEXt calls a “reference”, a “label”. It seemed clearer to me. But certain text
fragments generated by ConTEXt commands, such as \atpage, are also called “labels” (this
time in another sense). (See section 10.5.3). I hope the reader does not get confused. I think
the context lets us properly distinguish which of the different meanings of label I am referring
to in each case.

Therefore, we can change the text inserted by \atpage in the same way that we
change the text of any other label:

\setuplabeltext[en][precedingpage=New text]
\setuplabeltext[en][hereafter=New text]

On this point I believe there is a small error in “ConTEXt Standalone” (the distribution I am
using). Examining the names of the predefined labels in ConTEXt that can be changed with
\setuplabeltext there are two pairs of labels that are candidates to be used by \atpage:

• “precedingpage” and “followingpage”.
• “hencefore” and “hereafter”.

We could assume that \atpage would use either the first or the second pair. But in fact, for
items coming before, it uses “precedingpage” and for those following it uses “hereafter”,
which I think is inconsistent.

9.2.3 Automatic generation of prefixes to avoid
duplicate labels

In a large document it is not always easy to avoid duplication of labels. It is
therefore advisable to put some order into the way we choose which labels to use.
One practice that helps is to use prefixes for the labels that will vary according
to the type of label. For example “sec:” for sections, “fig:” for figures, “tbl:” for
tables, etc.

With this in mind, ConTEXt includes a collection of tools that allow:

• ConTEXt itself to automatically generate labels for all the allowable elements.

• Every label generated manually to take a prefix, either one we have predeter
mined ourselves, or automatically generated by ConTEXt.

The detailed explanation of this mechanism is lengthy and, although they are
undoubtedly useful tools, I do not think they are essential. Therefore, as they
cannot be explained in a few words, I prefer not to explain them and refer to what
is said about them in the ConTEXt reference manual or in the wiki on this matter.

9.3 Interactive electronic documents
Only electronic documents can be interactive; but not all electronic documents
are. An electronic document is one that is stored in a computer file and can be

https://wiki.contextgarden.net/References

Chapter 9 References and hyperlinks 174

opened and read directly on screen. On the other hand, an electronic document
that is equipped with utilities that allow the user to interact with it, is interactive;
that is: we can do more than just read it. There is interactivity, for example, when
the document has buttons that perform some action, or links through which we
can jump to another point in the document, or to an external document; or when
there are areas in the document where the user can write, or there are videos or
audio clips that can be played, etc.

All documents generated by ConTEXt are electronic (since ConTEXt generates
a PDF that is by definition an electronic document), but they are not always
interactive. To provide them with interactivity it is necessary to expressly indicate
this as shown in the next section.

Bear in mind, though, that although ConTEXt generates an interactive PDF, in
order to appreciate this interactivity we need a PDF reader capable of it, since
not all the PDF readers out there allow us to use hyperlinks, buttons and similar
items proper to interactive documents.

9.3.1 Enabling interactivity in documents
ConTEXt does not use interactive functions by default unless expressly indicated,
which is normally done in the preamble of the document. The command that
enables this utility is:

\setupinteraction[state=start]

Normally this command would be used only once and in the document preamble
when we want to generate an interactive document. But in fact we can use it as of
ten as we want by altering the document's interactivity state. The “state=start”
command enables interactivity, while “state=stop” disables it, so we can disable
interactivity in some chapters or parts of our document where we want to do so.

I can't think of any reason why we would want to have non-interactive parts in documents
that are interactive. But what is important about the ConTEXt philosophy is that something
be technically possible, even if we are unlikely to use it, so it offers a procedure for doing so. It
is this philosophy that gives ConTEXt so many possibilities, and prevents a simple introduction
like this from being brief.

Once interaction is established:

• Certain ConTEXt commands will already include hyperlinks. Thus:

– The commands for creating tables of contents, which will be, in principle
and unless expressly indicated otherwise, interactive, i.e. clicking on an

Chapter 9 References and hyperlinks 175

entry in the table of contents will jump to the page where the section in
question begins.

– The commands for internal references that we have seen in the first part of
this chapter, where clicking on them automatically jumps to the reference
target.

– Footnotes and end notes where a click on the note anchor in the main body
of the text will take us to the page where the note itself is written, and a
click on the note mark in the note text will take us to the point in the main
text where the call was made.

– Etc.

• The possibility of using other commands specifically designed for interactive
documents, such as presentations, is enabled. These employ numerous tools
associated with interactivity such as buttons, menus, image overlays, embedded
sound or video, etc. The explanation for all this would be too long and besides,
presentations are a rather special kind of document. Therefore, in the following
lines I will describe one feature associated with interactivity: hyperlinks.

9.3.2 Basic configuration for interactivity
\setupinteraction, in addition to enabling or disabling interaction, allows us to
configure some matters related to it; mainly, but not only, the colour and style of
the links. This is done through the following command options:

• color: controls the normal colour of links.

• contrastcolor: determines the colour of links where the target is on the same
page as the origin. I recommend that this option always be set to the same
content as the previous one.

• style: controls the link style.

• title, subtitle, author, date, keyword: The values assigned to these op
tions will be converted into metadata of the PDF generated by ConTEXt.

• click: This option controls whether the link should be highlighted when it is
clicked.

9.4 Hyperlinks to external documents
I will distinguish between commands that do not create the link but help to typeset
the URL of the link, and commands that create the hyperlink. Let's look at them
separately:

Chapter 9 References and hyperlinks 176

9.4.1 Commands that help typeset the hyperlinks
but do not create them

URLs tend to be very long, and include characters of all types, even characters
which are reserved characters in ConTEXt and cannot be used directly. In addition,
when the URL must be displayed in the document, it is very difficult to typeset
the paragraph, as the URL can exceed the length of a line and never includes
blank spaces that can be used to insert a line break. In a URL, moreover, it is not
reasonable to hyphenate words to insert line breaks, as the reader could hardly
know whether or not the hyphenation actually forms part of the URL.

Therefore ConTEXt provides two utilities for typesetting URLs. The first is pri
marily for URLs that will be used internally, but will not actually be displayed in
the document. The second is for URLs that have to be written in the text of the
document. Let's look at them separately:

\useURL

This command allows us to write a URL in the preamble of the document,
associating it with a name, so that when we want to use it in our document,
we can invoke it by the name associated with it. It is especially useful with
URLs that will be used several times throughout the document.

The command allows two usages:

1. \useURL[Associated name][URL]
2. \useURL[Associated name] [URL] [] [Link text]

• In the first version, the URL is simply associated with the name by which
it will be invoked in our document. But then, to use the URL, we will have
to indicate somehow, when invoking it, which clickable text will be shown
in the document.

• In the second version the last argument includes the clickable text. The
third argument exists in case we want to divide a URL into two parts, so
that the first part contains the access address and the second part the name
of the specific document or page that we want to open. For example: the
address of the document that explains what ConTEXt is:
http://www.pragma-ade.com/general/manuals/what-is-context.pdf. This
address can be written in full in the second argument, leaving the third
empty:

\useURL [WhatIsCTX]
[http://www.pragma-ade.com/general/manuals/what-is-context.pdf]
[]
[What is \ConTeXt?]

Chapter 9 References and hyperlinks 177

but we can also split it into two arguments:

\useURL [WhatIsCTX]
[http://www.pragma-ade.com/general/manuals/]
[what-is-context.pdf]
[What is \ConTeXt?]

In both cases we will have associated that address with the word
“WhatIsCTX”, so that to include a link to that address, we use the command
that we use to create the link; instead of the URL itself, we can simply write
“WhatIsCTX”.

If at any point in the text we want to reproduce a URL that we have associ
ated with a name using \useURL, we can use the \url[Associated name]
which inserts the URL associated with that name into the document. But
this command, although it writes the URL, does not create any link.

The format in which the URLs written using \url are displayed is not the one es
tablished in a general way by means of \setupinteraction, but the one specifically
established for this command by means of \setupurl, which allows us to set the style
(option style) and the colour (option colour).

\hyphenatedurl

This command is intended for URLs that will be written in the text of our
document, and has ConTEXt include line breaks within the URL, if necessary,
to correctly typeset the paragraph. Its format is:

\hyphenatedurl{URLaddress}

Despite the name of the \hyphenatedurl command, it does not hyphenate the
name of the URL. What it does is to consider that certain characters common
in URLs are good points to insert a line break before or after them. We can add
the characters we want to the list of characters where a line break is allowed.
We have three commands for this:

\sethyphenatedurlnormal{Characters}
\sethyphenatedurlbefore{Characters}
\sethyphenatedurlafter{Characters}

These commands add the characters they take as arguments to the list of char
acters that support line breaks before and after the list of characters that only
support line breaks and those that only allow backward line breaks, respec
tively.

\hyphenatedurl can be used whenever a URL must be written that will appear
in the final document as is. It can even be used as the last argument to \useURL

Chapter 9 References and hyperlinks 178

in the version of that command where the last argument picks up the clickable
text to be displayed in the final document. For example:

\useURL [WhatIsCTX]
[http://www.pragma-ade.com/general/manuals/what-is-context.pdf]
[]
[\hyphenatedurl{http://www.pragma-ade.com/general/manuals/what-is-context.pdf}]

In the \hyphenatedurl argument all the reserved characters can be used except
three which must be replaced by commands:

• % must be replaced by \letterpercent
• # must be replaced by \letterhash
• \ must be replaced by \letterescape or \letterbackslash.

Every time \hyphenatedurl inserts a line break it executes the
\hyphenatedurlseparator command, which, by default, does nothing. But if
we redefine it, a representative character is inserted in the URL in a similar way
to what happens with normal words, where a hyphen is inserted to indicate
that the word continues on the next line. For example:

\def\hyphenatedurlseparator{\curvearrowright}

will thus display the following particularly long web address:

https://support.microsoft.com/?scid=http://support.microsoft.com:80↷
/support/kb/articles/Q208/4/27.ASP&NoWebContent=1.

9.4.2 Commands that establish the link
To establish links to predefined URLs using \useURL we can use the command
\from, which is limited to establishing the link, but does not write any clickable
text. The default text in \useURL will be used as the link text. Its syntax is:

\from[Name]

where Name is the name previously associated with a URL using \useURL.

To create links and associate them with a clickable text that has not been previ
ously defined, we have the \goto command which is used both to generate internal
and external links. Its syntax is:

\goto{Clickable tex}[Target]

where Clickable tex is the text to be shown in the final document and where a
mouse click will generate the jump, and Target can be:

• A label from our document. In this case \goto will generate the jump in a
similar way as, for example, the \in or \at commands already examined. But

Chapter 9 References and hyperlinks 179

unlike those commands, no information associated with the label will be re
trieved.

• The URL itself. In this case it must be expressly indicated that it is a URL by
writing the command as follows:

\goto{Clickable text}[url(URL)]

where URL, in turn, can be the name previously associated with a URL by
means of \useURL, or the URL itself, in which case, when writing the URL,
we must ensure that the ConTEXt's reserved characters are written correctly
in ConTEXt. Writing the URL according to ConTEXt rules will not affect the
functionality of the link.

9.5 Creating bookmarks in the final PDF
PDF files can have an internal bookmark list of contents that allows the reader to
see the contents of the document in a special window of the PDF viewer program,
and to move through it by simply clicking on each of the sections and subsections.

By default, ConTEXt does not give the output PDF a bookmark list of contents,
although getting it to do so is as simple as including the \placebookmarks com
mand, whose syntax is:

\placebookmarks[List of sections]

where List of sections is a comma-separated list of the section levels that should
appear in the list of contents.

Keep the following observations in mind regarding this command:

• According to my tests \placebookmarks does not work if it is in the preamble
of the document. But, within the body of the document (between \starttext
and \stoptext, or between \startproduct and \stopproduct), it doesn't
matter where you place it: the bookmark list will also include the sections or
subsections prior to the command. However, I believe that the most reasonable
thing for a source file to be understood properly, is to place the command at
the beginning.

• Section types defined by the user (with \definehead) are not always located
in the right place in the bookmark list. It is preferable to exclude them.

• If the section title in any section includes an endnote or footnote, the text of
the footnote shall be considered part of the bookmark.

• As an argument, instead of a list of sections, we can simply indicate the sym
bolic word “all” which, as its name indicates, will include all the sections;

Chapter 9 References and hyperlinks 180

however, according to my tests, this word, in addition to what are certainly
sections, includes texts placed there with some non-sectioning commands, so
the resulting list is somewhat unpredictable.

Not all PDF viewer programs allow us to view bookmarks; and many that do, do
not have this feature activated by default. Therefore, to check the result of this
function we must make sure that our PDF reader program supports this function
and has it enabled. I think I remember that Acrobat, for example, does not show
bookmarks by default, although there is a button on its toolbar to display them.

181

III
Particular issues

182

Chapter 10
Characters, words, text

and horizontal space
Table of Contents: 10.1 Getting characters not normally accessible from
the keyboard; 10.1.1 Diacritics and special letters; 10.1.2 Traditional ligatures;
10.1.3 Greek letters; 10.1.4 Various symbols; 10.1.5 Defining characters ; 10.1.6 Use
of predefined symbol sets; 10.2 Special character formats; 10.2.1 Upper case,
lower case and fake small caps; 10.2.2 Superscript or subscript text; 10.2.3 Verbatim
text; 10.3 Character and word spacing; 10.3.1 Automatically setting horizontal
space; 10.3.2 Altering the space between characters within a word; 10.3.3 Commands
for adding horizontal space between words; 10.4 Compound words; 10.5 The
language of the text; 10.5.1 Setting and changing the language; 10.5.2 Configuring
the language; 10.5.3 Labels associated with particular languages; 10.5.4 Some lan
guage-related commands; A Date-related commands; B The \translate command;
C The \quote and \quotation commands;

The basic core element of all text documents is the character: characters are
grouped into words, which in turn form lines that make up the paragraphs that
make up pages.

The current chapter, starting with “character” explains some of ConTEXt's utilities
relating to characters, words and text.

10.1 Getting characters not normally ac
cessible from the keyboard

In a text file encoded as UTF-8 (see section 4.1) we can use any character or sym
bol, both of living languages and of many already extinct. But, as the possibilities
of a keyboard are limited, most of the characters and symbols allowed in UTF-8
normally cannot be obtained directly from the keyboard. This is particularly the
case with many diacritics, i.e. signs placed above (or below) certain letters, giving
them a special value; but also with many other characters like maths symbols,
traditional ligatures, etc. We can obtain many of these characters with ConTEXt
by using commands.

Chapter 10 Characters, words, text and horizontal space 183

10.1.1 Diacritics and special letters
Almost all Western languages have diacritics (with the important exception of
English for the most part) and in general, keyboards can generate the diacritics
corresponding to regional languages. Thus, a Spanish keyboard can generate all
the diacritics needed for Spanish (basically accents and diaeresis) as well as some
diacritics used in others languages such as Catalan (grave accents and cedillas) or
French (cedillas, grave and circumflex accents); but not, for for example, some that
are used in Portuguese, such as the tilde on some vowels in words like “navegação”.

TEX was designed in the United States where keyboards generally do not enable
us to get diacritics; so Donald Knuth gave it a set of commands that enable us
to obtain almost all the known diacritics (at least in languages using the Latin
alphabet). If we use a Spanish keyboard, it does not make much sense to use
these commands to obtain the diacritics that can be obtained directly from the
keyboard. It is still important to know that these commands exist, and what they
are, since Spanish (or Italian, or French...) keyboards do not let us generate all
possible diacritics.

Name Character Abbreviation Command
Acute accent ú \'u \uacute
Grave accent ù \`u \ugrave
Circumflex accent û \^u \ucircumflex
Dieresis or umlaut ü \”u \udiaeresis, \uumlaut
Tilde ũ \~u \utilde
Macron ū \=u \umacron
Breve ŭ \u u \ubreve

Table 10.1 Accents and other diacritics

In table 10.1 we find the commands and abbreviations that allow us to obtain
these diacritics. In all cases it is unimportant whether we use the command or
the abbreviation. In the table, I have used the letter ‘u’ as an example, but these
commands work with any vowel (most of them1) and also with some consonants
and some semivowels.

• As most of the abbreviated commands are control symbols (see section 3.2),
the letter on which the diacritic is to fall can be written immediately after the
command, or separated from it. So, for example: to get the Portuguese ‘ã’ we

1 Of the commands found in table 10.1 the tilde does not work with the letter ‘e’, and I don't know
why.

Chapter 10 Characters, words, text and horizontal space 184

can write the \=a or \=␣a characters.1 But in the case of the breve (\u), when
dealing with a control word the blank space is obligatory.

• In the case of the long version of the command, the letter on which the diacritic
falls will be the first letter of the command name. So, for example \emacron
will place a macron above a lower case ‘e’ (ē), \Emacron will do the same above
an upper case ‘E’ (Ē), while \Amacron will do the same above an upper case
‘A’ (Ā).

While the commands in table 10.1 work with vowels and some consonants, there
are other commands to generate some diacritics and special letters which only
work on one or several letters. They are shown in table 10.2.

Name Character Abbreviation Command
Scandinavian O ø, Ø \o, \O
Scandinavian A å, Å \aa, \AA, {\r a}, {\r A} \aring, \Aring
Polish L ł, \l, \L
German Eszett ß \ss, \SS
‘i’ and ‘j’ wihtout a point ı, ȷ \i, \j
Hungarian Umlaut ű, Ű \H u, \H U
Cedilla ç, Ç \c c, \c C \ccedilla, \Ccedilla

Table 10.2 More diacritics and special letters

I would like to point out that some of the commands in the above table generate
the characters from other characters, while other commands only work if the font
we are using has expressly provided for the character in question. So where German
Eszett (ß) is concerned, the table shows two commands but only one character,
because the font I am using here for this text only provides for the upper case
version of German Eszett (something quite common).

That's probably why I can't get the Scandinavian A in upper case either although
“{\r A}” and \Aring work correctly.

The Hungarian umlaut also works with the letter ‘o’, and the cedilla with the letters
‘k’, ‘l’, ‘n’, ‘r’, ‘s’ and ‘t’, in lower or upper case, respectively. The commands to
be used are \kcedilla, \lcedilla, \ncedilla ... respectively.

10.1.2 Traditional ligatures
A ligature is formed by the union of two or more graphemes that are usually written
separately. This “fusion” between two characters often started out as a kind of
shorthand in handwritten texts, until finally they achieved a certain typographic

1 Remember that in this document we are representing blank spaces, when it is important that we
see them, with the ‘␣’.

Chapter 10 Characters, words, text and horizontal space 185

independence. Some of them were even included among the characters that are
usually defined in a typographic font, such as the ampersand, ‘&’, which began as
a contraction of the Latin copula (conjunction) “et”, or the German Eszett (ß),
which, as its name indicates, began as a combination of an ‘s’ and ‘z’. In some font
designs, even today, we can trace the origins of these two characters; or maybe I
see them because I know they're there. In particular, with the Pagella font for ‘&’
and with Bookman for ‘ß’.

As an exercise I suggest (after reading Chapter 6, where it explains how to do
it) try representing these characters with these fonts at a size large enough (for
example, 30 pt) to be able to work out their components.

Other traditional ligatures which did not become so popular, but are still used
occasionally today, are the Latin endings “oe” and “ae” which were occasionally
written as ‘œ’ or ‘ae’ to indicate that they formed a diphthong in Latin. These
ligatures can be achieved in ConTEXt with the commands found in table 10.3

Ligature Abbreviation Command
æ, Æ \ae, \AE \aeligature, \AEligature
œ, Œ \oe, \OE \oeligature, \OEligature

Table 10.3 Traditional ligatures

A ligature that used to be traditional in Spanish (Castilian) and that is not usually
found in fonts today, is ‘Đ’: a contraction involving ‘D’ and ‘E’. As far as I know
there is no command in ConTEXt that lets us use this,1 but we can create one, as
explained in section 10.1.5.

Along with the previous ligatures, which I have called traditional because they
come from handwriting, after the invention of the printing press certain printed
text ligatures developed which I will call “typographical ligatures” considered by
ConTEXt to be font utilities and which are managed automatically by the program,
although we can influence how these font utilities are handled (including ligatures)
with \definefontfeature (not explained in this introduction).

10.1.3 Greek letters
It is common to use Greek characters in mathematical and physics formulas. This
is why ConTEXt included the possibility of generating all of the Greek alphabet,
upper and lower case. Here the command is built on the English name for the
Greek letter in question. If the first character is written in lower case we will have
the lower case Greek letter and if it is written in capital letters we will get the

1 In LATEX, by contrast, we can use the \DH command implemented by the “fontenc” package.

Chapter 10 Characters, words, text and horizontal space 186

Greek letter in upper case. For example, the command \mu will generate the lower
case version of this letter (μ) while \Mu will generate the upper case version (Μ).
In table 10.4 we can see which command generates each of the letters in the Greek
alphabet, lower case and upper case.

English name Character (lc/uc) Commands (lc/uc)
Alpha α, Α \alpha, \Alpha
Beta β, Β \beta, \Beta
Gamma γ, Γ \gamma, \Gamma
Delta δ, Δ \delta, \Delta
Epsilon ϵ, ε, Ε \epsilon, \varepsilon, \Epsilon
Zeta ζ, Ζ \zeta, \Zeta
Eta η, Η \eta, \Eta
Theta θ, 𝜗, Θ \theta, \vartheta, \Theta
Iota ι, Ι \iota, \Iota
Kappa κ, 𝜘, Κ \kappa, \varkappa, \Kappa
Lambda λ, Λ \lambda, \Lambda
Mu μ, Μ \mu, \Mu
Nu ν, Ν \nu, \Nu
Xi ξ, Ξ \xi, \Xi
Omicron ο, Ο \omicron, \Omicron
Pi π, ϖ, Π \pi, \varpi, \Pi
Rho ρ, 𝜚, Ρ \rho, \varrho, \Rho
Sigma σ, ς, Σ \sigma, \varsigma, \Sigma
Tau τ, Τ \tau, \Tau
Ypsilon υ, Υ \upsilon, \Upsilon
Phi ϕ, φ, Φ \phi, \varphi, \Phi
Chi χ, Χ \chi, \Chi
Psi ψ, Ψ \psi, \Psi
Omega ω, Ω \omega, \Omega

Table 10.4 Greek alphabet

Note how for lower case versions of some characters (epsilon, kappa, theta, pi, rho,
sigma and phi) there are two possible variants.

10.1.4 Various symbols
Together with the characters we have just seen, TEX (and therefore ConTEXt as
well) offers commands for generating any number of symbols. There are many such
commands. I have provided an extended although incomplete list in Appendix B.

10.1.5 Defining characters
If we need to use any characters not accessible from our keyboard, we can always
find a web page with these characters and copy them into our source file. If we are
using UTF-8 encoding (as recommended) this will almost always work. But also
in the ConTEXt wiki there is a page with heaps of symbols that can be simply
copied and pasted into our document. To get them, click on this link.

https://wiki.contextgarden.net/Symbols/utf8

Chapter 10 Characters, words, text and horizontal space 187

However, if we need to use one of the characters in question more than once, then
copy-paste is not the most efficient way to do so. It would be preferable to define
the character so that it is associated with a command that will generate it each
time. To do this we use \definecharacter whose syntax is:

\definecharacter Name Character

where

• Name is the name associated with the new character. It should not be the
name of an existing command, as this would overwrite that command.

• Character is the character generated each time we run \Name. There are three
ways we can indicate this character:

– By simply writing it or pasting it into our source file (if we have copied it
from another electronic document or web page).

– By indicating the number associated with that character in the font we are
currently using. In order to see the characters included in the font, and
the numbers associated with them, we can use the \showfont[Font name]
command.

– Building the new character with one of the composite character building
commands that we will see immediately following.

As an example of the first usage, let's return for the moment to the sections dealing
with ligatures (10.1.2). There I spoke about a traditional ligature in Spanish that
we can't usually find in fonts today: ‘Đ’. We could associate this character, for
example, with the \decontract command so that the character will be generated
whenever we write \decontract. We do this with:

\definecharacter decontract Đ

To build a new character that is not in our font, and cannot be obtained from the keyboard, as
is the case of the example I have just given, first we must find some text where that character
is found, copy it and be able to paste it into our definition. In the actual example I have just
given, I originally copied the ‘Đ’ from Wikipedia.

ConTEXt also includes some commands that allow us to create composite charac
ters and that can be used in combination with \definecharacter. By composite
characters I mean characters that also have diacritics. The commands are as fol
lows:

\buildmathaccent Accent Character
\buildtextaccent Accent Character
\buildtextbottomcomma Character
\buildtextbottomdot Character

Chapter 10 Characters, words, text and horizontal space 188

\buildtextcedilla Character
\buildtextgrave Character
\buildtextmacron Character
\buildtextognek Character

For example: as we already know, by default ConTEXt only has commands for
writing certain letters with a cedilla (c, k, l, n, r, s y t) that are usually incorporated
into fonts. If we wanted to use a ‘b’ we could use the \buildtextcedilla command
as follows:

\definecharacter bcedilla {\buildtextcedilla b}

This command will create the new \bcedilla command that will generate a ‘b’
with a cedilla: ‘b̧’. These commands literally “build” the new character that will
be generated even though our font doesn't have it. What these commands do is to
superimpose one character over another then give a name to that superimposition.

In my tests I was unable to make \buildmathaccent or \buildtextognek work. So I will no
longer mention them from here on.

\buildtextaccent takes two characters as arguments and superimposes one on
the other, raising one of them slightly. Although it is called “buildtextaccent”, it
is not essential that any of the characters taken as arguments is an accent; but
the overlap will give better results if it is, because in this case, by superimposing
the accent on the character the accent is less likely to overwrite the character.
On the other hand, the overlapping of two characters that have the same baseline
under normal conditions is affected by the fact that the command slightly raises
one of the characters above the other. This is why we cannot use this command,
for example, to get the contraction ‘Đ’ mentioned above, because if we write

\definecharacter decontract {\buildtextaccent D E}

in our source file, the slight elevation above the ‘D’ baseline that this command
produces means that the (“ED”) effect it produces is not very good. But if the height
of the characters allows it we could create a combination. For example,

\definecharacter unusual {\buildtextaccent_ "}

would define the ‘"_’ character that would be associated with the \unusual com
mand.

The rest of the build commands takes a single argument – the character that
the diacritic generated by each command will be added to. Below I will show an
example of each of them, built on the letter ‘z’:

Chapter 10 Characters, words, text and horizontal space 189

• \buildtextbottomcomma adds a comma beneath the character it takes as an
argument (‘z, ’).

• \buildtextbottomdot adds a point beneath the character it takes as an argu
ment (‘ẓ’).

• \buildtextcedilla adds a cedilla beneath the character it takes as an argu
ment (‘z̧’).

• \buildtextgrave adds a grave accent above the character it takes as an argu
ment (‘z̀’).

• \buildtextmacron adds a small bar beneath the character it takes as an ar
gument (‘z

¯
’).

At first sight, \buildtextgrave seems redundant given that we have \buildtex
taccent; However, if you check the grave accent generated with the first of these
two commands, it looks a little better. The following example shows the result of
both commands, at a sufficient font size to appreciate the difference:

z̀ – z̀

10.1.6 Use of predefined symbol sets
“ConTEXt Standalone” includes, along with ConTEXt itself, a number of prede
fined symbol sets we can use in our documents. These sets are called “cc”, “cow”,
“fontawesome”, “jmn”, “mvs” and “nav”. Each of these sets also includes some
subsets:

• cc includes “cc”.
• cow includes “cownormal” and “cowcontour”.
• fontawesome includes “fontawesome”.
• jmn includes “navigation 1”, “navigation 2”, “navigation 3” and “navigation 4”.
• mvs includes “astronomic”, “zodiac”, “europe”, “martinvogel 1”,

“martinvogel 2” and “martinvogel 3”.
• nav includes “navigation 1”, “navigation 2” and “navigation 3”.

The wiki also mentions a set called was that includes “wasy general”, “wasy music”, “wasy
astronomy”, “wasy astrology”, “wasy geometry”, “wasy physics” and “wasy apl”. But I couldn't
find them in my distribution, and my tests to attempt to get at them failed.

To see the specific symbols contained in each of these sets, the following syntax is
used:

Chapter 10 Characters, words, text and horizontal space 190

\usesymbols[Set]
\showsymbolset[Subset]

For example: if we want to see the symbols included in “mvs/zodiac”, then in the
source file we need to write:

\usesymbols[mvs]
\showsymbolset[zodiac]

and we will get the following result:

Aquarius ê ê

Aries à à

Cancer ã ã

Capricorn é é

Gemini â â

Leo ä ä

Libra æ æ

Pisces ë ë

Sagittarius è è

Scorpio ç ç

Taurus á á

Virgo å å

Note that the name of each symbol is indicated as well as the symbol. The \symbol
command allows us to use any of the symbols. Its syntax is:

\symbol[Subset][SymbolName]

where subset is one of the subsets associated with any of the sets we have previously
loaded with \usesymbols. For example, if we wanted to use the astrological symbol
associated with Aquarius (found in mvs/zodiac) we would need to write

\usesymbols[mvs]
\symbol[zodiac][Aquarius]

which will give us the “ê”, and this, for all intents and purposes, will be treated as
a “character” and is therefore affected by the font size that is active when printed.
We can also use \definecharacter to associate the symbol in question with a
command. For example

\definecharacter Aries {\symbol[zodiac][Aries]}

will create a new command called \Aries that will generate the character “à”.

We could also use these symbols, for example, in an itemize environment. For
example:

Chapter 10 Characters, words, text and horizontal space 191

\usesymbols[mvs]
\definesymbol[1][{\symbol[martinvogel 2][PointingHand]}]
\definesymbol[2][{\symbol[martinvogel 2][CheckedBox]}]
\startitemize[packed]
\item item \item item
\startitemize[packed]
\item item \item item
\stopitemize
\item item
\stopitemize

will produce

Z item
Z item
V item
V item

Z item

10.2 Special character formats
Strictly speaking, it is format commands that affect the font used, its size, style or
variant. These commands are explained in Chapter 6. However, seen more broadly,
we can also consider the commands that somehow change the characters they take
as an argument (thus altering their appearance) to be format commands. We will
look at some of these commands in this section. Others, such as underlined or
lined text with lines above or below the text (e.g. where we want to provide space
to answer a question) will be seen in section 12.5.

10.2.1 Upper case, lower case and fake small caps
Letters themselves can be upper case or lower case. For ConTEXt, upper case and
lower case letters are different characters, so in principle it will typeset the letters
just as it finds them written. However, there is a group of commands which allow
us to ensure that the text they take as an argument is always written in upper or
lower case:

• \word{text}: converts the text taken as an argument into lower case.
• \Word{text}: converts the first letter of the text taken as an argument into

upper case.
• \Words{text}: converts the first letter of each of the words taken as an argu

ment into upper case; the rest are in lower case.
• \WORD{text} or \WORDS{text}: writes the text taken as an argument in upper

case.

Chapter 10 Characters, words, text and horizontal space 192

Very similar to these commands are \cap and \Cap: they also capitalise the text
they take as an argument, but then apply a scaling factor to it equal to that
applied by the ‘x’ suffix in font change commands (see section 6.4.2) so that, in
most fonts, the caps will be the same height as lower case letters, thus giving us a
kind of fake small caps effect. Compared to genuine small caps (see section 6.5.2)
these have the following advantages:

1. \cap and \Cap will work with any font, by contrast with genuine small caps
that only work with fonts and styles that expressly include them.

2. True small caps, on the other hand, are a variant of the font which, as such, is
incompatible with any other variant such as bold, italic, or slanted. However,
\cap and \Cap are fully compatible with any font variant.

The difference between \cap and \Cap is that while the former applies the scaling
factor to all the letters of the words that make up its argument, \Cap does not
apply any scaling to the first letter of each word, thus achieving an effect similar
to what we get if we use real capitals in a text in small caps. If the text taken as
an argument in ‘caps’ consists of several words, the size of the capital letter in the
first letter of each word will be maintained.

Thus, in the following example

The UN, whose \Cap{president} has his
office at \cap{uN} headquarters...

The UN, whose PRESIDENT has his office at UN
headquarters...

we need to note, first of all, the difference in size between the first time we write
“UN” (in upper case) and the second time (in small caps, “UN”). In the example, I
wrote \cap{uN} the second time so we can see that it does not matter if we write
the argument that \cap takes in upper or lower case: the command converts all
letters into upper case and then applies a scaling factor; by contrast with \Cap
that does not scale the first letter.

These commands can also be nested, in which case the scaling factor would be
applied once more, resulting in a further reduction, as in the following example
where the word “capital” in the first line is scaled yet again:

\cap{People who have amassed their
\cap{capital} at the expense of others
are more often than not
{\bf decapitated} in revolutionary
times}.

PEOPLEWHOHAVE AMASSED THEIR CAPITAL AT THE
EXPENSE OF OTHERS AREMOREOFTEN THANNOT
DECAPITATED IN REVOLUTIONARY TIMES.

Chapter 10 Characters, words, text and horizontal space 193

The \nocap command applied to a text to which \cap is applied, cancels out the
\cap effect in the text that is its argument. For example:

\cap{When I was One I had just begun,
when I was Two I was \nocap{nearly}
new (A.A. Milne)}.

WHEN I WAS ONE I HAD JUST BEGUN, WHEN I WAS
TWO I WAS nearly NEW (A.A. MILNE).

We can configure how \cap works with \setupcapitals and we can also define dif
ferent versions of the command, each with its own name and specific configuration.
This we can do with \definecapitals.

Both commands work in a similar way:

\definecapitals[Name][Configuration]
\setupcapitals[Name][Configuration]

The “Name” parameter in \setupcapitals is optional. If it is not used, the con
figuration will affect the \cap command itself. If it is used, we need to give the
name we previously assigned in \definecapitals to some actual configuration.

In either of the two commands the configuration allows for three options: “title”,
“sc” and “style” the first and second allowing “yes” and “no” as values. With
“title” we indicate whether the capitalisation will also affect titles (which it does
by default) and with “sc” we indicate whether the command should be genuine
small caps (“yes”), or fake small caps (“no”). By default it uses fake small caps
which has the advantage that the command works even if you are using a font that
has not implemented small caps. The third value “style” allows us to indicate a
style command to be applied to the text affected by the \cap command.

10.2.2 Superscript or subscript text
We already know (see section 3.1) that in maths mode, the reserved characters
“_” and “^” will convert the character or group that immediately follows into a
superscript or subscript. To achieve this effect outside of maths mode, ConTEXt
includes the following commands:

• \high{Text}: writes the text it takes as an argument as a superscript.

• \low{Text}: writes the text it takes as an argument as a subscript.

• \lohi{Subscript}{Superscript}: writes both arguments, one above the
other: on the bottom the first argument, and on top the second, which brings
about a curious effect:

Chapter 10 Characters, words, text and horizontal space 194

\lohi{below}{above} above
below

10.2.3 Verbatim text
The Latin expression verbatim (from verbum = word + the suffix atim), which
could be translated as “literally” or “word for word”, is used in text processing
programs like ConTEXt to refer to fragments of text that should not be processed
at all, but should be dumped, as written, into the final file. ConTEXt uses the
command \type for this, intended for short texts that do not occupy more than
one line and the typing environment intended for texts of more than one line.
These commands are widely used in computer books to show code fragments,
and ConTEXt formats these texts in monospaced letters like a typewriter or a
computer terminal would. In both cases the text is sent to the final document
without processing, which means that they can use reserved characters or special
characters that will be transcribed as is in the final file. Likewise, if the argument
of \type, or the content of \starttyping includes a command, this will be written
in the final document, but not executed.

The \type command has, besides, the following peculiarity: its argument can be
contained within curly brackets (as is normal in ConTEXt), but any other character
can be used to delimit (surround) the argument.

When ConTEXt reads the \type command it assumes that the character which is not a blank
space immediately following the name of the command will act as a delimiter of its argument;
so it considers that the contents of the argument begin with the next character, and end with
the character before the next appearance of the delimiter.

Some examples will help us to understand this better:

\type 1Tweedledum and Tweedledee1
\type |Tweedledum and Tweedledee|
\type zTweedledum and Tweedledeez
\type (Tweedledum and Tweedledee(

Note that in the first example, the first character after the command name is a ‘1’, in the
second a ‘|’ and in the third a ‘z’; so: in each of these cases ConTEXt will consider that the
argument of \type is everything between that character and the next appearance of the same
character. The same is true for the last example, which is also very instructive, because in
principle we could assume that if the opening delimiter of the argument is a ‘(’, the closing
one should be a ‘)’, but it is not, because ‘(’ and ‘)’ are different characters and \type, as I
said, searches for a closing character delimiter which is the same as the character used at the
start of the argument.

There are only two cases where \type allows the opening and closing delimiters to be different
characters:

• If the opening delimiter is the ‘{’ character, it thinks the closing delimiter will be ‘}’.

Chapter 10 Characters, words, text and horizontal space 195

• If the opening delimiter is ‘<<’, it thinks that the closing delimiter will be ‘>>’. This case
is also unique in that two consecutive characters are being used as delimiters.

However: the fact that \type allows any delimiter does not mean that we should use “weird”
delimiters. From the point of view of the readability and comprehensibility of the file source,
it is best to delimit the argument of \type with curly brackets where possible, as is normal
with ConTEXt; and when this is not possible, because there are curly brackets in the \type
argument, use a symbol: preferably one that is not a ConTEXt reserved character. For example:
\type *This is a closing curly bracket: ‘}’*.

Both \type and \starttyping can be configured with \setuptype and \se
tuptyping. We can also create a customised version of these with \definetype
and \definetyping. Regarding the actual configuration options for these com
mands, I refer to “setup-en.pdf” (in the directory tex/texmf-context/doc/con
text/documents/general/qrcs.

Two very similar commands to \type are:

• \typ: works similarly to \type, but does not disable hyphenation.

• \tex: a command intended for writing texts about TEX or ConTEXt: it adds a
backspace before the text it takes as an argument. Otherwise, this command
differs from \type in that is processes some of the reserved characters it finds
in the text it takes as an argument. In particular, curly brackets inside \tex
will be treated in the same way they are usually treated in ConTEXt.

10.3 Character and word spacing
10.3.1 Automatically setting horizontal space
The space between different characters and words (called horizontal space in TEX)
is normally set automatically by ConTEXt:

• The space between the characters that make up a word is defined by the font
itself, which, except in fixed-width fonts, usually uses a greater or lesser amount
of white space depending on the characters to be separated, and so, for example,
the space between an ‘A’ and a ‘V’ (‘AV’) is usually less than the space between
an ‘A’ and an ‘X’ (‘AX’). However, apart from these possible variations that
depend on the combination of letters concerned and predefined by the font, the
space between the characters that make up a word is, in general, a fixed and
invariable measure.

• By contrast, the space between words on the same line can be more elastic.

– In the case of words in a line whose width must be the same as that of
the rest of the lines in the paragraph, the variation of the spacing between

Chapter 10 Characters, words, text and horizontal space 196

words is one of the mechanisms that ConTEXt uses to obtain lines of equal
width, as explained in more detail in section 11.3. In these cases, ConTEXt
will establish exactly the same horizontal space between all the words in
the line (except for the rules below), while ensuring that the space between
words in the different lines of the paragraph is as similar as possible.

– However, in addition to the need to stretch or shrink the spacing between
words in order to justify the lines, depending on the active language, Con
TEXt takes certain typographical rules into consideration whereby in certain
places the typographical tradition associated with that language adds some
extra white space, as is the case, for example, in some parts of the English
typographical tradition, which adds extra white space after a full stop.

These extra white spaces work for English and possibly for some other languages
(though it is also true that in many instances, publishers in English nowadays choose
not to have extra space after a full stop) but not for Spanish where the typographical
tradition is different. So we can temporarily enable this function with \setupspac
ing[broad] and disable it with \setupspacing[packed]. We could also change the
default configuration for Spanish (and for that matter for any other language including
English), as explained in section 10.5.2.

10.3.2 Altering the space between characters within
a word

Altering the default space for the characters that make up a word is considered
very bad practice from a typographical point of view, except in titles and headings.
However, ConTEXt provides a command to alter this space between the characters
in a word:1 \stretched, whose syntax is as follows:

\stretched[Configuration]{Text}

where Configuration allows any of the following options:

• factor: an integer or decimal number representative of the spacing to be ob
tained. It should not be too high a number. A factor of 0.05 is already visible
to the naked eye.

• width: indicates the total width that the text submitted to the command must
have, in such a way that the command itself will calculate the necessary spacing
to distribute the characters in that space.

1 It is very typical of the philosophy of ConTEXt to include a command to do something that the
ConTEXt documentation itself advises against doing. Although typographical perfection is sought,
the aim is also to give the author absolute control over the appearance of his or her document:
whether it is better or worse is, in short, his or her responsibility.

Chapter 10 Characters, words, text and horizontal space 197

According to my tests, when the width established with the width option is less than
that required to represent the text with a factor equal to 0.25, the width option and this
factor are ignored. I guess that's because \stretched allows us only to increase the space
between the characters in a word, not reduce it. But I don't understand why the width
required to represent the text with a factor of 0.25 is used as a minimum measure for the
width option, and not the natural width of the text (with a factor of 0).

• style: style command or commands to apply to the text taken as an argument.

• color: the colour in which the text taken as an argument will be written.

So in the following example we can see graphically how the command would work
when applied to the same sentence, but with different widths:

\stretched[width=4cm]{\bf test text}
\stretched[width=6cm]{\bf test text}
\stretched[width=8cm]{\bf test text}
\stretched[width=9cm]{\bf test text}

t e s t t e x t
t e s t t e x t
t e s t t e x t
t e s t t e x t

In this example it can be seen that the distribution of the horizontal space between the different
characters is not uniform. The ‘x’ and ‘t’ in “text” and the ‘e’ and ‘b’ in “test”, always appear
much closer together than the other characters. I haven't been able to find out why this
happens.

Applied without arguments, the command will use the full width of the line. On the
other hand, within the text that is the argument to this command, the command
\\ is redefined and instead of a line break, it inserts horizontal space. For example:

\stretched{test\\text} t e s t t e x t

We can customise the default configuration of the command with \setup
stretched.

There is no \definestretched command that would allow us to set customised configurations
associated with a command name, however, in the official list of commands (see section 3.6)
it says that \setupstretched comes from \setupcharacterkerning and there is a \de
finecharacterkerning command. In my tests, however, I have not managed to set any
customised configuration for \stretched by means of the latter, although I must admit that
I have not spent much time trying to do so either.

10.3.3 Commands for adding horizontal space be
tween words

We already know that to increase the space between words it is of no use to
add two or more consecutive blank spaces, since ConTEXt absorbs all consecutive
blank spaces, as explained in section 4.2.1. If we wish to increase the space between
words, we need to go to one of the commands that allows us to do this:

Chapter 10 Characters, words, text and horizontal space 198

• \, inserts a very small blank space (called a thin space) in the document. It is
used, for example, to separate thousands in a set of numbers (e.g. 1,000,000),
or to separate a single inverted comma from double inverted commas. For
example: “1\,473\,451” will produce “1 473 451”.

• \space or “\␣” (a backslash followed by a blank space which, since it is an
invisible character, I have represented as “␣”) introduces an additional blank
space.

• \enskip, \quad and \qquad insert a blank space in the document of half an
em, 1 em or 2 ems respectively. Remember that the em is a measure dependent
on the size of the font and is equivalent to the width of an ‘m’, which normally
coincides with the size in points of the font. So, using a 12 point font, \enskip
gives us a space of 6 points, \quad gives us 12 points and \qquad gives us 24
points.

Along with these commands which give us blank space in precise measurements,
the \hskip and \hfill commands introduce horizontal space of varying dimen
sions:

\hskip allows us to indicate exactly how much blank space we want to add. Thus:

This is \hskip 1cm 1 centimetre\\
This is \hskip 2cm 2 centimetres\\
This is \hskip 2.5cm 2.5 centimetres\\

This is 1 centimetre
This is 2 centimetres
This is 2.5 centimetres

The space indicated may be negative, which will cause one text to be superimposed
over another. Thus:

This is farce rather than
\hskip -1cm comedy

This is farce rather thancomedy

\hfill, for its part, introduces as much white space as necessary to occupy the en
tire line, allowing us to create interesting effects such as right-aligned text, centred
text or text on both sides of the line as shown in the following example:

\hfill On the right\\
On both\hfill sides

On the right
On both sides

Chapter 10 Characters, words, text and horizontal space 199

10.4 Compound words
By “compound words” in this section I mean words that are formally understood
to be one word, rather than words that are simply conjoined. It is not always an
easy distinction to understand: “rainbow” is clearly made up of two words (“rain
+ bow”) but no English speaker would think of the combined terms in any other
way than as a single word. On the other hand, we have words that are sometimes
combined with the help of a hyphen or backslash. The two words have distinct
meanings and uses but are conjoined (and may in some cases become a single
word, but not yet!). So, for example, we can find words like “French--Canadian” or
“(inter)communication” (though we may well also find “intercommunication” and
discover that the speaking public has finally accepted the two words to be a single
word. That is how language evolves).

Compound words present ConTEXt with some problems mainly connected with
their potential hyphenation at the end of a line. If the joining element is a hyphen,
then from a typographical perspective there is no hyphenation problem at the end
of a line at that point, but we would need to avoid a second hyphenation in the
second part of the word since that would leave us with two consecutive hyphens
which could cause comprehension difficulties.

The “||”command is available to tell ConTEXt that two words make up a com
pound word. This command, exceptionally, does not begin with a backslash, and
allows two different usages:

• We can use two consecutive vertical bars (pipes) and write, for example,
“Spanish||Argentine”.

• The two vertical bars can have the joining /separating item between two words
enclosed between them, as in, for example, “joining|/|separating”.

In both cases, ConTEXt will know that it is dealing with a compound word, and
will apply the appropriate hyphenation rules for this type of word. The difference
between using the two consecutive vertical bars (pipes), or framing the word sep
arator with them, is that in the first case, ConTEXt will use the separator that
is predefined as \setuphyphenmark, or in other words the hyphen, which is the
default (“--”). So if we write “picture||frame”, ConTEXt will generate “Picture--
frame”.

With \setuphyphenmark we can change the default separator (in the case where
we need two pipes). The values allowed for this command are “--, ---, -, ,
(,), =, /”. Bear in mind, however, that the “=” value becomes an em dash (the
same as “---”).

Chapter 10 Characters, words, text and horizontal space 200

The normal use of “||” is with hyphens, since this is what is normally used between
composite words. But occasionally the separator could be a parenthesis, if, for ex
ample, we want “(inter)space”, or it could be a forward slash, as in “input/output”.
In these cases, if we want the normal hyphenation rules for composite words to
apply, we could write “(inter|)|space” or “input|/|output”. As I said earlier,
“|=|” is considered to be an abbreviation of “|---|” and inserts an em dash as a
separator (—).

10.5 The language of the text
Characters form words which normally belong to some language. It is important for
ConTEXt to know the language we are writing in, because a number of important
things depend on this. Mainly:

• Word hyphenation.
• The output format of certain words.
• Certain typesetting matters associated with the typesetting tradition of the

language in question.

10.5.1 Setting and changing the language
ConTEXt assumes that the language will be English. Two procedures can change
this:

• By using the \mainlanguage command, used in the preamble to change the
main language of the document.

• By using the \language command, aimed at changing the active language at
any point in the document.

Both commands expect an argument consisting of any language identifier (or code).
To identify the language, we use either the two-letter international language code
set out in ISO 639-1, which is the same as that used, for example, on the web, or
the English name of the language in question, or sometimes some abbreviation of
the name in English.

In table 10.5 we find a complete list of languages supported by ConTEXt, along with
the ISO code for each of the languages in question as well as, where appropriate,
the code for certain language variants expressly provided for.1

1 Table 10.5 has a summary of the list obtained with the following commands:
\usemodule[languages-system]
\loadinstalledlanguages
\showinstalledlanguages

Chapter 10 Characters, words, text and horizontal space 201

Language ISO code Language (variants)
Afrikaans af, afrikaans
Arabic ar, arabic ar-ae, ar-bh, ar-dz, ar-eg, ar-in, ar-ir, ar-jo, ar-kw, ar-lb, ar-ly,

ar-ma, ar-om, ar-qa, ar-sa, ar-sd, ar-sy, ar-tn, ar-ye
Catalan ca, catalan
Czech cs, cz, czech
Croatian hr, croatian
Danish da, danish
Dutch nl, nld, dutch
English en, eng, english en-gb, uk, ukenglish, en-us, usenglish
Estonian et, estonian
Finnish fi, finnish
French fr, fra, french
German de, deu, german de-at, de-ch, de-de
Greek gr, greek
Greek (ancient) agr, ancientgreek
Hebrew he, hebrew
Hungarian hu, hungarian
Italian it, italian
Japanese ja, japanese
Korean kr, korean
Latin la, latin
Lithuanian lt, lithuanian
Malayalam ml, malayalam
Norwegian nb, bokmal, no, norwegian nn, nynorsk
Persian pe, fa, persian
Polish pl, polish
Portuguese pt, portughese pt-br
Romanian ro, romanian
Russian ru, russian
Slovak sk, slovak
Slovenian sl, slovene, slovenian
Spanish es, sp, spanish es-es, es-la
Swedish sv, swedish
Thai th, thai
Turkish tr, turkish tk, turkmen
Ukranian ua, ukrainian
Vietnamese vi, vietnamese

Table 10.5 Language support in ConTEXt

So, for example, to set Spanish (Castilian) as the main language of the document
we could use any of the three that follow:

\mainlanguage[es]
\mainlanguage[spanish]
\mainlanguage[sp]

To enable a particular language inside the document, we can use either the \lan
guage[Language code] command, or a specific command to activate that lan
guage. So, for example, \en activates English, \fr activates French, \es Spanish,

Should you be reading this document long after it was written (2020) it is possible that ConTEXt
will have incorporated additional languages, so it would be a good idea to use these commands to
show an updated list of languages

Chapter 10 Characters, words, text and horizontal space 202

or \ca Catalan. Once an actual language has been activated, it remains so until we
expressly switch to another language, or the group in which the language was ac
tivated is then closed. Languages work, therefore, just like font change commands.
Note, however, that the language set by the \language command or by one of its
abbreviations (\en, \fr, \de, etc.) does not affect the language in which labels are
printed (see section 10.5.3).

Although it may be laborious to mark the language of all the words and expressions we use in
our document that do not belong to the main language of the document, it is important to
do so if we want to obtain a properly typeset final document, especially in professional work.
We should not mark all the text, but only the part that does not belong to the main language.
Sometimes it is possible to automate the marking of the language by using a macro. For
example, for this document in which ConTEXt commands are continuously being quoted, the
original language of which is English, I have designed a macro which, in addition to writing the
command in the appropriate format and colour, marks it as an English word. In my professional
work, where I need to quote a lot of French and Italian bibliography, I have incorporated a field
in my bibliographic database to pick up the language of the work, so that I can automate the
language indication in the quotations and lists of bibliographical references.

If we are using two languages that use different alphabets in the same document (for example,
English and Greek, or English and Russian), there is a trick that will prevent us from having to
mark the language of expressions built with the alternative alphabet: modify the main language
setting (see next section) so that it also loads the default hyphenation patterns for the language
that uses a different alphabet. For example, if we want to use English and ancient Greek, the
following command would save us from having to mark language of the texts in Greek:

\setuplanguage[en][patterns={en, agr}]

This only works because English and Greek use a different alphabet, so there can be no
conflict in the hyphenation patterns of the two languages, therefore we can load them both
simultaneously. But in two languages that use the same alphabet, loading the hyphenation
patterns simultaneously will necessarily lead to inappropriate hyphenation.

10.5.2 Configuring the language
ConTEXt associates the functioning of certain utilities with the specific language
active at any given time. The default associations can be changed with \setu
planguage whose syntax is:

\setuplanguage[Language][Configuration]

where Language is the language code for the language we want to configure, and
Configuration contains the specific configuration that we want to set (or change)
for that language. Specifically, up to 32 different configuration options are allowed,
but I will only deal with those that seem suitable for an introductory text such as
this:

Chapter 10 Characters, words, text and horizontal space 203

• date: allows us to configure the default date format. See further ahead on
page 204.

• lefthyphenmin, righthyphenmin: the minimum number of characters that
must be to the left or to the right for hyphenation of a word to be supported.
For example \setuplanguage[en][lefthyphenmin=4] will not hyphenate any
word if there are fewer than 4 characters to the left of the eventual hyphen.

• spacing: the possible values for this option are “broad” or “packed”. In
the first case (broad), the rules for spacing words in English will be ap
plied, which means that after a full stop and when another character fol
lows, a certain amount of extra blank space will be added. On the other hand,
“spacing=packed” will prevent these rules from applying. For English, broad
is the default.

• leftquote, rightquote: indicate the characters (or commands), respectively,
that \quote will use to the left and right of the text that is its argument (for
this command, see page 206).

• leftquotation, rightquotation: indicate the characters (or commands), re
spectively that \quotation will use to the left and right of the text that is its
argument (for this command, see page 206).

10.5.3 Labels associated with particular languages
Many of ConTEXt's commands automatically generate certain texts (or labels), as,
for example, the \placetable command that writes the label “Table xx” under
the table that is inserted, or \placefigure which inserts the label “Figure xx”.

These labels are sensitive to the language set with \mainlanguage (but not if set
with \language) and we can change them with

\setuplabeltext[Language][Key=Label]

where Key is the term by which ConTEXt knows the label and Label is the text
we want ConTEXt to generate. So, for example,

\setuplabeltext[es][figure=Imagen~]

would see that when the main language is Spanish, images inserted with \place
figure are not called “Figure x” but “Imagen x”. Note that after the text on the
label itself, a blank space must be left to ensure that the label is not attached to
the next character. In the example I have used the reserved character “~”; I could
also have written “[figure=Imagen{ }]” enclosing the blank space between curly
brackets to ensure that ConTEXt will not get rid of it.

Chapter 10 Characters, words, text and horizontal space 204

What labels can we redefine with \setuplabeltext? The ConTEXt documentation
is not as complete as one might hope on this point. The 2013 reference manual
(which is the one that explains most about this command) mentions “chapter”,
“table”, “figure”, “appendix”... and adds “other comparable text elements”. We
can assume that the names will be the English names of the element in question.

One of the advantages of free libre software is that the source files are available to the user;
so we can look into them. I have done so, and snooping through the source files of Con
TEXt, I have discovered the file “lang-txt.lua”, available in tex/texmf-context/tex/con
text/base/mkiv which I think is the one that contains the predefined labels and their different
translations; so that if at any time ConTEXt generates a redefined text that we want to change,
to see the name of the label that text is associated we can open the file in question and find
that we want to change. This way we can see which label name is associated with it.

If we want to insert the text associated with a certain label somewhere in the
document, we can do so with the \labeltext command. So, for example, if I want
to refer to a table, to ensure that I name it in the same way that ConTEXt calls
it in the \placetable command, I can write: “Just as shown in the \label
text{table} on the next page..” This text, in a document where \mainlan
guage is English, will produce: “Just as shown in the Table on the next page.”

Some of the labels redefinable with \setuplabeltext, are empty by default; like, for example,
“chapter” or “section”. This is because by default ConTEXt does not add labels to sectioning
commands. If we want to change this default operation, we need only to redefine these labels in
the preamble of our document and so, for example, \setuplabeltext[chapter=Chapter~]
will see that chapters are preceded by the word “Chapter”.

Finally, it is important to point out that although in general, in ConTEXt, the
commands that allow several comma-separated options as an argument, the last
option can end with a comma and nothing bad happens. In \setuplabeltext that
would generate an error when compiling.

10.5.4 Some language-related commands

A. Date-related commands

ConTEXt has three date-related commands that produce their output in the active
language at the time they are run. These are:

• \currentdate: run without arguments in a document in which the main lan
guage is English, it returns the system date in the format “Day Month Year”.
For example: “11 September 2020”. But we can also tell it to use a different for
mat (as would happen in the US and some other parts of the English-speaking
world that follow their system of putting the month before the day, hence the
infamous date, 9/11), or include the name of the day of the week (weekday),
or include only some elements of the date (day, month, year)

Chapter 10 Characters, words, text and horizontal space 205

To indicate a different date format, “dd” or “day” represent the days, “mm”
the months (in number format), “month” the months in alphabetical format
in lower case, and “MONTH” in upper case. Regarding the year, “yy” will write
only the last digits, while “year” or “y” will write all four. If we want some
separating element between the date components, we must write it expressly.
For example

\currentdate[weekday, dd, month]

when run on 9 September 2020 will write “Wednesday 9 September”.

• \date: this command, run without any argument, produces exactly the same
output as \currentdate, meaning, the actual date in standard format. How
ever, a specific date can be given as an argument. Two arguments are given
for this: with the first argument we can indicate the day (“d”), month (“m”)
and year (“y”) corresponding to the date we want to represent, while with the
second argument (optional) we can indicate the format of the date to be rep
resented. For example, if we want to know what day of the week John Lennon
and Paul McCartney met, an event which, according to Wikipedia, took place
on 6 July 1957, we could write

\date[d=6, m=7, y=1957][weekday]

and so we would find out that such an historical event happened on a Saturday.

• \month takes a number as an argument, and returns the name of the month
corresponding to that number.

B. The \translate command
The translate command supports a series of phrases associated with a specific
language, so that one or another will be inserted in the final document depending
on the language active at any given time. In the following example, the translate
command is used to associate four phrases with Spanish and English, which are
saved in a memory buffer (regarding the buffer environment, see section 12.6):

\startbuffer
\starttabulate[|*{4}{lw(.25\textwidth)|}]
\NC \translate[es=Su carta de fecha, en=Your letter dated]
\NC \translate[es=Su referencia, en=Your reference]
\NC \translate[es=Nuestra referencia, en=Our reference]
\NC \translate[es=Fecha, en=Date] \NC\NR

\stoptabulate
\stopbuffer

so that if we insert the buffer at a point in the document where Spanish is activated,
the Spanish phrases will be played, but if the point in the document where the
buffer is inserted has English activated, the English phrases will be inserted. Thus:

Chapter 10 Characters, words, text and horizontal space 206

\language[es]
\getbuffer

will generate

Su carta de fecha Su referencia Nuestra referencia Fecha

while

\language[en]
\getbuffer

will generate

Your letter dated Your reference Our reference Date

C. The \quote and \quotation commands

One of the most common typographical errors in text documents occurs when
quote marks (single or double) are opened but not expressly closed. To avoid this
happening, ConTEXt provides the \quote and \quotation commands that will
quote the text that is their argument; \quote will use single quotation marks and
\quotation will use double quotation marks.

These commands are language sensitive in that they use the default character
or command set for the language in question to open and close quotes (see sec
tion 10.5.2); and so, for example, if we want to use Spanish as the default style for
double quotation marks – the guillemets or chevrons (angle brackets)) typical of
Spanish, Italian, French, we would write:

\setuplanguage[es][leftquotation=«, rightquotation=»].

These commands do not, however, manage nested quotes; although we can create
the utility that does this, taking advantage of the fact that \quote and \quotation
are actual applications of what ConTEXt calls delimitedtext, and that it is possible
to define further applications with \definedelimitedtext. Thus the following
example:

\definedelimitedtext
[CommasLevelA]
[left=«, right=»]

\definedelimitedtext
[CommasLevelB]
[left=“, right=”]

\definedelimitedtext
[CommasLevelC]
[left=`, right=']

Chapter 10 Characters, words, text and horizontal space 207

will create three commands that will allow up to three different levels of quoting.
The first level with side quotes, the second with double quotes and the third with
single quotes.

Of course, if we are using English as our main language, then the default single
and double quotation marks (curly, not straight, as you find in this document!)
will be automatically used.

208

Chapter 11
Paragraphs, lines and

vertical space
Table of Contents: 11.1 Paragraphs and their characteristics; 11.1.1 Automati
cally indenting first lines of paragraphs; 11.1.2 Special paragraph indenting; 11.2 Ver
tical space between paragraphs; 11.2.1 \setupwhitespace; 11.2.2 Paragraphs
with no extra vertical space between them; 11.2.3 Adding additional vertical space at a
particular point in the document; 11.2.4 \setupblank and \defineblank; 11.2.5 Other
procedures for achieving more vertical space; 11.3 How ConTEXt builds lines that
form paragraphs; 11.3.1 Use of the reserved ‘~’ character; 11.3.2 Word hyphenation;
11.3.3 Tolerance level for line breaks; 11.3.4 Forcing a line break at a certain point;
11.4 Interline space; 11.5 Other matters relating to lines; 11.5.1 Converting
line breaks in the source file into line breaks in the final document; 11.5.2 Line num
bering; 11.6 Horizontal and vertical alignment; 11.6.1 Horizontal alignment;
11.6.2 Vertical alignment;

The general look of a document is determined mainly by the size and layout of the
pages which we have seen in Chapter 5, by the font we have chosen, dealt with in
Chapter 6, and by other matters like interline spacing, paragraph alignment and
spacing between them, etc. This chapter focuses on these other matters.

11.1 Paragraphs and their characteristics
The paragraph is the fundamental unit of text for ConTEXt. There are two proce
dures for commencing a paragraph:

1. Inserting one or more consecutive blank lines in the source file.

2. The \par or \endgraf commands.

The first of these procedures is the one normally used since it is simpler and
produces source files that are easier to read and understand. Inserting paragraph
breaks with an explicit command is something usually done only inside a macro
(see section 3.7.1) or in a table cell (see section 13.3).

In a well-typeset document, from a typographical point of view it is important that
the paragraphs stand out visually from each other. This is usually achieved with

Chapter 11 Paragraphs, lines and vertical space 209

two procedures: by slightly indenting the first line of each paragraph or by slightly
increasing the blank space between paragraphs, and sometimes by a combination
of both procedures, although in some places this is not recommended because it
is considered typographically redundant.

I don't totally agree. The simple indentation of the first line does not always visually highlight
the separation between paragraphs enough; but an increase in spacing not accompanied by
indentation poses problems in the case of a paragraph that begins on the top of a page and
we may therefore be unsure whether it is a new paragraph, or a continuation from the previous
page. A combination of both procedures eliminates doubts.

Let us see, first of all how indentation of lines and paragraphs is achieved with
ConTEXt.

11.1.1 Automatically indenting first lines of para
graphs

Automatic insertion of a small indent in the first line of paragraphs is disabled
by default. We can enable it, disable it again and when it is enabled, indicate
the extent of indentation with the \setupindenting command that allows the
following values to indicate whether indentation should or should not be enabled:

• always: all paragraphs will be indented, regardless.
• yes: enable normal paragraph indentation. Certain paragraphs preceded by

extra vertical spacing, such as the first paragraph of sections, or paragraphs
following certain environments, will not be indented.

• no, not, never, none: disable automatic indenting of the first line in para
graphs.

In cases where we have enabled automatic indentation, we can also indicate, by
means of the same command, how much indentation there should be. To do this we
can expressly use a dimension (for example 1.5cm) or the symbolic words “small”,
“medium” and “big” which indicate that what we want is small, medium or big
indents.

In some typesetting traditions (among them Spanish), the default indentation was two quads.
In typography, a quad (originally quadrat) was a metal spacer used in letterpress typesetting.
The term was later adopted as the generic name for two common space sizes in typography,
regardless of the form of typesetting used. An em quad is a space that is one em wide; as
wide as the height of the font (Wikipedia). Thus, with a 12-point letter, the quad would be 12
points wide by 12 points high. ConTEXt has two quad commands: \quad that generates one
space of the kind referred to above, and \qquad that generates twice that amount, but based
on the font being used. An indent of two quads with an 11 point letter will measure 22 points,
and with a 12 point letter, 24 points.

When indentation is enabled, if we don't want a certain paragraph indented we
need to use the \noindentation command.

Chapter 11 Paragraphs, lines and vertical space 210

In general, I enable automatic indentation in my documents with \setupindenting[yes,
big]. In this document, however, I haven't done this because if indentation were enabled, the
large number of short sentences and examples would result in a visually untidy appearance of
the pages.

11.1.2 Special paragraph indenting
One graphic procedure for highlighting a paragraph is to indent either the right
or left (or both) sides of a paragraph. This is used, for example, for block quotes.

ConTEXt has an environment that allows us to alter paragraph indenting to high
light the text in a paragraph. This is the “narrower” environment:

\startnarrower[Options] ... \stopnarrower

where Options can be:

• left: indent the left margin.

• Num*left: indent the left margin, multiplying the normal indent by Num (for
example 2*left).

• right: indent the right margin.

• Num*right: indent the right margin, multiplying the normal indent by Num
(for example 2*right).

• middle: indent both margins. This is the default.

• Num*middle: indent both sides, multiplying the normal indent by Num.

When explaining the options I mentioned normal indentation; this refers to the
amount of left and right indentation that “narrower” applies by default. This
amount can be configured with \setupnarrower that allows the following confi
guration options:

• left: amount of indentation to be applied to the left margin.
• right: amount of indentation to be applied to the right margin.
• middle: amount of indentation to be applied to both margins.
• before: command to be run before entering the environment.
• after: command to be run after existing the environment.

If we want to use different configurations of the narrower environment
in our document, we can assign a different name to each of them with
\definenarrower[Name] [Configuration]

where Name is the name linked to this configuration and where Configuration
allows the same values as \setupnarrower.

Chapter 11 Paragraphs, lines and vertical space 211

11.2 Vertical space between paragraphs
11.2.1 \setupwhitespace

As we already know from (section 4.2.2), it does not matter to ConTEXt how
many consecutive blank lines there are in the source file: one or more blank lines
will insert a single paragraph break in the final document. To increase the space
between paragraphs, it is of no help to add an extra blank line in the source file.
Instead, this function is controlled by the \setupwhitespace command that allows
the following values:

• none: means that there will be no additional vertical space between paragraphs.

• small, medium, big: these insert, respectively, a small, medium or large ver
tical space. The actual size of the space inserted by these values depends on
the font size.

• line, halfline, quarterline: measures the additional blank space in rela
tion to the height of the lines and inserts an extra line, half a line, or a quarter
line of space respectively.

• DIMENSION: establishes an actual dimension for the space between paragraphs.
For example, \setupwhitespace[5pt].

As a general rule, it is not advisable to set an exact dimension as a value for
\setupwhitespace. It is preferable to use the symbolic values small, medium, big,
line, halfline or quarterline. This is so for two reasons:

• The symbolic values are elastic dimensions (see section 3.8.2) meaning that
they have normal dimensions but a certain decrease or increase in this value is
allowed, to assist ConTEXt in typesetting pages so that paragraph breaks are
aesthetically similar. But a fixed measure of separation between paragraphs
makes it more difficult to achieve good pagination for the document.

• The symbolic values small, medium, big, etc., are calculated on the basis of font
size, so if this changes in certain parts, it will also change the amount of vertical
spacing between paragraphs, and the end result will always be harmonious.
Conversely, a fixed value for vertical spacing will not be affected by changes in
font size, which will normally translate into a document with poorly distributed
white space (from the aesthetic point of view) and not in accordance with the
rules of typographical adjustment.

When a value has been set for vertical paragraph spacing, two additional com
mands are available: \nowhitespace, which eliminates any extra space between

Chapter 11 Paragraphs, lines and vertical space 212

particular paragraphs, and \whitespace which does the opposite. However, the
se commands are rarely needed, because the fact is that ConTEXt manages the
vertical spacing between paragraphs quite well on its own; especially if one of the
predefined dimensions has been inserted as a value, calculated from the current
active font size and spacing.

The meaning of \nowhitespace is obvious. But not \whitespace itself, necessarily, because
what is the point of ordering vertical spacing for particular paragraphs given that vertical spacing
has already been generally established for all paragraphs? However, when writing advanced
macros, \whitespace can be useful in the context of a loop that has to make a decision based
on the value of a certain condition. This is more or less advanced programming, and I won't
go into it here.

11.2.2 Paragraphs with no extra vertical space
between them

If we want particular parts of our document to have paragraphs that are not sepa
rated by extra vertical space, we can of course, modify the general configuration
of \setupwhitespace, but that is, in a way, contrary to the ConTEXt philosophy
in which the general configuration commands should be placed exclusively in the
preamble of the source file, so as to achieve a consistent and easily amendable ge
neral appearance for documents. Hence the “packed” environment, whose general
syntax is

\startpacked[Space] ... \stoppacked

where Space is an optional argument indicating what amount of vertical space is
desired between the paragraphs in the environment. If omitted, no extra vertical
space will be applied.

11.2.3 Adding additional vertical space at a par
ticular point in the document

If, at a particular point in the document the normal vertical spacing between
paragraphs is not sufficient, we can use the \blank command. Used without ar
guments, \blank will insert the same amount of vertical space as has been set
with \setupwhitespace. But we can indicate either a specific dimension between
square brackets, or one of the symbolic values calculated from the font size: small,
medium or big. We can also multiply those sizes by some whole number, and so
on, for example, \blank[3*medium] will insert the equivalent of three medium line
breaks. We can also put two sizes together. For example, \blank[2*big, medium]
will insert two large and a medium break.

Since \blank is designed to increase the vertical space between paragraphs, it has
no effect if a page break is inserted between the two paragraphs whose spacing

Chapter 11 Paragraphs, lines and vertical space 213

should be increased; and if we insert two or more \blank commands in succession,
only one of them will apply (the one with the most space to be inserted). Nor
does a \blank command placed after a page break have any effect. However, in
these cases we can force the insertion of vertical spacing using the symbolic word
“force” as a command option. So, for example, if we want the chapter titles in our
document to appear further down the page, so that the total length of the page
is less than the rest of the pages (a relatively frequent typographical practice), we
must write in the configuration of \chapter command, for example:

\setuphead
[chapter]
[
page=yes,
before={\blank[4cm, force]},
after={\blank[3*medium]}

]

This sequence of commands will ensure that chapters always start on a new page
and that the chapter label moves four centimetres downwards. Without using the
“force” option, this will not work.

11.2.4 \setupblank and \defineblank
Earlier, I said that \blank, used without arguments, is equivalent to \blank[big].
However, we can change this with \setupblank, setting it as \setupblank[0.5cm]
for example, or \setupblank[medium]. Used without arguments, \setupblank
will adjust the value to the size of the current font.

Just the same as with \setupwhitespace the white space inserted by \blank,
when its value is one of the predefined symbolic values, is an elastic dimension that
allows for some adjustment. We can change this with “fixed”, with the possibility,
later on, of restoring the default value with (“flexible”). Thus, for example, for
text in double columns it is recommended to set \setupblank[fixed, line], and
when going back to a single column \setupblank[flexible, default].

With \defineblank we can associate a certain configuration with a name. The
general format of this command is:

\defineblank[Name] [Configuration]

Once our white space configuration is defined, we can use it with \blank[Confi
gurationName].

Chapter 11 Paragraphs, lines and vertical space 214

11.2.5 Other procedures for achieving more ver
tical space

In TEX the command that inserts extra vertical space is \vskip. This command,
like almost all TEX commands, also works in ConTEXt but its use is strongly
advised against since it interferes with the internal functioning of some of Con
TEXt's macros. In its place it is suggested to use \godown whose syntax is:

\godown[Dimension]

where Dimension needs to be a number with or without decimals, followed by a
unit of measure. For example, \godown[5cm] will shift 5 centimetres down on the
page; although if change of page is less than this amount, \godown will only move
to the next page. Similarly, \godown will have no effect at the beginning of a page,
although we can trick it by writing, for example “\␣\godown[3cm]”1 that will first
insert a blank space that will mean we are no longer at the beginning of the page,
and will then go down three centimetres.

As we know, \blank also allows a precise dimension as an argument. Therefore, from the user's
point of view, writing \blank[3cm] or \godown[3cm] is practically the same. However, there
are some subtle differences between them. So, for example, two consecutive \blank commands
cannot be accumulated and when this happens, only the one that imposes a greater distance
is applied. Two or more \godown commands, on the other hand, can accumulate perfectly.

Another rather useful TEX command, the use of which poses no problems in Con
TEXt, is \vfill. This command inserts a flexible vertical blank space going as far
as the bottom of the page. It is as if the command pushes down what is written
after it. This allows for interesting effects such as how to place a certain paragraph
at the bottom of the page, by simply preceding it with \vfill. Now, the effect of
\vfill is difficult to appreciate if its use is not combined with forced page breaks,
because there is little point in pushing a paragraph or line of text down if the
paragraph, as it grows, grows upwards.

So, for example, to ensure that a line is placed at the bottom of the page, we
should write:

\vfill
Line at the bottom
\page[yes]

Like all other commands that insert vertical space, \vfill has no effect at the
beginning of a page. But we can trick it by preceding it with a forced blank space.
So, for example:

1 Recall that we are using the ‘␣’ character in this document to represent a blank space when it is
important for us to see it.

Chapter 11 Paragraphs, lines and vertical space 215

\page[yes]
\ \vfill
Centre line
\vfill
\page[yes]

will vertically centre the phrase “centre line” on the page.

11.3 How ConTEXt builds lines that form
paragraphs

One of the main duties of a typesetting system is to take a long string of words and
divide it into individual lines of the appropriate size. For example, each paragraph
in this text has been divided into lines 15 centimetres wide, but the author has
not had to worry about such details, as ConTEXt chooses the breakpoints after
considering each paragraph in its entirety, so that the final words of a paragraph
can really influence the division of the first line. As a result, the space between the
words in the entire paragraph is as uniform as possible.

This is one aspect where we can best note the different way word processors work and the better
quality obtained with systems such as ConTEXt. Because a word processor, when it reaches
the end of the line and jumps to the next, adjusts the white space in the line just finished to
enable right justification. It does this with each line, and at the end, each line in the paragraph
will have different interword spacing. This can cause a very bad effect (e.g. ‘rivers’ of white
space running through a text). ConTEXt, on the other hand, processes the paragraph in its
entirety and for each line calculates how many breakpoints are admissible and the amount of
interword spacing that would result from a line break. As the breakpoint of a line affects the
potential breakpoints of the next lines, the total number of possibilities can be very high; but
that is not a problem for ConTEXt. It will make a final decision based on the entire paragraph,
ensuring that the space between words on each line is as similar as possible, which results in
much better typeset paragraphs; visually more compact.

To do this, ConTEXt tests different alternatives, and assigns a badness value to
each of them based on its parameters. These were established after an in-depth
study of the art of typography. Finally, after having explored all possibilities, Con
TEXt chooses the least unsuitable option (the one with the least badness value).
In general, this functions quite well, but there will inevitably be cases where line
breakpoints are chosen that are not the best, or that do not appear to us to be the
best. Therefore, sometimes we will want to tell the program that certain places
are not good breakpoints. Then on other occasions we will want to force a break
at a particular point.

11.3.1 Use of the reserved ‘~’ character
The main candidates for line breakpoints are obviously the white space between
words. To indicate that a certain space should never be replaced by a line break,

Chapter 11 Paragraphs, lines and vertical space 216

we use, as we already know, the ‘~’ reserved character, which TEX calls a tie, tying
two words together.

It is generally recommended to use this non-breaking space in the following cases:

• Between the parts that make up an abbreviation. For example, U~S.
• Between abbreviations and the term they refer to. For example, Dr~Anne Ruben

or p.~45.
• Between numbers and the term that goes with them. For example, Eliza

beth~II, 45~volumes.
• Between digits and the symbols preceding or following them so long as they

are not superscripts. For example, 73~km, $~53; however, 35'.
• In percentages expressed in words. For example, twenty~per~cent.
• In groups of numbers separated by white space. For example, 5~357~891.

Although in these cases it is preferable to use what is called thin space achieved
in ConTEXt with the \, command, and therefore write 5\,357\,891.

• To avoid an abbreviation being the only item on that line. For example:

There are sectors such as entertainment, communications media,
commerce,~etc.

To these cases, Knuth (the father of TEX) adds the following recommendations:

• After an abbreviation that is not at the end of a sentence.
• In reference to parts of a document such as chapters, appendices, figures, etc.

For example Chapter~12.
• Between the first name and the initial of the second name of a person, or

between the initial of the first name and the surname. For example, Donald~E.
Knuth, A.~Einstein.

• Between mathematical symbols in apposition to names. For example, dimen
sion~d, width~w.

• Between symbols in series. For example {1,~2, \dots,~n}.
• When a number is strictly bound up with a preposition. For example from 0

to~1.
• When mathematical symbols are expressed in words. For example,

equals~a~n.
• In lists within a paragraph. For example: (1)~green, (2)~red, (3)~blue.

Many cases? Without a doubt, typographic perfection has a cost in terms of extra
effort. It is clear that if we don't want to, we don't have to apply these rules, but
it doesn't hurt to know them. Besides – and here I speak from experience – once
we get used to applying them (or any of them), doing so becomes automatic. It is
like putting accents on words as we write them (as we need to do in Spanish): for
those of us who do, if we are used to writing them automatically, it doesn't take

Chapter 11 Paragraphs, lines and vertical space 217

us any longer to write a word with an accent than it would for a word without an
accent.

11.3.2 Word hyphenation
Except for languages made up mostly of monosyllables, it is quite difficult to get an
optimal result if line breakpoints are only in the space between words. Hence Con
TEXt also analyses the possibility of inserting a line break between two syllables
of a word; and to do this it is essential for it to know the language the text is in,
since hyphenation rules are different for each language. Thus the importance of
the \mainlanguage command in the document preamble.

It can happen that ConTEXt has been unable to hyphenate a word suitably. So
metimes this can be because its own rules for splitting words get in the way of the
task (for example, ConTEXt never splits a word into two parts if these parts do not
have a minimum number of letters); or because the word is ambiguous. After all,
what might ConTEXt do with the word “unionised”? The word could appear in a
phrase like “the unionised workforce”, but it could also appear in a chemistry text
as “an unionised particle” (i.e. un-ionised). And what if ConTEXt had to deal with
the word “manslaughter” as the last word on a page before a page break. It may
split the word as man-slaughter (correct) but it may also split it as mans-laughter
(ambiguous).

Whatever the reason, if we are not satisfied with how a word has been split, or it
is incorrect, we can change it by expressly indicating the potential points where a
word can be split with the \- control symbol. So, for example, if “unionised” gave
us any problems, we could write it in the source file as “union\-ised”; or if we
had a problem with “manslaughter”, we could write “man\-slaughter”.

If the problem word is used several times in our document then the preference
is to show how it should be hyphenated in our preamble with the \hyphenation
command: this command, which is intended to be included in the preamble of the
source file, takes one or more words (commas-separated) as an argument, indicating
the points at which they can be split with a hyphen. For example:

\hyphenation{union-ised, man-slaughter}

If the word that is the subject of this command does not contain a hyphen, the
effect will be that the word will never be hyphenated. This same effect can be
achieved by using the \hbox command that creates an indivisible horizontal box
around the word, or \unhyphenated that prevents the hyphenation of the word
or words it takes as arguments. But while \hyphenation acts globally, \hbox
and \unhyphenated act locally, meaning that the \hyphenation command affects
all occurrences in the document of words included in its argument; unlike \hbox

Chapter 11 Paragraphs, lines and vertical space 218

or \unhyphenated that only act at the point in the source file where they are
encountered.

Internally, how hyphenation works is controlled by the TEX \pretolerance and \tolerance
variables. The first of these controls the admissibility of a split done only on white space. By
default it is 100, but if we alter it, for example, to 10 000, then ConTEXt will always consider
it acceptable for there to be a line break that does not mean splitting words according to
syllables, meaning that de facto, we are removing hyphenation based on syllables. While if, for
example, we were to set the \pretolerance value to a -1, we would be forcing ConTEXt to
use word hyphenation at the end of the line every time.

We can directly set an arbitrary value for \pretolerance by simply assigning a value there in
our document. For example:

\pretolerance=10000

but we can also manipulate this value with the “lesshyphenation” and “morehyphenation”
values in \setupalign. In this regard see section 11.6.1.

11.3.3 Tolerance level for line breaks
When looking for possible line break points, ConTEXt is usually quite strict, which
means that it prefers to allow a word to go beyond the right-hand margin because
it has not been able to hyphenate it, and prefers not to insert a line break before
the word if this results in too great an increase in interword space on that line.
This default behaviour normally provides optimal results, and only exceptionally
do certain lines stand out somewhat on the right-hand side. The idea is that
the author (or typesetter), reviews these exceptional cases once the document is
finished, to make the appropriate decision, which could be a \break command
before the word that extends beyond, or could also mean wording the paragraph
differently so that this word shifts position elsewhere.

However, in some cases, ConTEXt's low tolerance can be a problem. In these cases
we can tell it to be more tolerant with white space in lines. We have the \setupto
lerance command for this, allowing us to alter the level of tolerance in calculating
line breaks, which ConTEXt calls “horizontal tolerance” (because it affects hori
zontal space) and “vertical tolerance” when calculating page breaks. We will talk
about this in section 11.6.2.

Horizontal tolerance (which is the one that effects line breaks), is set at the
“verystrict” value by default. We can alter this by setting, as alternatives, any
of the following values: “strict”, “tolerant”, “verytolerant” or “stretch”. So,
for example,

\setuptolerance[horizontal, verytolerant]

will make it almost impossible for a line to go beyond the right-hand margin, even
if this means establishing a very large and unsightly spacing between words on a
line.

Chapter 11 Paragraphs, lines and vertical space 219

11.3.4 Forcing a line break at a certain point
To force a line break at a certain point we use the \break, \crlf or \\ commands.
The first of these, \break, enters a line break at the point where it is located. This
will most probably cause the line where the command is placed to be aesthetically
deformed, with an immense amount of white space between the words on that
line. As can be seen in the following example in which the \break command in
the third line (of the source fragment on the left) results in a second quite ugly
line (in the formatted text on the right).

On the corner of the old quarter I saw
him \emph{swagger} along like
the\break tough guys do when they walk,
hands always in their overcoat pockets,
so no one can know which of them carries
the dagger.

On the corner of the old quarter I saw him swag
ger along like the
tough guys do when they walk, hands always
in their overcoat pockets, so no one can know
which of them carries the dagger.

To avoid this effect, we can use the \\ or \crlf commands that also insert a forced
line break, but they fill in the original line with enough blank space to align it to
the left:

On the corner of the old quarter I saw
him \emph{swagger} along like
the\\ tough guys do when they walk,
hands always in their overcoat pockets,
so no one can know which of them carries
the dagger.

On the corner of the old quarter I saw him swag
ger along like the
tough guys do when they walk, hands always
in their overcoat pockets, so no one can know
which of them carries the dagger.

On normal lines, as far as I know, there are no differences between \\ and \crlf;
but in a section title there is a difference:

• \\ generates a line break in the body of the document, but not when the section
title is transferred to the table of contents.

• \crlf generates a line break that is applied both in the body of the document
and when the section title is transferred to the table of contents.

A line break should not be confused with a paragraph break. A line break simply
ends the current line and starts the next line, but keeps us in the same paragraph,
so the separation between the original line and the new line will be determined by
the normal spacing within a paragraph. Therefore, there are only three scenarios
in which it may be recommended to force a line break:

Chapter 11 Paragraphs, lines and vertical space 220

• In very exceptional cases when ConTEXt has not been able to find a suitable
line break, so that a line protrudes on the right. In these cases (which occur
very rarely, mainly when the line has indivisible boxes, or verbatim text [see
section 10.2.3]), it could be helpful to force a line break with \break just before
the word that protrudes into the right margin.

• In paragraphs that are actually made up of individual lines, each with infor
mation independent of that of the previous lines, for example, the heading of a
letter in which the first line may contain the name of the sender, the second the
recipient, and the third the date; or in a text talking about the authorship of
a work, where one line has the author's name, another their office or academic
position and perhaps a third line with the date, etc. In these cases the line
break should be forced with the \\ or \crlf commands. It is also common for
these kinds of paragraphs to be right-aligned.

• When writing poems or similar kinds of texts, to separate one verse from
another. Although in this latter case it is preferable to use the lines environ
ment explained in section 11.5.1.

11.4 Interline space
Interline space is the distance separating the lines that make up a paragraph. Con
TEXt calculates this automatically on the basis of the actual font being used, and,
above all, on the base size set with \setupbodyfont or \switchtobodyfont.

We can influence interline space with the \setupinterlinespace command that
allows for three different kinds of syntax:

• \setupinterlinespace [..Interline space..], where Interline space is a
precise value or a symbolic word that assigns a predefined interline space:

– When it is a precise value it can be a dimension (for example, 15pt), or
a simple, whole or decimal number (for example, 1.2). In this latter case
the number is interpreted as “number of lines” based on ConTEXt's default
interline space.

– When it is a symbolic word this can be “small”, “medium” or “big”, each
of which applies a small, medium or big interline space respectively, always
based on the default interline space ConTEXt would apply.

• \setupinterlinespace [..,..=..,..]. In this mode, the interline space is
set by explicitly altering the based measures with which ConTEXt calculates
the appropriate interline spacing. In this mode the spacing is set by explicitly
altering the measures on the basis of which ConTEXt calculates the appropriate

Chapter 11 Paragraphs, lines and vertical space 221

spacing. I have previously said that line spacing is calculated on the basis of the
specific font and its size; but that was to keep things very simple: actually what
the font and its size do is to establish certain measures on the basis of which
the interline space is calculated. By means of this \setupinterlinespace ap
proach, these measures are modified and therefore, so is the interline space.
The actual measures and values that can be manipulated by this procedure
(the meaning of which I will not explain because it goes beyond the scope of
a simple introduction), are: line, height, depth, minheight, mindepth,
distance, top, bottom, stretch and shrink.

• \setupinterlinespace [Name]. With this mode, we establish or configure a
specific and customised type of line spacing previously defined with \defi
neinterlinespace.

With

\defineinterlinespace[Name] [Configuration]

we can associate a certain interline space configuration with a specific name that
we can then simply trigger at some point in our document with \setupinterli
nespace[Name]. To return to normal interline space, we would then need to write
\setupinterlinespace[reset].

11.5 Other matters relating to lines
11.5.1 Converting line breaks in the source file

into line breaks in the final document
As we already know (see section 4.2.2), by default ConTEXt ignores the line breaks
in the source file that it considers to be simple blank spaces, unless there are two
or more consecutive line breaks, in which case a paragraph break will be inserted.
However, there may be some situations in which we are interested in respecting
the line breaks of the original source file as they were put there, for example, when
writing poetry. For this, ConTEXt offers us the “lines” environment whose format
is:

\startlines[Options] ... \stoplines

where the options can be any of the following, amongst others:

• space: When this option is set with the “on” value, in addition to respecting
the line breaks in the source file, the environment will also respect blank spaces
in the source file, temporarily ignoring the absorption rule.

• before: Text or command to run before entering the environment.

Chapter 11 Paragraphs, lines and vertical space 222

• after: Text or command to run after exiting the environment.

• inbetween: Text or command to run when entering the environment.

• indenting: Value indicating whether or not to indent paragraphs in the envi
ronment (see section 11.1.1).

• align: Alignment of lines in the environment (see section 11.6).

• style: Style command to apply within the environment.

• color: Colour to apply within the environment.

So, for example,

\startlines
One-one was a race horse.
Two-two was one too.
One-one won one race.
Two-two won one too.

\stoplines

One-one was a race horse.
Two-two was one too.
One-one won one race.
Two-two won one too.

We can also modify the default way the environment works with \setuplines and,
as with so many of ConTEXt's commands, it is also possible to assign a name to a
particular configuration of this environment. We do this with the \definelines
command whose syntax is:

\definelines[Name] [Configuration]

where, as a configuration, we can include the same options that have been ex
plained generally for the environment. Once we have defined our customised line
environment, to insert it we should write:

\startlines[Name] ... \stoplines

11.5.2 Line numbering
In certain kinds of texts it is common to establish some kind of line numbering,
for example, in texts on computer programming where it is relatively common for
the code fragments offered as examples to have their lines numbered, or in poems,
critical editions, etc. For all these situations ConTEXt offers the linenumbering
environment whose format is

\startlinenumbering[Options] ... \stoplinenumbering

The available options are:

Chapter 11 Paragraphs, lines and vertical space 223

• continue: In cases where there is more than one part of our document re
quiring lines to be numbered, this option sees that the numbering restarts for
each part (“continue=no”, the default value). On the other hand, if line num
bering is meant to continue on from where the previous part left off, we choose
“continue=yes”.

• start: Indicates the number of the first line in cases where we do not want it
to be ‘1’, or for it to correspond with the previous enumeration.

• step: All the lines included in the environment will be numbered, but, by
means of this option, we can indicate that the number is printed only at certain
intervals. With poems, for example, it is common that the number only appears
in multiples of 5 (verses 5, 10, 15...).

All these options can be indicated, in general for all the linenumbering environ
ments in our document, with \setuplinenumbering. This command also allows
us to configure other aspects of line numbering:

• conversion: Line numbering type. It can be any of the ones explained on
page 136 regarding the numbering of chapters and sections.

• style: Command (or commands) determining the style the line numbering will
have (font, size, variant...).

• color: Colour the line number will be printed in.

• location: Where the line number will be placed. It can be any of the follo
wing: text, begin, end, default, left, right, inner, outer, inleft, inright, margin,
inmargin.

• distance: Distance between the line number and the line itself.

• align: Number alignment. Can be: inner, outer, flushleft, flushright, left, right,
middle or auto.

• command: Command to which the line number will be passed as a parameter
before printing.

• width: Width reserved for printing the line number.

• left, right, margin:

We can also create different customised line numbering configurations with \de
finelinenumbering such that the configuration be be associated with a name:

\definelinenumbering[Name] [Configuration]

Chapter 11 Paragraphs, lines and vertical space 224

Once a specific configuration has been defined and associated with a name, we can
use it with

\startlinenumbering[Name] ... \stoplinenumbering

11.6 Horizontal and vertical alignment
The command that controls text alignment in general is \setupalign. This com
mand is used to control both horizontal and vertical alignment.

11.6.1 Horizontal alignment
When the exact width of a line of text does not take up all the width possible, this
poses a problem of what to do with the resulting white space.1 We can basically
do three things in this regard:

1. Accumulate it on one of the two sides of the line: if we accumulate it on the left
hand side, the line will look a little pushed to the right, while if we accumulate it
on the right hand side the line remains on the left hand side. We are talking, in
the former case, about right alignment and, in the latter, about left alignment.
By default, ConTEXt applies left alignment to the last line of paragraphs.

When several consecutive lines are aligned on the left, the right hand side is
irregular; but when the alignment is on the right, the side that looks uneven is
the left. To name the options that align one or other side, ConTEXt does not
set the side where they are aligned, but the side where they are uneven. The
refore, the flushright option results in left alignment and flushleft in right
alignment. As abbreviations of flushright and flushleft, \setupalign also
supports right and left as values. But attention: here the meaning of the
words is deceptive. Even though leftmeans “left” and rightmeans “right”, \se
tupalign[left] aligns on the right and \setupalign[right] aligns on the
left. In case the reader wonders why this comment has been made, it would be
worth quoting from the ConTEXt wiki: “ConTeXt uses flushleft and flushright
options. The right and left alignments are backwards from the usual directions
in all commands that accept an alignment option, in the sense of ‘ragged left’
and ‘ragged right’. Unfortunately, when Hans was first writing this part of Con
TeXt, he was thinking of ‘ragged right’ and ‘ragged left’ alignment, rather than
‘flush left’ and ‘flush right’. And now that it's been this way a while, it's im
possible to change it, because changing it would break backward compatibility
with all of the existing documents that use it.”

1 By exact width I mean the width of the line before ConTEXt adjusts the size of interword space
to enable justification.

Chapter 11 Paragraphs, lines and vertical space 225

In documents prepared for double-sided printing, in addition to the right and
left margins, there are also inner and outer margins. The values flushinner (or
simply inner) and flushouter (or simply outer) establish the corresponding
alignment in these cases.

2. Distribute it across both margins. The result will be that the line is centred.
The \setupalign option that does this is middle.

3. Distribute it among all the words making up the line,if necessary by increasing
interword space, so that the line becomes exactly the same width as the space
available to it. In these cases we talk about justified lines. This is also Con
TEXt's default value which is why there is no special option in \setupalign
to establish it. However, if we have altered alignment justified by default, we
can restore it with \setupalign[reset].

The value for \setupalign that we have just seen (right, flushright, left,
flushleft, inner, flushinner, outer, flushouter and middle) can be com
bined with broad, which results in somewhat rougher alignment.

Two other possible values of \setupalign that affect the horizontal alignment, have to do
with the hyphenation of words at the end of the line, because whether this is done or not
depends on whether the exact measure of the line is larger or smaller; which in turn affects the
remaining white space.

To this effect, \setupalign allows the morehyphenation value which makes ConTEXt work
harder to find breakpoints based on hyphenation, and lesshyphenation which produces the
opposite effect. With \setupalign[horizontal, morehyphenation], the remaining white
space in the lines will be reduced and therefore the alignment will be less apparent. On the
contrary, with \setupalign[horizontal, lesshyphenation], there will be more white
space left, and the alignment will be more visible.

\setupalign is intended to be included in the preamble and affect the whole
document or, to be included at a specific point and affect everything from that
point to the end. If we only want to change the alignment of one or several lines
we can use:

• The “alignment” environment, intended to affect several lines. Its general for
mat is:

\startalignment[Options] ... \stopalignment

where Options are any of those allowable for \setupalign.

• The \leftaligned, \midaligned or \rightaligned commands that cause left,
centred or right alignment respectively; and if we want the last word in a
paragraph (but only this and not the rest of the line) to be right aligned we
can use \wordright. All these commands require the text to be affected to be
between curly brackets.

Chapter 11 Paragraphs, lines and vertical space 226

Note, on the other hand, that if the words “right” and “left” in \setupalign cau
se the opposite alignment to what the name suggests, the same does not happen with
the \leftaligned and \rightaligned commands that bring about exactly the kind of
alignment that their name suggests: left on the left, and right on the right.

11.6.2 Vertical alignment
If horizontal alignment comes into play when the width of a line does not take
up all the space available to it, vertical alignment affects the height of the whole
page: if the exact text height of a page does not take up all the height available
to it, what do we do with the remaining white space? We can pile it up at the
top (“height”), which means that the text on the page will be pushed down; we
can pile it up at the bottom (“bottom”) or distribute it among the paragraphs
(“line”). The default value for vertical alignment is “bottom”.

Vertical level of tolerance

In the same way we can alter ConTEXt's level of tolerance with regard to the
amount of horizontal space permissible in a line (horizontal tolerance) with \se
tuptolerance, we can also alter its vertical tolerance, i.e. tolerance for space
between paragraphs larger than what ConTEXt, by default, considers reasonable
for a well-typeset page. The values possible for vertical tolerance are the same
as for horizontal tolerance: verystrict, strict, tolerant and verytolerant.
The default value is \setuptolerance [vertical, strict].

Controlling widows and orphans

One aspect that indirectly affects vertical alignment is the control of widows and
orphans. Both phenomena imply that a page break causes one line of a paragraph
to be isolated on a different page from the rest of the paragraph. This is not
considered to be typographically appropriate. If the line that is separated from
the rest of the paragraph is the first one on the page, we are talking about a
widowed line; if the line separated from its paragraph is the last one on the page
then we are talking about an orphaned line.

By default, ConTEXt does not implement a control to ensure these lines do not
occur. But we can change this by altering some of ConTEXt's internal variables:
\widowpenalty controls widowed lines and \clubpenalty controls orphaned lines.
Thus, the following statements in the preamble to our document will ensure that
this control is carried out:

\widowpenalty=10000
\clubpenalty=10000

Carrying out this control means that ConTEXt will avoid inserting a page break
that separates the first or last line of a paragraph from the page on which the rest

Chapter 11 Paragraphs, lines and vertical space 227

is found. This avoidance will be more or less rigorous depending on the value we
assign to the variables. With a value of 10 000, like the one I used in the example,
the control will be absolute; with a value of, for example, 150, the control will
not be as rigorous and occasionally there may be some widowed or orphaned lines
when the alternative is worse in typographical terms.

228

Chapter 12
Special constructions and

paragraphs
Table of Contents: 12.1 Footnotes and endnotes; 12.1.1 Types of notes in Con
TEXt and commands associated with them; 12.1.2 A close look at footnotes and endnotes;
12.1.3 Local notes; 12.1.4 Creating and using customised types of notes; 12.1.5 Con
figuring notes; 12.1.6 Temporary excluding notes when compiling; 12.2 Paragraphs
with multiple columns; 12.2.1 The \startcolumns environment; 12.2.2 Parallel
paragraphs; 12.3 Structured lists; 12.3.1 Selection the kind of list and separator
between items; A Unordered lists; B Ordered lists; 12.3.2 Inputting the items in a list;
12.3.3 Basic list configuration; 12.3.4 Additional list configuration; 12.3.5 Simple lists
with the \items command; 12.3.6 Predetermining list behaviour and creating our own
list types; 12.4 Descriptions and enumerations; 12.4.1 Descriptions; 12.4.2 Enu
merations; 12.5 Lines and frames; 12.5.1 Simple lines; 12.5.2 Lines linked to
text; 12.5.3 Framed words or texts; 12.6 Other environments and constructions
of interest;

12.1 Footnotes and endnotes
Notes are “secondary textual elements employed for various purposes, such as
clarifying or extending the main text, providing the bibliographic reference for the
sources, including citations, referring to other documents or stating the meaning of
the text” [Libro de Estilo de la Lengua española (Spanish Language Style Guide),
p. 195]. They are particularly important in texts of an academic nature. They
can be placed at different points on the page or in the document. Today, the
most widespread ones are those located at the foot of the page (called, therefore,
footnotes); sometimes they are also located in one of the margins (margin notes),
at the end of each chapter or section, or at the end of the document (endnotes).
In particularly complex documents, there may also be different series of notes:
author's notes, translator's notes, updates, etc. In particular, in critical editions the
note apparatus can become rather complex and only a few typesetting systems are
capable of supporting it. ConTEXt is one of these. There are numerous commands
available to establish and configure different types of notes.

To explain this, it is useful to start by pointing out the various elements that can
be involved in a note:

Chapter 12 Special constructions and paragraphs 229

• Mark or note anchor: The sign placed in the body of the text to indicate that
there is a note linked to it. Not all types of notes have an anchor associated
with them, but when there is one, this anchor appears in two places: at the
point in the main text to which the note refers, and at the beginning of the
note text itself. The presence of the same reference mark in both places is what
allows the note to be associated with the main text.

• The note ID or identifier: The letter, number or symbol that identifies the note
and distinguishes it from other notes. Some notes, for example margin notes,
can lack an ID. When this is not the case, the ID normally coincides with the
anchor.

If we think exclusively of footnotes, we will see no difference between what I have just
called a reference mark and the id. We clearly see the difference in other kinds of notes:
Line notes, for example, have an id, but not a reference mark.

• Text or contents of the note, always located at a different point on the page or
in the document than the command that generates the note and indicates its
content.

• Label associated with the note: A label or name associated with a note that is
not shown in the final document, but allows us to refer to it and retrieve its
ID elsewhere in the document.

12.1.1 Types of notes in ConTEXt and commands
associated with them

We have various types of notes in ConTEXt. For the moment I will only list them,
describing them in general terms and providing information about the commands
that generate them. Later I will develop the first two:

• Footnotes: Undoubtedly the most popular, to the extent that it is common for
all types of notes to be referred to generically as footnotes. Footnotes introduce
a mark with the note's id at the point in the document where the command
is found, and insert the text of the note itself at the bottom of the page where
the mark appears. They are created with the \footnote command.

• Endnotes: These notes, which are created with the command \endnote, are
inserted at the point in the document where a mark with the note's ID is found;
but the note's contents are inserted at another point in the document, and the
insertion is produced by a different command (\placenotes).

• Margin notes: As their name suggests, they are written in the margin of the
text and there is no ID or automatically generated mark or anchor in the body

Chapter 12 Special constructions and paragraphs 230

of the document. The two main commands (but not the only ones) that create
them are \inmargin and \margintext.

• Line notes: A type of note typical of environments where lines are numbered,
such as in the case of \startlinenumbering ... \stoplinenumbering (see
section 11.5.2). The note, which is usually written at the bottom, refers to a
specific line number. They are generated with the \linenote command which
is configured with \setuplinenote. This command prints no mark in the body
of the text, but in the note itself it prints the line number the note refers to
(used as the ID).

I will now exclusively develop the first two types of notes:

• Margin notes are treated elsewhere (section 5.7).

• Line notes have a highly specialised use (especially in critical editions) and I
believe that in an introductory document like this one, it is enough for the
reader to know that they exist.

However, for the interested reader I recommend a video (in Spanish) accompanied by a
text (also in Spanish) about critical editions in ConTEXt, the author of which is Pablo
Rodríguez. It is available at this link. It is also quite useful for understanding several of the
general settings of notes in general.

12.1.2 A close look at footnotes and endnotes
The syntax for the footnotes and endnotes commands and the configuration and
customisation mechanisms they have are quite similar, since, in reality, both types
of notes are particular instances of a more general construction (notes), other
instances of which can be set with the \definenote command (see section 12.1.4).

The syntax of the command that creates each of these kinds of notes is as follows:

\footnote[Label]{Text}
\endnote[Label]{Text}

where

• Label is an optional argument that assigns the note a label that will allow us
to refer to it elsewhere in the document.

• Text is the content of the note. It can be as long as we wish, and include special
paragraphs and settings, although it should be noted that when it comes to
footnotes, correct page layout is quite difficult in documents with abundant
and excessively long notes.

In principle, any command that could be used in the main text can be used in the note
text. However, I have been able to verify that certain constructions and characters that do

http://www.ediciones-criticas.tk/

Chapter 12 Special constructions and paragraphs 231

not pose any kind of problem in the main text, do generate a compilation error when they
take place in the note text. These cases I found as I was testing, but I have not organised
them in any way.

When the Label argument has been used to set a label for the note, the \note
command allows us to retrieve the ID of the note in question. This command
prints the ID of the note associated with the label it takes as an argument on the
document. Thus, for example:

Humpty Dumpty\footnote[humpty]{Probably the
best-known English nursery rhyme character}
sat on a wall, Humpty Dumpty\note[humpty]
had a great fall.\\
All the king's horses and
all the king's men Couldn't put
Humpty\note[humpty] together again

Humpty Dumpty1 sat on a wall,
Humpty Dumpty1 had a great fall.
All the king's horses and all the king's men
Couldn't put Humpty1 together again

1Probably the best-known English nursery rhyme character

The main difference between \footnote and \endnote is the place where the note
appears:

\footnote As a rule, it prints the note text at the bottom of the page on which
the command is located, so that the note mark and its text (or the beginning of
the text, if it is to be spread over two pages) will appear on the same page. To
do this, ConTEXt will make the necessary adjustments in typesetting the page
by calculating the space required by the location of the note at the bottom of
the page.

But in some environments, \footnote will insert the text of the note, not at the bottom
of the page itself but beneath the environment. This is the case, for example, in tables, or
in the columns environment. In these cases, if we want the notes inside the environment
to be located at the bottom of the page, instead of \footnote the command we should
use is \footnotetext in combination with the \note command mentioned above. The
former, which also supports a label as an optional argument, prints only the note text but
not the mark. But as \note prints only the mark without the text, the combination of
both allows us to place the note at the point where we want it. So, for example, we could
write \note[MyLabel] within a table or a multi-column environment, and then, once out
of that environment, \footnotetext[MyLabel]{Note text}.

Another example of the use of \footnotext in combination with \note would be notes
inside other notes. For example:

Chapter 12 Special constructions and paragraphs 232

This%
\footnote{or this\note[noteB], if you prefer.}%
\footnotetext[noteB]
{or possibly even this one\note[noteC].}
\footnotetext[noteC]{could be something
entirely different.}
is a sentence with nested notes.

This1 is a sentence with nested notes.

1or this2, if you prefer.
2or possibly even this3.
3could be something entirely different.

\endnote only prints the note anchor at the point in the source file where it is
located. The actual content of the note is inserted at another point in the do
cument with another command, (\placenotes[endnote]) which, at the point
where it is located, will insert the contents of all the endnotes of the document
(or of the chapter or section in question).

12.1.3 Local notes
The \startlocalfootnotes environment means that the footnotes included
within it are considered to be local notes, which means that their numbering
will be reset and that the content of the notes will not be automatically inserted
along with the rest of the notes, but only at the point in the document where the
\placelocalfootnotes command is found, which may or may not be within the
environment.

12.1.4 Creating and using customised types of no
tes

We can create special types of notes with the \definenote command. This can
be useful in complex documents where there are notes from different authors, or
for different purposes, to graphically distinguish each of the types of notes in our
document by means of a different format and different numbering.

The syntax of \definenote is as follows:

\definenote[Name][Model][Configuration]

where

• Name is the name we assign to our new type of note.

• Model is the note model that will be used initially. It can be footnote or
endnote; in the former case our note model will work as footnotes, and in the
latter case as endnotes, although to insert them in the document we would
not use \placenotes[endnote] but \placenotes[Name] (the name we have
assigned to these kinds of notes).

Chapter 12 Special constructions and paragraphs 233

In theory this argument is optional, although in my tests some notes created without it
were not visible, and I have not had the patience to find out what the cause was.

• Configuration is an optional second argument that allows us to distinguish our
new type of notes from its model: either by setting a different format, or a
different type of numbering, or both.

According to the official list of ConTEXt commands (see section 3.6) the settings that
can be provided when the new type of note is created are based on those that could be
provided later with \setupnote. However, as we shall see shortly, there are actually two
possible commands for setting up notes: \setupnote and \setupnotation. So I think it
is preferable to omit this argument when creating the note type, and then set up our new
notes using the appropriate commands. At least this is easier to explain.

For example, the following item will create a new note type called “BlueNote” that
will be similar to footnotes but its contents will be printed in bold and blue:
\definenote [BlueNote] [footnote]
\setupnotation
[BlueNote]
[color=blue, style=bf]

Once we have created a new note type, e.g. BlueNote the command allowing us to
use it will be available. In our example this will be \BlueNote the syntax of which
will be similar to \footnote:

\BlueNote[Label]{Text}

12.1.5 Configuring notes
The configuration of notes (footnotes or endnotes, notes created with \define
note and also line notes set up with \linenote) is achieved with two commands:
\setupnote and \setupnotation1. The syntax for both is similar:

\setupnote[NoteType][Configuration]

1 \setupnote has 35 direct configuration options and 45 additional options inherited from
\setupframed; \setupnotation has 45 direct configuration options and another 23 inherited from
\setupcounter. Since these options are not documented and, although for many of them we can
work out their usefulness from their name, we need to check whether our intuition is true or not;
and also taking into account that many of these options allow a number of values and they all
have to be tested...You will see that in order to write this explanation I had to do quite a number
of tests; and although doing a test is quick, doing a lot of tests is slow and boring. So I hope the
reader will excuse me if I tell you that other than the two general configuration commands for
notes that I mention in the main text and which I focus on in the following explanation, I will
leave out another four potential configuration possibilities in the explanation:

• \setupnotes and \setupnotations: In other words, the same name but in the plural. The
wiki says that the singular and plural versions of the command are synonymous, and I believe
it.

• \setupfootnotes and \setupendnotes: We assume these are specific applications for, foot

Chapter 12 Special constructions and paragraphs 234

\setupnotation[NoteType][Configuration]

where NoteType refers to the kind of note we are configuring (footnote, endno
te or the name of some note type we ourselves have created), and configuration
contains the particular configuration options for the command.

The problem is that the names of these two commands do not make it very clear
what the difference is between them or what things each configures; and the fact
that many of the options for these commands are not documented does not help
much either. After a lot of testing I haven't been able to reach any conclusion that
would allow me to understand why certain things are configured with one, while
others are configured with the other,1 except perhaps that, because of the choices
I have made to make it work, \setupnotation always affects the note text, or the
ID that is printed with the note text, while \setupnote has some options that
affect the mark for the note inserted in the main text.

I will now try to organise what I have found out after doing some tests with the
different options of both commands. I leave most of the options for both aside, as
they are not documented and I have not been able to draw any conclusions as to
what they are for or under what conditions they should be used:

• ID used for the mark:

Notes are always identified by a number. What we can configure here is:

– The first number: controlled by start in \setupnotation. Its value has to
be a whole number, and it uses this to begin counting notes.

– The numbering system, which depends on the numberconversion option
in \setupnotation. Its values can be:

notes and endnotes respectively. Perhaps explaining note configuration on the basis of these
commands would be easier, however, since I couldn't get the first option (numberconversion)
which I tried with \setupfootnotes to work, although I know that other options of these
commands do work... I was too lazy to add the tests needed to include these two commands in
the explanation to the many tests I already had to do to write what follows.
But I am of the opinion (from the few random tests I did) that everything that works in these
two commands, but whose explanation I am leaving out, also works in the commands for which
I do give an explanation.

1 There is a page in the ConTEXt wiki that I discovered by chance (since it is not specifically
dedicated to notes), which suggests that the difference is that \setupnotation controls the text of
the note to be inserted, and \setupnote the environment of the note in which it will be placed (?)
But this is inconsistent with the fact that, for example, the width of the note text (which has to do
with its insertion) is controlled by the width option of \setupnote and not by the \setupnotation
option with the same name. What is controlled here is the width of the space between the mark
and the note text.

https://wiki.contextgarden.net/Unexpected_behavior

Chapter 12 Special constructions and paragraphs 235

⋆ Arabic numerals: n, N or numbers.
⋆ Roman numerals: I, R, Romannumerals, i, r, romannumerals. The

first three are upper case Roman numerals and the last three lower case.
⋆ Numbering with letters: A, Character, Characters, a, character,

characters depending on whether we want the letters to be in upper
case (the first three options) or lower case (the rest).

⋆ Numbering with words. In other words, we write the word that designa
tes the number and so, for example, ‘3’ becomes ‘three’. Two methods
are possible. The Words option writes the words in upper case and words
in lower case.

⋆ Numbering with symbols: we can use four different sets of symbols de
pending on the option chosen: set 0, set 1, set 2 o set 3. On pa
ge 137 there is an example of the symbols used in each of these options.

– The event that determines restarting note numbering: This depends on
the way option in \setupnotation. When the value is bytext all notes in
the document will be numbered sequentially without the numbering being
reset. When it is bychapter, bysection, bysubsection, etc., the note
counter will be reset each time the chapter, section or subsection is changed,
while when it is byblock it resets the numbering each time we change blocks
in the document macrostructure (see section 7.6). The bypage value causes
the note counter to restart each time the page is changed.

• Configuring the note mark:

– Whether or not to show it: number option in \setupnotation.

– Placement of the mark in relation to the note text: The alternative option
in \setupnotation: it can take any of the following values: left, inleft,
leftmargin, right, inright, rightmargin, inmargin, margin, in
nermargin, outermargin, serried, hanging, top, command.

– Format of the mark in the note itself: The numbercommand option in \se
tupnotation.

– Format of the mark in the body of the text: The textcommand option in
\setupnote.

The numbercommand and textcommand options must consist of a command that takes
the contents of the mark as an argument. It can be a self-defined command. However,

Chapter 12 Special constructions and paragraphs 236

I have found that simple formatting commands (\bf, \it, etc.) work, although they
are not commands that need to take an argument.

– Distance between the mark and the text (in the note itself): The distan
ce and width options in \setupnotation. I was unable to discover the
difference (if indeed there is one) between using one or the other option.

– Existence or not of a hyperlink allowing to jump between the mark in the
main text and the mark in the note itself: The interaction option in
\setupnote. With yes as a value there will be a link, and with no there
will not be one.

• Configuring the note text itself.

We can influence the following aspects:

– Placement: this depends on the location option in \setupnote.
In principle we already know that footnotes are placed at the bottom of the page
(location=page) and endnotes at the point at which the \placenotes[endno
te] (location=text) command is found, however we can adjust this function and
set footnotes, for example, as location=text which will cause footnotes to work
similarly to endnotes so they appear at the point in the document where the \place
notes[footnote] command is found, or the command specific to footnotes \pla
cefootnotes. With this procedure we could, for example, print the notes under the
paragraph in which they are found.

– Paragraph separation between notes: by default each note is printed in its
own paragraph, but we can have all the notes on the same page printed
in the same paragraph by setting the paragraph option in \setupnote to
“yes”.

– Style in which the note text itself will be written: the style option in
\setupnotation.

– Letter size: the bodyfont option in \setupnote.
This option is only for the case where we want to manually set a font size for the
footnotes. It is almost never a good idea to do this as, by default, ConTEXt adjusts
the font size of the footnotes so that it is smaller than the main text, but with a size
that is proportionate to that of the font size in the main body.

– Left margin for the note text: the margin option in \setupnotation.

– Maximum width: the width option in \setupnote.

– Number of columns: the n option in \setupnote determines that the note
text will be in two or more columns. The ‘n’ value has to be a whole number.

• Space between notes or between notes and text: here, we have the
following options:

Chapter 12 Special constructions and paragraphs 237

– rule, in \setupnote establishes whether or not there will be a line (rule)
between the note area and the area of the page with the main text. Its
possible values are yes, on, no and off. The first two enable the rule and
the last disables it.

– before, in \setupnotation: command or commands to be run before in
serting the note text. Serves to insert additional spacing, dividing lines
between notes, etc.

– after, in \setupnotation: command or commands to be run after inserting
the note text.

12.1.6 Temporary excluding notes when compi
ling

The \notesenabledfalse and \notesenabledtrue commands tell ConTEXt to
enable or disable compiling of notes respectively. This function can be useful if
we wish to obtain a version without notes when the document has numerous and
extensive notes. In my personal experience, for example, when I am correcting a
doctoral thesis, I prefer to read it the first time in one go, without the notes, and
then do a second reading with the notes incorporated.

12.2 Paragraphs with multiple columns
Typesetting the text in more than one column is a possibility that can be esta
blished:

a. As a general feature of the page layout.

b. As a feature of certain constructions such as, for example, structured lists, or
footnotes or endnotes.

c. As a feature applied to particular paragraphs in a document.

In any of these cases, most of the commands and environments will work perfectly
even if we are working with more than one column. There are however some limi
tations; mainly in relationship to floating objects in general (see section 13.1) and
with tables in particular (section 13.3) even if they are not floats.

With regard to the number of columns allowed, ConTEXt has no theoretical limit.
However, there are physical limits that have to be taken into account:

• The width of the paper: an unlimited number of columns requires an unlimited
width of paper (if the document is to be printed) or screen (if it is a document
intended to be displayed on screen). In practice, taking into account the normal

Chapter 12 Special constructions and paragraphs 238

width of the paper sizes that are marketed and used to make up books, and
the screens of computer devices, it is difficult for a text made up of more than
four or five columns to fit well.

• The size of the computer memory: the ConTEXt reference manual points out
that, in normal systems (neither particularly powerful nor particularly limited
in resources), between 20 and 40 columns can be handled.

In this section I will focus on the use of the multi-column mechanism in special
paragraphs or fragments, since

• Multiple columns as a page layout option have already been discussed (in sub
section B of section 5.3.4).

• The possibility offered by certain constructions, such as structured lists or
footnotes, typesetting text in more than one column, is discussed in relation to
the construct or environment in question.

12.2.1 The \startcolumns environment
The normal procedure for inserting fragments made up of several columns into a
document is to use the columns environment whose format is:

\startcolumns[Configuration] ... \stopcolumns

where Configuration allows us to control many aspects of the environment. We can
indicate the desired configuration each time we call the environment, or adapt the
default operation of the environment for all calls to the environment, the latter to
be achieved with

\setupcolumns[Configuration]

In both cases the configuration options are the same. The most important ones,
ordered according to their function, are the following:

• Options that control the number of columns and the space between
them:

– n: controls the number of columns. If this is omitted, two columns will be
generated.

– nleft, nright: these options are used in two-sided document layout (see
subsection A of section 5.3.4), to establish the number of columns on left
(even) and right (odd) pages respectively.

– distance: space between columns.

– separator: determines what marks the separation between columns. It can
be space (default value) or rule in which case a line (rule) will be gene

Chapter 12 Special constructions and paragraphs 239

rated between the columns. In the event that a rule is established between
columns, this rule can in turn be configured with the following two options:

⋆ rulecolor: colour of the line.

⋆ rulethickness: thickness of the line.

– maxwidth: maximum width that columns can have + the space between
them.

• Options that control text distribution in columns:

– balance: by default, ConTEXt balances columns, meaning it distributes the
text between them so that they have more or less the same amount of text.
However, we can set this option with the “no” the text will not start in a
column until the previous one is full.

– direction: determines in which direction the text is distributed between
the columns. By default, the natural reading order is followed (from left to
right), but giving this option the reverse value results in right to left.

• Options affecting typesetting of text within the environment:

– tolerance: text written in more than one column means that line width
within a column is smaller, and as explained when describing the mechanism
ConTEXt uses for constructing lines (section 11.3), this makes it difficult
to locate optimal points for inserting line breaks. This option allows us
to temporarily alter the horizontal tolerance in an environment (see sec
tion 11.3.3), to facilitate the typesetting of the text.

– align: controls the horizontal alignment of lines within the environment. It
can take any of the following values: right, flushright, left, flush
left, inner, flushinner, outer, flushouter, middle or broad. Re
garding the significance of these options see section 11.6.1.

– color: specifies the name of the colour in which the text within the envi
ronment will be written.

12.2.2 Parallel paragraphs
A specific version of the multi-column composition is parallel paragraphs. In this
type of construction the text is distributed across two columns (usually, although
sometimes more than two), but it is not allowed to flow freely between them, and
instead maintains strict control over what will appear in each column. This is very
useful, for example, to generate documents which contrast two versions of a text,
such as the new and the old version of a recently amended law, or in bilingual

Chapter 12 Special constructions and paragraphs 240

editions; or also to write glossaries for specific text definitions where the text to
be defined appears on the left and the definition on the right, etc.

We would normally use the table mechanism to process these kinds of paragraphs;
but this is because most text processors are not as powerful as ConTEXt which has
the \defineparagraphs and \setupparagraphs commands that build this type
of paragraph using the column mechanism, which, although it has limitations, is
more flexible than the table mechanism.

As far as I know these paragraphs have no special name. I have called them “parallel paragraphs”
because to me it seems to be a more descriptive term than the one ConTEXt uses to refer to
them: “paragraphs”.

The basic command here is \defineparagraphs whose syntax is:

\defineparagraphs[Name][Configuration]

where Name is the name we give this construction, and Configuration are the
features it will have, which can also be set later with

\setupparagraphs[Name][Column][Configuration]

where Name is the name given when creating it, Column is an optional argu
ment allowing us to configure a particular column, and Configuration allows us to
determine how it works in practice.

For example:

\defineparagraphs
[MurciaFacts]
[n=3, before={\blank},after={\blank}]

\setupparagraphs
[MurciaFacts][1]
[width=.1\textwidth, style=bold]

\setupparagraphs
[MurciaFacts][2]
[width=.4\textwidth]

The above fragment would create a three-column environment called MurciaFacts
and then set the first column to take up 10 percent of the line width and be written
in bold, and set the second column to take up 40 percent of the line width. As the
third column is not configured, it will have the remaining width, i.e. 50%.

Once the environment has been created, we can use it to write a brief history of
Murcia:

Chapter 12 Special constructions and paragraphs 241

\startMurciaFacts
825

\MurciaFacts
City of Murcia founded.

\MurciaFacts
The origins of the city of Murcia are uncertain, but there is evidence
that it was ordered to be founded under the name of Madina (or Medina)
Mursiya in the year 825 by the Emir of al-Àndalus Abderramán II,
probably built over a much earlier settlement.

\stopMurciaFacts

825 City of Murcia founded. The origins of the city of Murcia are uncer
tain, but there is evidence that it was ordered
to be founded under the name of Madina (or
Medina) Mursiya in the year 825 by the Emir
of al-Àndalus Abderramán II, probably built
over a much earlier settlement.

If we wanted to continue telling the story of Murcia, a new instance of the envi
ronment (\startMurciaFacts) would be needed for the next event, because it is
not possible to include several rows with this mechanism.

From the example just given, I would like to highlight the following details:

• Once the environment has been created with, say,
\defineparagraphs[MaryPoppins], this becomes a normal environment
which starts with \startMaryPoppins and ends with \stopMaryPoppins.

• A \MaryPoppins command is also created, used within the environment to
indicate when to change the column.

As for the configuration options for parallel paragraphs (\setupparagraphs), I
understand that, at this stage of the introduction, and taking into account the
example just given, the reader is already prepared to work out the purpose of each
of the options, so below I will only indicate the name and type of the options
and, where appropriate, the possible values. Remember, though, that \setuppa
ragraphs [Name] [Configuration] sets up configurations that affect the whole
environment, while \setupparagraphs [Name] [NumColumn] [Configuration]
applies configurations exclusively to the column indicated.

• n: Number
• before: Command
• after: Command
• width: Dimension
• distance: Dimension

• align: Derived from \se
tupalign

• inner: Command
• rule: on off
• rulethickness: Dimen

sion
• rulecolor: Rule colour
• style: Style Command
• color: Colour

The above list of options is not complete; I have excluded from the list of options those that

Chapter 12 Special constructions and paragraphs 242

I would not normally explain here. I have also taken advantage of the fact that we are in the
section dedicated to columns to show the list of options in triple columns, although I have not
done it with any of the commands explained in this section, but with the columns option in
the itemize environment, to which the next section is dedicated.

12.3 Structured lists
When information is presented in an orderly manner, it is easier for the reader to
grasp. But if the arrangement is also visually perceptible, then it highlights for
the reader the fact that here we have a structured text. This is why there are
certain constructions or mechanisms that try to highlight the visual arrangement
of the text, thus contributing to its structuring. Of the tools that ConTEXt makes
available to the author for this purpose, the most important one, which is the
subject of this section, is the itemize environment that is used to develop what
we could call structured lists.

The lists consist of a sequence of text elements (which I will call items), each of
them preceded by a character that helps to highlight it by differentiating it from
the rest, and which I will call the “separator”. The separator can be a number,
letter or symbol. Usually (but not always) the items are paragraphs, and the list
is formatted to ensure the visibility of the separator for each element; usually by
applying a hanging indent that makes it stand out1. In the case of nested lists, the
indentation for each is gradually increased. The HTML language usually calls lists
where the separator is a number or character that increases sequentially, ordered
lists, meaning that each item of the list will have a different separator that will
allow us to refer to each element by its number or identifier; and it gives the name
unordered lists where the same character or symbol is used for every item in the
list.

ConTEXt automatically manages the numbering or alphabetical sequencing of the
separator in numbered lists, as well as the indentation that nested lists need to
have; and, in the case of nesting unordered lists, it also looks after the selection
of a different character or symbol that allows the level of an item in the list to be
distinguished at a glance according to the symbol that precedes it.

The reference manual says that the maximum level of nesting in lists is 4, but I guess that
was the case in 2013, when the manual was written. According to my tests there seems to
be no limit to the nesting of ordered lists (in my tests I reached up to 15 levels of nesting).
While for unordered lists, there does not seem to be a limit either, in the sense that no matter
how many nests we include, no error will be generated; but, for unordered lists, ConTEXt only
applies default symbols for the first nine levels of nesting.

1 In typography an indent that applies to all the lines of a paragraph except the first one is called a
hanging indent, which makes the first word or character of the paragraph easy to find.

Chapter 12 Special constructions and paragraphs 243

In any case, it should be pointed out that the excessive use of nesting in lists can have the
opposite effect to what we intend, and that is that the reader feels lost, unable to locate each
item in the general structure of the list. For this reason I personally believe that while lists are
a powerful tool for structuring a text, it is almost never a good idea to go beyond the third
level of nesting; and even the third level should only be used in certain cases where we can
justify it.

The general tool for writing lists in ConTEXt is the \itemize environment whose
syntax is as follows:

\startitemize[Options][Configuration] ... \stopitemize

where the two arguments are optional. The first one allows symbolic names as con
tent that have been assigned a precise meaning by ConTEXt; the second argument,
which is rarely used, makes it possible to assign specific values to certain variables
that affect the functioning of the environment.

12.3.1 Selection the kind of list and separator bet
ween items

A. Unordered lists

By default the list generated by itemize is an unordered list, in which the sepa
rator will be automatically selected depending on the nesting level:

• For the first level of nesting.
– For the second level of nesting.
⋆ For the third level of nesting.
⊳ For the fourth level of nesting.
∘ For the fifth level of nesting.

◯ For the sixth level of nesting.
◯ For the seventh level of nesting.
□ For the eighth level of nesting.
✓ For the ninth level of nesting.

However, we can expressly indicate that we want the symbol associated with a
particular level to be used, simply by passing on the level number as an argument.
Thus, \startitemize[4] will generate an unordered list in which the ▷ character
will be used as a separator, regardless of the nesting level of the list.

We can also modify the predetermined symbol for each level with \definesymbol:

\definesymbol[Level]{Symbol associated with the level}

For example

\definesymbol[1][\diamond]

will cause the first level of unordered lists to use a ⋄ symbol. With this same
command we can assign some symbols to nesting levels higher than nine. Thus,
for example

Chapter 12 Special constructions and paragraphs 244

\definesymbol[10][\copyright]

will assign the international copyright symbol: © to nesting level 10.

B. Ordered lists

To generate an ordered list we need to tell itemize the kind of ordering we want.
It can be:

n 1, 2, 3, 4, ...
m 1, 2, 3, 4, ...
g α, β, γ, δ, ...
G Α, Β, Γ, Δ, ...

a a, b, c, d, ...
A A, B, C, D, ...
KA A, B, C, D, ...

r i, ii, iii, iv, ...
R I, II, III, IV, ...
KR I, II, III, IV, ...

The difference between n and m lies in the font used to represent the number: n uses
the font enabled at that moment, while m uses a different, more elegant, almost
calligraphic font.

I do not know the name of the font that m uses, and therefore in the above list I have not been
able to represent exactly the type of numbers that this option generates. I suggest readers test
it out for themselves.

12.3.2 Inputting the items in a list
As a rule, the items in a list created with \startitemize are input with the \item
command that also has a version in environment form that is more suited to the
Mark IV style: \startitem ... \stopitem. Thus the following example:

\startitemize[a, packed]
\startitem First element \stopitem
\startitem Second element \stopitem
\startitem Third element \stopitem
\stopitemize

a. First element
b. Second element
c. Third element

produces exactly the same result as

\startitemize[a, packed]
\item First element
\item Second element
\item Third element
\stopitemize

a. First element
b. Second element
c. Third element

\item or \startitem is the general command for introducing an item into the
list. Along with it there are the following additional commands for when we want
to achieve a special result:

Chapter 12 Special constructions and paragraphs 245

\head This command should be used in place of \item when we want to avoid
inserting a page break after the item in question.

A common construction is to include a nested list or a text block immediately below
a list element, so that the list element, in a sense, functions as the title of the sub-list
or text block. In these cases a page break between that element and the subsequent
paragraphs would be inadvisable. If we use \head instead of \item to input these
elements ConTEXt will endeavour (as far as possible) not to separate such element
from the next block.

\sym The \sym{Text} command inputs an item in which the text used as an
argument of \sym is used as a separator, not a number or symbol. This list,
for example, is constructed with items input by means of \sym instead of
\item.

\sub This command, which should be used only in ordered lists (where each item
is preceded by a number or letter in alphabetical sequence), causes the item
input with it to keep the number of the previous item, and in order to
indicate that the number is repeated and that this is not a mistake, the
‘+’ sign is printed on the left. This can be useful if we are referring to a
previous list for which we suggest modifications but where, for the sake of
clarity, the numbering of the original list should be maintained.

\mar This command maintains the numbering of the items, but adds a letter or
character in the margin (which is passed to it as an argument, between
curly brackets). I'm not quite sure how useful it is.

There are two additional commands for inputting items, whose combination pro
duces very interesting effects and, if I may say so, I think it is better to explain
them with an example. \ran (abbreviation of range) and \its, abbreviation of
items. The first one takes an argument (between curly brackets) and the second
repeats the symbol used as a separator in the list x number of times (by default
4 times, but we can alter that by using the items option). The following example
shows how these two commands can work together to create a list that mimics a
questionnaire:

After reading the following introduction, answer the following questions:

\startitemize[5, packed][width=8em, distance=2em, items=5]
\ran{No \hss Yes}
\its I will never use \ConTeXt, it is too difficult.
\its I will only use it for writing big books.
\its I will always use it.
\its I like it so much I will call my next child \quotation{Hans}, as a tribute
to Hans Hagen.
\stopitemize

Chapter 12 Special constructions and paragraphs 246

After reading this introduction, answer the following questions:

No Yes
∘ ∘ ∘ ∘ ∘ I will never use ConTEXt, it is too difficult.
∘ ∘ ∘ ∘ ∘ I will only use it for writing big books.
∘ ∘ ∘ ∘ ∘ I will always use it.
∘ ∘ ∘ ∘ ∘ I like it so much I will call my next child “Hans”, as a tribute to Hans

Hagen.

12.3.3 Basic list configuration
We recall that “itemize” allows for two arguments. We have already seen how
the first argument lets us select the type of list we want. But we can also use it to
indicate other characteristics of the list; this is done through the following options
for “itemize” in its first argument:

• columns: this option determines that the list is made up of two or more co
lumns. After the columns option, the desired number of columns must be writ
ten as words separated by a comma: two, three, four, five, six, seven, eight or
nine. Columns not followed by any number generates two columns.

• intro: this option tries not to separate the list, by a line break, from the
paragraph that precedes it.

• continue: in ordered lists (numerical or alphabetical) this option causes the
list to continue the numbering from the last numbered list. If the continue
option is used, it is not necessary to indicate what type of list we want, as it is
assumed that it will be the same as the last numbered list.

• packed: is one of the most used options. Its use causes the vertical space bet
ween the different items on the list to be reduced as far as possible.

• nowhite: produces an effect similar to packed, but more drastic: not only
does it reduce the vertical space between the items, but also the vertical space
between the list and the surrounding text.

• broad: increases the horizontal space between the item separator and the item
text. The space can be increased by multiplying a number by broad as in, for
example \startitemize[2*broad].

• serried: removes the horizontal space between the item separator and the
text.

• intext: removes the hanging indent.

• text: removes the hanging indent and reduces vertical space between items.

Chapter 12 Special constructions and paragraphs 247

• repeat: in nested lists makes the numbering of a child level repeat the same
level as the previous level. This way we would have, on the first level: 1, 2, 3,
4; on the second level: 1.1, 1.2, 1.3, etc. The option must be indicated for the
inside list, not on the outer list.

• margin, inmargin: by default the list separator is printed on the left, but
within the text area itself (atmargin). The options margin and inmargin move
the separator to the margin.

12.3.4 Additional list configuration
The second argument, also optional, in \startitemize allows for a more detailed
and thorough configuration of lists.

• before, after: commands to be run before starting or after closing, the ite
mize environment, respectively.

• inbetween: command to be run between two items.

• beforehead, afterhead: command to be run before or after an item input
with the \head command.

• left, right: character to be printed to the left or right of the separator.
For example, to get alphabetical lists in which the letters are surrounded by
parentheses we would have to write:

\startitemize[a][left=(, right=)]

• stopper: indicates a character to be written after the separator. Only works
in ordered lists.

• width, maxwidth: width of the space reserved for the separator and, therefore,
for the hanging indent.

• factor: representative number of the separation factor between the separator
and the text.

• distance: measure of the distance between the separator and the text.

• leftmargin, rightmargin, margin: margin to be added to the left (leftmar
gin) or right (rightmargin) of the items.

• start: number from which the numbering of items will start.

• symalign, itemalign, align: alignment of items. Allows for the same values
as \setupalign. symalign controls alignment of the separator; itemalign the
item text, and align alignment of both.

Chapter 12 Special constructions and paragraphs 248

• identing: indentation of the first line in the paragraphs within the environ
ment. See section 11.1.1

• indentnext: indicates whether the paragraph after the environment should be
indented or not. Values are yes, no and auto.

• items: in items entered input with \its, indicates the number of times the
separator must be reproduced.

• style, color; headstyle, headcolor; marstyle, marcolor; symsty
le, symcolor: these options control the style and colour of the items as they
are input into the environment with \item, \head, \mar or \sym commands.

12.3.5 Simple lists with the \items command
An alternative to the itemize environment for very simple unnumbered lists,
where the items are not too big is the \items command whose syntax is:

\items[Configuration]{Item 1, Item 2, ..., item n}

The different items that the list will have are separated from each other by commas.
For example:

Graphics files can
have, among other things, the
following extensions:

\items{png, jpg, tiff, bmp}

Graphics files can have, among other things, the
following extensions:

∘
∘
∘
∘

png
jpg
tiff
bmp

The configuration options supported by this command are a subset of the itemize
ones, except for two specific options for this command:

• symbol: this option determines the type of list that will be generated. It sup
ports the same values used for itemize to select some type of list.

• n: this option indicates from which item number there will be a separator.

12.3.6 Predetermining list behaviour and creating
our own list types

In the previous sections we have seen how to indicate what type of list we want
and what characteristics it should have. But doing that every time a list is called is

Chapter 12 Special constructions and paragraphs 249

inefficient and will usually produce an incoherent document in which each list has
its own appearance, but without the different appearances meeting any criteria.

Preferable result for this:

• Predetermine the normal behaviour of itemize and \items in the document's
preamble.

• Create our own customised lists. For example: an alphabetically numbered list
we want to call ListAlpha, a list numbered with Roman numerals (ListRoman),
etc.

We achieve the first with the \setupitemize and \setupitems commands. The
second requires the use of either the \defineitemgroup, or \defineitems com
mand. The first will create a list environment similar to itemize and the second
a command similar to items.

12.4 Descriptions and enumerations
Descriptions and enumerations are two constructions that allow for the consistent
typesetting of paragraphs or groups of paragraphs that develop, describe, or define
a phrase or word.

12.4.1 Descriptions
For descriptions we differentiate between a title and its explanation or develop
ment. We can create a new description with:

\definedescription[Name] [Configuration]

where Name is the name by which this new construction will be known, and
Configuration controls what our new structure will look like. After the previous
statement we will have a new command and an environment with the name we
have chosen. Thus:

\definedescription[Concept]

will create the commands:

\Concept{Title}
\startConcept {Title} ... \stopConcept

We will use the command for the case where the explanatory text of the title
consists of only one paragraph, and the environment for titles whose description
occupies more than one paragraph. When the command is used, the paragraph
immediately following it is the one that will be considered the title's explanatory

Chapter 12 Special constructions and paragraphs 250

text. But when the environment is used, all content will be formatted with the
appropriate indentation to make it clear how it relates to the title.

For example:

\definedescription
[Concept]
[alternative=left, width=1cm, headstyle=bold]

\Concept{Contextualise}

Place something in a certain context, or typeset a text with the typesetting
system called \ConTeXt. The ability to correctly contextualise in any situation
is considered a sign of intelligence and good sense.

This will generate the following result:

Contextualise Place something in a certain context, or typeset a text with
the typesetting system called ConTEXt. The ability to correctly
contextualise in any situation is considered a sign of intelligence
and good sense.

As is normally the case with ConTEXt, the appearance that our new construction
will have can be indicated at the time of its creation, with the Configuration
argument or later on with \setupdescription:

\setupdescription[Name] [Configuration]

where Name is the name of our new description, and Configuration determines
what it looks like. Among the different possible configuration options I will high
light:

• alternative: This option is the one that fundamentally controls the appea
rance of the construction. It determines the placement of the title in relation
to its description. Its possible values are left, right, inmargin, inleft,
inright, margin, leftmargin, rightmargin, innermargin, outermar
gin, serried, hanging, their names are clear enough to get an idea of the
result, although, in case of doubt, it is best to do a test to see how it looks.

• width: controls the width of the box in which the title will be written. De
pending on the value of alternative that distance will also be part of the
indentation with which the explanatory text is written.

• distance: controls the distance between the title and the explanation.

• headstyle, headcolor, headcommand: affect how the title itself will look:
Style (headstyle) and color (headcolor). With headcommand we can indicate

Chapter 12 Special constructions and paragraphs 251

a command to which the title text will be passed as an argument. For example:
headcommand=\WORD will make sure that the title text is all in upper case.

• style, color: controls the appearance of the title's descriptive text.

12.4.2 Enumerations
Enumerations are numbered text elements structured on several levels. Each ele
ment starts with a title that consists, by default, of the name of the structure and
its number, although we can change the title with the text option. They are quite
similar to descriptions, although they differ in that:

• All the elements in an enumeration share the same title.

• Therefore they differ from each other by their numbering.

This structure can be very useful, for example, to write formulas, problems or
exercises in a textbook, ensuring that they are numbered correctly and formatted
in a consistent manner.

We create an enumeration with

\defineenumeration[Name] [Configuration]

where Name is the name of the new construction, and Configuration controls what
it will look like.

So, in the following example:

\defineenumeration
[Exercise]
[alternative=top, before=\blank, after=\blank, between=\blank]

We have created a new structure called Exercise and, as happens with enumera
tions, we will have the following new commands available:

\Exercise
\startExercise

The command is used just for a single paragraph exercise, and the environment
for multiple paragraph exercises. But since enumerations can be up to four levels
deep, the following commands and environments will also be created:

\subExercise
\startsubExercise
\stopsubExercise
\subsubExercise
\startsubsubExercise
\stopsubsubExercise

Chapter 12 Special constructions and paragraphs 252

\subsubsubExercise
\startsubsubsubExercise
\stopsubsubsubExercise

And, to control the numbering, the following additional commands:

• \setEnumerationName: sets the current numbering value.

• \resetEnumerationame: sets the enumeration counter to zero.

• \nextEnumerationName: increases the enumeration counter by one.

The appearance of enumerations can be determined at the time of their creation
or later with \setupenumeration whose format is:

\setupenumeration[Name] [Configuration].

For each enumeration we can configure each of its levels separately. Thus, for
example, \setupenumeration [subExercise] [Configuration] will affect the
second level of the enumeration called “Exercise”.

The options and values configurable with \setupenumeration are similar to those
in \setupdescription.

12.5 Lines and frames
It says in theConTEXt reference manual that TEX has a huge text management
capability, but is very weak in managing graphic information. I beg to differ: it is
true that for handling lines and frames the possibilities of ConTEXt (actually TEX)
are not as overwhelming as when it comes to typesetting text. But to go on to say
that the system is weak in this regard is, I think, somewhat of a stretch. I don't
know of any function with lines and frames that other typesetting systems can do
for documents that ConTEXt is unable to generate. And if we combine ConTEXt
with MetaPost, or with TiKZ (ConTEXt has an expansion module for this), then
the possibilities are only limited by our imagination.

In the following sections, however, I will limit myself to explaining how to gene
rate simple horizontal and vertical lines and frames around words, sentences or
paragraphs.

12.5.1 Simple lines
The simplest way of drawing a horizontal line is with the \hairline command
that generates a horizontal line that occupies all the width of a normal text line.

Chapter 12 Special constructions and paragraphs 253

There cannot be text of any kind on the line where the line generated by \hairline
is. In order to generate a line capable of coexisting with the text on the same line,
we need the \thinrule command. This second command will use the full width
of the line. Therefore, in an isolated paragraph, it will have the same effect as
\hairline, while in the opposite case, \thinrule will produce the same horizontal
expansion as \hfill (see section 10.3.3), but instead of filling the horizontal space
with white space (as \hfill does), it fills it with a line.

On the left\thinrule\\
\thinrule On the right\\
On both\thinrule sides\\
\thinrule centred\thinrule

On the left
On the right

On both sides
centred

With the \thinrules command we can generate several lines. For example \thin
rules[n=2] will generate two consecutive lines, each the width of the normal line.
The lines generated with \thinrules can also be configured, either in an actual
call to the command, indicating the configuration as one of its arguments, or ge
nerally with \setupthinrules. Configuration includes the thickness of the line
(rulethickness), its colour (color), background colour (background), interline
space (interlinespace), etc.

I will leave a number of options without explanation. The reader can consult them in setup-
en.pdf (see section 3.6). Some options only differ from others in terms of nuance (i.e there
is hardly any difference between them), and I think it is faster for the reader to try to see the
difference, than for me to try to convey it in words. For example: the thickness of the line I
just said depends on the rulethickness option. But it is also affected by the height and
depth options.

Smaller lines can be generated with the \hl and \vl commands. The first generates
a horizontal line and the second a vertical line. Both take a number as a parameter
that allows us to calculate the length of the line. In \hl the number measures the
length in ems (no need to indicate the unit of measurement in the command) and
in \vl the argument refers to the current height of the line.

Thus \hl[3] generates a horizontal line of 3 ems and \vl[3] generates a vertical
line of the height corresponding to three lines. Remember that the line measu
rement indicator must be inserted between square brackets, not between curly
brackets. In both commands the argument is optional. If it is not entered, a value
of 1 is assumed.

\fillinline is another command to create horizontal lines of precise length. It
supports more configuration in which we can indicate (or predetermine with \se
tupfillinlines) the width (width option) in addition to some other features.

Chapter 12 Special constructions and paragraphs 254

A peculiarity of this command is that text that is written to its right will be placed
on the left of the line, separating that text from the line by the necessary white
space to occupy the whole line. For example:

\fillinline[width=6cm] Name

will generate

Name

I suspect that this strange operation is due to the fact that this macro was designed to write
forms where there is a horizontal line behind the text on which something must be written. In
fact the very name of the command fillinline means, fill in the line.

Besides the width of the line, we can configure the margin (margin), the distance
(distance), the thickness (rulethickness) and the colour (color).

Almost identical to \fillinline is \fillinrules, although this command allows
us to insert more than one line (“n” option).

\fillinrules[Configuration] {Text} {Text}

where the three arguments are optional.

12.5.2 Lines linked to text
Although some of the commands we have just seen can generate lines that coexist
with text on the same line, those commands actually focus on the line's layout. To
write lines linked to certain text, ConTEXt has commands:

• that generate text between lines.

• that generate lines under the text (underlining), above the text (overlining) or
through it (strikethrough).

To generate a text between lines the usual command is \textrule. This command
draws a line that crosses the entire width of the page and writes the text it takes
as a parameter on the left side (but not at the margin). For example:

\textrule{Example text}

Example text

It is assumed that \textrule allows an optional first argument with three possible values:
top, middle and bottom. But, after some tests, I have not been able to find out what effect
such options produce.

Chapter 12 Special constructions and paragraphs 255

Similar to \texrule is the \starttextrule environment which, besides inserting
the line with text at the beginning of the environment, inserts a horizontal line at
the end. The format of this command is:

\starttextrule[Configuration]{Text on the line} ... \stoptextrule

Both \textrule and starttextrule can be configured with \setuptextrule.

To draw lines under, over, or through text, the following commands are used:

\underbar{Text}
\underbars{Text}
\overbar{Text}
\overbars{Text}
\overstrike{Text}
\overstrikes{Text}

As we can see, for each type of line (under, over, or through text) there are two
commands. The singular version of the command draws a single line under, over or
through all the text taken as an argument, while the plural version of the command
only draws the line over the words, but not the white space.

These commands are not compatible with each other, that is to say, two of them
cannot be applied to the same text. If we try, the last one will always prevail.
On the other hand \underbar can be nested, underlining what has already been
underlined.

The reference manual points out that \underbar disables hyphenation of words in the text that
constitute its argument. It is not clear to me whether that statement refers only to \underbar
or to the six commands we are examining.

12.5.3 Framed words or texts
To surround a text with a frame or grid we use:

• The \framed or \inframed commands if the text is relatively brief and does
not take up more than one line.

• The \startframedtext environment for longer texts.

The difference between \framed and \inframed lies at the point from which the
frame is drawn. In \frame the frame is drawn upwards from an ideal line, called
a baseline, on which the letters rest, but certain letters pass downwards. In \in
framed the frame is drawn, also upwards, from the lowest possible point on the
line. For example:

Chapter 12 Special constructions and paragraphs 256

Here there are \framed{two} good
\inframed{frames}. Here there are two good frames .

Both, framed and inframed text, can be customized with \setupframed, and
\startframedtext is customized with \setupframedtext. The customization op
tion for both commands are quite similar. They allow us to indicate the measure
ments of the frame (height, width, depth), the shape of the corners (framecor
ner), which can be rectangular or round (round), the frame colour (framecolor),
the line thickness (framethickness), the alignment of content (align), text colour
(foregroundcolor), background colour (background and backgroundcolor), etc.

For \startframedtext there is also an apparently strange property: frame=off
that causes the frame not to be drawn (although it is still there, but invisible).
This property exists because since the frame around a paragraph is indivisible, it is
common for the entire paragraph to be enclosed in a framedtext environment with
the frame drawing option turned off, to ensure that no page breaks are inserted
within a paragraph.

We can also create a customized version of these commands with \defineframed
and \defineframedtext.

12.6 Other environments and constructions
of interest

There are still many environments in ConTEXt that I have not even mentioned, or
only very much in passing. By way of example:

• buffer Buffers are text fragments stored in memory for later re-use. A buffer
is defined somewhere in the document with \startbuffer[BufferName] ...
\stopbuffer and can be retrieved as often as desired at some other point in
the document with \getbuffer[BufferName].

• chemical This environment allows us to place chemical formulas inside it. If
TEX stands out, among many other things, for its ability to typeset texts with
mathematical formulas properly, from the outset ConTEXt sought to extend
this ability to chemical formulas, and it has this environment where commands
and structures are enabled for writing chemical formulas.

• combination This environment allows us to combine several floating elements
on the same page. It is particularly useful for aligning different connected ex
ternal images in our document.

• formula This is an environment aimed at typesetting maths formulas.

Chapter 12 Special constructions and paragraphs 257

• hiding The text stored in this environment will not be compiled and will not
appear, therefore, in the final document. This is useful for temporarily disabling
compilation of certain fragments in the source file. The same thing is achieved
by marking one or more lines as a comment. But when the fragment we want
to disable is relatively long, more effective than marking tens or hundreds of
lines of the source file as a comment is to insert the \starthiding command
at the beginning of the fragment, and \stophiding at the end.

• legend In a mathematical context, TEX applies different rules so that no nor
mal text can be written. However, sometimes a formula is accompanied by a
description of the elements used in it. For this purpose there is the \startle
gend environment which allows us to place normal text in a mathematical
context.

• linecorrection Usually, ConTEXt correctly manages the vertical space bet
ween lines, but occasionally a line may contain something that makes it not
look right. This happens mainly with lines that have fragments framed with
\framed. In such cases this environment adjusts the line spacing so that the
paragraph appears correctly.

• mode This environment is intended to include fragments in the source file that
will only be compiled if the appropriate mode is active. The use of modes is not
the subject of this introduction, but it is a very interesting tool if we want to
be able to generate several versions with different formats, from a single source
file. A complementary environment to this one is \startnotmode.

• opposite This environment is used to typeset texts when the contents of the
left and right pages are related.

• quotation A very similar environment to narrower, intended to insert mode
rately long literal quotations. The environment makes sure that the text inside
is quoted, and that the margins are increased so that the paragraph with the
quotation stands out visually on the page. But it should be noted that according
to usual blockquote style in English, there should be no opening and closing
quotation marks – which makes this command or environment less useful.

• standardmakeup This environment is designed to generate pages with the title
of the document, which is relatively common in academic documents of a cer
tain length, such as doctoral theses, master's theses, etc.

To learn about any of these environments (or others I have not mentioned), I
suggest the following steps:

Chapter 12 Special constructions and paragraphs 258

1. Look for information on the environment in the ConTEXt reference manual.
This manual does not mention all the environments; but it does say something
about every item in the list above.

2. Write a test document where the environment is used.

3. Look up ConTEXt's official list of commands (see section 3.6) for the configu
ration options for the environment in question, then test them to see exactly
what they do.

259

Chapter 13
Images, tables and

other floating objects
Table of Contents: 13.1 What are floating objects and what do they do?;
13.2 External images; 13.2.1 Directly inserting images; 13.2.2 Inserting an image
with \placefigure; 13.2.3 Inserting images integrated into a text block; 13.2.4 Con
figuration and transformation of images inserted; A Insert command options that cause
some transformation of the image; B Specific commands for transforming an image;
13.3 Tables; 13.3.1 General ideas about tables and their placement in the document;
13.3.2 Simple tables with the tabulate environment; 13.4 Aspects common to ima
ges, tables and other floating objects; 13.4.1 Floating object insertion options;
13.4.2 Configuring floating object titles; 13.4.3 Combined insertion of two or more ob
jects; 13.4.4 General configuration of floating objects; 13.5 Defining additional
floating objects;

This chapter is mainly about floating objects (floats). But following up on this
concept, it takes advantage of it to explain two object types that are not necessarily
floats, although they are often configured as if they were: external images and
tables. Looking at this chapter's table of contents, one might think this is all very
untidy: it begins by talking about floating objects, then goes on to talk about
images and tables, and finishes by once again talking about floating objects. The
reasons for this untidiness are pedagogical: images and tables can be explained
without insisting too much on the fact that they are normally floats; and yet,
when we start examining them it helps a lot to discover that, surprise surprise, we
already know about two floating objects.

13.1 What are floating objects and what
do they do?

If a document were to contain only normal text, paginating it would be relatively
easy: knowing the maximum height of the text area of the page is enough to
measure the height of the different paragraphs to know where to insert page breaks.
The problem is that in many documents there are objects, fragments or indivisible
blocks of text such as an image, a table, a formula, a framed paragraph, etc.

Chapter 13 Images, tables and other floating objects 260

Sometimes these objects can occupy a large portion of the page, which in turn poses
the problem that if you have to insert it at a particular point in the document, it
may not fit on the current page, and has to be interrupted abruptly, leaving a large
blank space at the bottom, so that the object in question, and the text that follows
it, are moved to the next page. The rules of good typesetting, however, indicate
that, except for the last page of a chapter, there should be the same amount of
text on each page.

It is therefore advisable to avoid large blank vertical spaces appearing; and floating
objects are the main mechanism for achieving this. A “floating object” is one that
does not have to be located at an exact point in the document, but can move or
float around it. The idea is to allow ConTEXt to decide on the best place, from a
pagination point of view, to locate such objects, even authorising them to move
to another page; but always trying not to move too far away from the point of
inclusion in the source file.

Therefore, there are no objects that have to be floats per se. But there are objects
that will occasionally need to be floats. The decision, in any case, is up to the
author or the person in charge of typesetting, if they are two different people.

Undoubtedly, allowing the exact placement of an indivisible object to change, very
much facilitates the task of typesetting nicely balanced pages; but the problem
that goes with this is that since we don't know exactly where such an object will
end up at the time we are writing the original, it is difficult to make reference to
it. So, for example, if I have just put a command in my document that inserts an
image and in the next paragraph I want to describe it and write something about
it like: “As you can see from the previous figure”, when the figure floats it could
well be placed after what I have just written and the result is an inconsistency:
the reader is looking for an image before the text that refers to it and can't find
it because after floating, the image has ended up after that reference.

This is fixed by numbering floating objects (after distributing them in categories),
so that in instead of referring to an image as “the previous image” or “the next
image”, we will refer to it as “image 1.3”, since we can use ConTEXt's internal
reference mechanism to ensure that the image number is always kept up to date
(see section 9.2). The numbering of these kinds of objects, on the other hand,
makes it easier to quite easily create an index of them (index of tables, graphs,
images, equations, etc.). For how to do this, see (section 8.2).

The mechanism for dealing with floating objects in ConTEXt is quite sophisticated
and so abstract at times that it may not make it suitable for beginners. Therefore,
in this chapter I will start by explaining it using two particular cases: images and
tables. Then I will try to generalise somewhat so that we can understand how to
extend the mechanism to other kinds of objects.

Chapter 13 Images, tables and other floating objects 261

13.2 External images
As the reader at this stage knows (since it has been explained in section 1.5), Con
TEXt is perfectly integrated with MetaPost and can generate images and graphics
that are programmed in much the same way as text transformations are program
med. There is also an extension module for ConTEXt1 that allows it to work with
TiKZ.2 But such images are not dealt with in this introduction (as this would
probably force its length to be doubled). I am referring here to the use of external
images, which reside in a file on our hard drive or are downloaded directly from
the Internet by ConTEXt.

13.2.1 Directly inserting images
To directly insert an image (not as a floating object) we use the \externalfigure
command whose syntax is

\externalfigure[Name] [Configuration]

where

• Name can be either the name of the file containing the image, or the web ad
dress of an image found on the Internet, or a symbolic name we have previously
associated with an image using the \useexternalfigure command whose for
mat is similar to that of \externalfigure although it takes a first argument
with the symbolic name that will be associated with the image in question.

• Configuration is an optional argument that allows us to apply certain transfor
mations to the image before it is inserted into our document. We will examine
this argument more closely in section 13.2.4.

The image formats allowed are pdf, mps, jpg, png, jp2, jbig, jbig2, jb2, svg, eps,
gif or tif. ConTEXt can directly manage eight of these, while the rest (svg, eps,
gif or tif) need to be converted with an external tool before opening them, that
changes according to the format and therefore must be installed on the system so
that ConTEXt can manipulate these kinds of files.

Among the formats supported by \externalfigure are also some video formats. In particular:
QuickTime (extension .mov), Flash Video (extension .flv) and MPeg 4 (extension .mp4). But

1 ConTEXt extension modules give it additional utilities but are not included in this introduction.
2 This is a graphics programming language intended to work with TEX-based systems. It is a
“recursive acronym” from the German sentence “TiKZ ist keinen Zeichenprogramm” which trans
lated means: “TiKZ is not a drawing program”. Recursive acronyms are a kind of programmers'
joke. Leaving aside MetaPost (which I do not know how to use), I believe that TiKZ is a great
system for programming graphics with.

Chapter 13 Images, tables and other floating objects 262

most PDF players do not know how to handle PDF files with video embedded in them. I can't
say much about this, as I haven't done any tests.

There is no need to indicate the file extension: ConTEXt will search for a file with
the specified name and one of the extensions for the known image formats. If
there are several candidates, first the PDF format is used if there is one, and in
its absence the MPS format (graphics generated by MetaPost). In the absence of
these two, the following order is followed: jpeg, png, jpeg 2000, jbig and jbig2.

If the actual format of the image does not correspond to the extension of the file that stores it,
ConTEXt cannot open it unless we indicate the actual format of the image using the method
option.

If the image is not placed on its own outside of a paragraph, but is integrated
into a text paragraph, and its height is greater than the line spacing, the line will
be adjusted to prevent the image from overlapping the previous lines, as in the

example that accompanies this line .

By default, ConTEXt searches for the images in the working directory, in its parent
directory and in that directory's parent directory. We can indicate the location of
a directory containing the images we will work with using the directory option
of the \setupexternalfigures command, which would add that directory to the
search path. If we want the search to be performed only in the image directory, we
have to set the location option as well. So, for example, so that our document
looks for all the images we need in the “img” directory, we should write:

\setupexternalfigures
[directory=img, location=global]

In the directory option in \setupexternalfigures, we can include more than one directory,
separating them with commas; but in this case we need to enclose the directories within curly
brackets. For example “directory={img, ~/imágenes}”.

In directory we always use the ‘/’ character as the separator between directories; including
in Microsoft Windows whose operating system uses the ‘\’ as its directories separator.

\externalfigure is also able to use images hosted on the Internet. So, for example,
the following snippet will insert the CervanTeX logo directly from the Internet into
the document. This is the TEX Spanish-speaking user group:1

1 Internet addresses are very long, and there is not much space available to display the double-column
example. Therefore, in order to make the order in the left column fit properly, I have inserted a
line break within the web address. If someone wants to copy and paste the example, it will not
work if this line break is not deleted.

Chapter 13 Images, tables and other floating objects 263

\externalfigure
[http://www.cervantex.es/files/
cervantex/cervanTeXcolor-small.jpg]

When a document containing a remote file is first compiled, it is downloaded from the server and
stored in the LuaTeX cache directory. This cached file is used during subsequent compilations.
Normally, the remote image is downloaded again if the image in the cache is older than 1 day.
To change this threshold see the ConTEXt wiki.

If ConTEXt does not find the image that should be inserted, no error is generated,
but instead of the image a text block will be inserted with information about
the image that should go there. The size of this block will be the image size (if
known by ConTEXt) or, otherwise, a standard size. There is an example of this in
section 13.4.3.

13.2.2 Inserting an image with \placefigure
Images can be directly inserted. But it is preferable to do this with \placefigure.
This command causes ConTEXt:

• to know that an image is being inserted that must be incorporated into the list
of images in the document that can then be used, if we wish, to produce an
index of images.

• to assign a number to the image, thus facilitating internal references to it.

• to add a title to the image, creating a text block between the image and its
title that means these cannot be separated.

• to automatically set the white space (horizontal and vertical) needed for the
image to be viewed correctly.

• to position the image in the place indicated, making the text flow around it if
necessary.

• to convert the image to a floating object if it is possible, taking into account
its size and location specifications.1

1 This latter is my conclusion, given that among the placement options there are ones like force or
split that go against the true notion of the floating object.

https://wiki.contextgarden.net/Using_Graphics

Chapter 13 Images, tables and other floating objects 264

The syntax for this command is as follows:

\placefigure[Options][Label] {Title} {Image}

The various arguments have the following meanings:

• Options are a set of indications that generally refer to where to place the image.
Since these options are the same in this and other commands, I will explain
them together later (in section 13.4.1). For now, I will use the here option for
examples. It tells ConTEXt that, as far as possible, it should place the image
exactly at the point in the document where the command that inserts it is
found.

• Label is a text string to refer internally to this object so we can make reference
to it (see section 9.2).

• Title is the title text to be added to the image.

• Image is the command that inserts the image.

For example

\placefigure
[here]
[fig:texknuth]
{\TeX\ logo and photo of {\sc Knuth}}
{\externalfigure[https://i.ytimg.com/vi/8c5Rrfabr9w/maxresdefault.jpg]}

Figure 13.1 TEX logo
and photo of Knuth

As we can see in the example, by inserting the image (which, by the way, has
been done directly from an image hosted on the Internet), there are some chan
ges regarding what happens when using the \externalfigure command directly.
Vertical space is added, the image is centred and a title added. Those are external
changes obvious at first sight. From an internal point of view the command has
also produced other no less important effects:

• First of all, the image has been inserted into the “list of images” which Con
TEXt maintains internally for objects inserted into the document. This, in turn,

Chapter 13 Images, tables and other floating objects 265

means that the image will appear in the image index that can be generated
with \placelist[figure] (see section 8.2), although there are two specific
commands to generate the image index which are \placelistoffigures or
\completelistoffigures.

• Secondly, the image has been linked to the label that was added as the second
argument to the \placefigure command, which means that from now on we
can make internal references to it using that label (see section 9.2).

• Finally, the image has become a float, which means that if, for typesetting
needs (pagination) it needed to move, ConTEXt would alter its placement.

Actually, \placefigure, despite its name, is not only used for inserting images.
We can insert anything with it, including text. However, the text or other items
inserted into the document with \placefigure, will be treated as if they were an
image, even though they are not; they will be added to the list of images internally
managed by ConTEXt, and we can apply transformations similar to the ones we use
for images such as scaling or rotating, framing, etc. Thus the following example:

Testtext

Figure 13.2 Using \placefigure for text trans
formations

which is achieved as follows:

\placefigure
[here, force]
[fig:testtext]
{Using \backslash placefigure for text transformations}
{\rotate[rotation=180]{\framed{\tfd Test text}}}

13.2.3 Inserting images integrated into a text block
Except for very small images, which can be integrated into a line without too
much disruption to paragraph spacing, images are usually inserted into a para
graph that contains only them (or put in other words, the image can be thought
of as a paragraph in its own right). If the image is inserted with \placefigure
and its size allows, depending on what we have indicated regarding its placement
(see section 13.4.1), ConTEXt will allow the text from the previous and subsequent
paragraphs to flow around the image. However, if we want to ensure that a cer
tain image will not be separated from a certain text, we can use the figuretext
environment whose syntax is as follows:

\startfiguretext
[Options]
[Label]

Chapter 13 Images, tables and other floating objects 266

{Title}
{Image}

... Text

\stopfiguretext

The environment's arguments are exactly the same as for \placefigure and have
the same meaning. But here the options are no longer options for placement of
a floating object, but indications regarding the integration of the image into the
paragraph; so, for example, “left” here means that the image will be placed on
the left while text will flow to the right, while “left, bottom” will mean that the
image must be placed on the lower left side of the text associated with it.

The text written within the environment is what will flow around the image.

13.2.4 Configuration and transformation of ima
ges inserted

A. Insert command options that cause some transformation
of the image

The final argument in the \externalfigure command allows us to carry out
certain adjustments to the image inserted. We can make these adjustments:

• In general for all images to be inserted in the document; or for all images to
be inserted from a certain point. In this case we make the adjustment with the
\setupexternalfigures command.

• For a specific image that we want to insert several times in the document. In this
case the adjustment is made in the last argument of the \useexternalfigure
command that associates an external figure with a symbolic name.

• At the exact moment when we insert a specific image. In this case the adjust
ment is made in the \externalfigure command itself.

The changes in the image that can be achieved by this route are the following:

Changing the size of the image. We can do this:

• By assigning a precise width or height, something done with the width and
height options respectively; if only one of the two values is adjusted, the
other is automatically adapted to maintain the proportion.

We can assign a precise height or width, or indicate it as a percentage of
page height or line width. For example:

Chapter 13 Images, tables and other floating objects 267

width=.4\textwidth

will ensure that the image has a width equal to 40% of the line width.

• Scaling the image: The xscale option will scale the image horizontally;
yscale will do so vertically, and scale will do it horizontally and vertically.
These three options expect a number representative of the scaling factor
multiplied by 1000. That is to say: scale=1000 will leave the image in its
original size, while scale=500 will reduce it by half, and scale=2000 will
double its size.

A conditional scaling, which is applied only if the image exceeds certain
dimensions, is obtained with the maxwidth and maxheight options that take
a dimension. For example maxwidth=.2\textwidth will scale the image
only if it turns out to be more than 20% of the line width.

Rotating the image. To rotate the image we use the orientation option which
takes a number representative of the number of degrees of rotation that will
be applied. The rotation is done in a counter-clockwise direction.

The wiki implies that the rotations that can be achieved with this option must be multiples
of 90 (90, 180 or 270) but to achieve a different rotation we would have to use the \rotate
command. However, I have not had any problem applying a 45 degree rotation to an image
with only orientation=45, without the need to use the \rotate command.

Framing the image. We can also surround the image with a frame using the
frame=on option, and configure its colour (framecolor), the distance between
the frame and the image (frameoffset), the thickness of the line that draws
the frame (rulethickness) or the shape of its corners (framecorner) which
can be rounded (round) or rectangular.

Other configurable aspects of images. In addition to the aspects already
seen, which imply a transformation in the image to be inserted, using \setu
pexternalfigures we can configure other aspects, such as where to look for
the image (directory option), whether the image should be searched for only
in the indicated directory (location=global) or whether it should also in
clude the working directory and its parent directories (location=local), and
whether the image will or will not be interactive (interaction), etc.

B. Specific commands for transforming an image

There are three commands in ConTEXt that produce some transformation in an
image and can be used in combination with \externalfigure. These are:

Chapter 13 Images, tables and other floating objects 268

• Mirror image: achieved with the \mirror command.

• Clipping: this is achieved with the \clip command when the width (width),
height (height), horizontal offset (hoffset) and vertical offset (voffset) di
mensions are given. For example:

\clip
[width=2cm, height=1cm, hoffset=3mm, voffset=5mm]
{\externalfigure[logo.pdf]}

• Rotation. A third command able to apply transformations to an image is the
\rotate command. It can be used in conjunction with \externalfigure but
normally this would not be necessary given that the latter has, as we have seen,
the orientation option that produces the same result.

The typical use of these commands is with images, but they actually act on bo
xes. That's why we can apply them to any text simply by enclosing it in a box
(which the command does automatically), that will produce curious effects like
the following:

\mirror{Test text}\\
\rotate[rotation=20] {Test text}

Testtext

Test
text

13.3 Tables
13.3.1 General ideas about tables and their pla

cement in the document
Tables are structured objects that contain text, formulas or even images arran
ged in a series of cells that allow us to graphically see the relationship between
the contents of each cell. To do this, the information is organised into rows and
columns: all data (or entries) in the same row have a certain relationship to each
other, as well as all data (or entries) in the same column. A cell is the intersection
of a row with a column, as shown in figure 13.3.

Chapter 13 Images, tables and other floating objects 269

Figure 13.3 Image of a simple table

Tables are ideal for displa
ying text or data that are re
lated to each other, because
as each one is locked in its
own cell, even if its content,
or the content of the remaining
cells changes, the relative posi
tion of one with respect to the
others will not change.

Of all the tasks involved in ty
pesetting a text, the creation
of tables is the only one that,
in my opinion, is easier to do in
a graphic program (word pro
cessor type) than in ConTEXt.
Because it's easier to draw the
table (which is what you do
in a word processing program)
than describe it which is what we do when we work with ConTEXt. Every row
change and column change requires the presence of a command, and that means
that it takes much longer to implement the table, instead of simply saying how
many rows and columns we want.

ConTEXt has three different mechanisms for producing tables; the tabulate en
vironment which is recommended for simple tables and which is the most directly
inspired by TEX tables; the so-called natural tables, inspired by HTML tables,
suitable for tables with special design needs where, for example, not all rows have
the same number of columns; and the so-called extreme tables, clearly based on
XML and recommended for medium or long tables which take up more than one
page. Of the three, I will explain only the first. The natural tables are reasonably
well explained in “ConTEXt Mark IV an excursion”, and for extreme tables there
is a document about them in the “ConTEXt Standalone” documentation.

Something similar to what happens with images occurs in tables: we can simply
write the necessary commands at some point in the document to generate a table
and it will be inserted at that exact point, or we can use the \placetable command
to insert a table. This has some advantages:

• ConTEXt numbers the table and adds it to the list of tables allowing internal
references to the table (through its numbering), including it in an eventual
index of tables.

• We will gain flexibility in table placement within the document, thus facilitating
the task of pagination.

Chapter 13 Images, tables and other floating objects 270

The format of \placetable is similar to what we saw for \placefigure (see
section 13.2.2):

\placetable[Options][Label] {Title} {table}

I refer to sections 13.4.1 and 13.4.2 regarding options relating to table placement
and configuring the title. Among the options there is one, however, that seems to
be designed exclusively for tables. This is the “split” option which, when set,
authorises ConTEXt to extend the table over two or more pages, in which case the
table can no longer be a floating object.

In general terms we can set the configuration for tables with the \setuptables
command. Also, as with images, it is possible to generate an index of tables with
\placelistoftables or \completelistoftables. In this regard see section 8.2.2.

13.3.2 Simple tables with the tabulate environ
ment

The simplest tables are those achieved with the tabulate environment whose format
is:

\starttabulate[Table column layout]
... % Table contents
...
...

\stoptabulate

Where the argument taken in square brackets describes (in code) the number of
columns the table will have, and (sometimes indirectly) indicates their width. I say
that the argument describes the design in code, because at first glance it seems
very cryptic: it consists of a sequence of characters, each with a special meaning. I
will explain it little by little and in steps, because I think that this way it is easier
to understand.

This is the typical case in which the huge number of aspects that we can configure means we
need a lot of text to describe it. This seems to be devilishly difficult. In fact, for most of the
tables that are built in practice, points 1 and 2 are enough. The rest are extra possibilities that
it is useful to know exist, but are not essential to know to typeset a table.

1. Columns delimiter: the “|” character is used to delimit table columns.
So, for example, “[|lT|rB|]” will describe a table with two columns, one of
which would have the characteristics associated with the indicators “l” and
“T” (which we will see immediately following) and the second column will have

Chapter 13 Images, tables and other floating objects 271

the characteristics associated with “r” and “B”. A simple three-column table
aligned to the left, for example, would be described as “[|l|l|l|]”.

2. Determining the basic nature of the cells in a column: The first thing
to determine when we build our table is if we want the content of each cell to
be written on a single line, or if, on the contrary, if the text of any column
is too long we want our table to distribute it over two or more lines. In the
tabulate environment that question is not decided cell by cell but is considered
a characteristic of the columns.

a. One line cells: If the contents of the cells in a column, regardless of their
length, are to be written on a single line, we must specify the alignment of
the text in the column, which can be left (“l”, from left), right (“r”, from
right) or centred (“c”, from center).

In principle, these columns will be as wide as necessary to fit the widest cell. But
we can limit the width of the column with the “w(Width)” specifier. For example,
“[|rw(2cm)|c|c|]” will describe a table with two columns, the first aligned to the
right and with an exact width of 2 centimetres, and the other two centred and with
no width limitation.

It should be noted that the width limitation in single-line columns may cause the text
in one column to overlap text in the next column. So my advice is that when we need
fixed-width columns, always use multi-line cell columns.

b. Cells that can take up more than one line if needed: the “p” specifier gene
rates columns in which the text in every cell will occupy as many lines as
needed. If we simply specify “p”, the width of the column will be the full
width available. But it is also possible to indicate “p(Width)”, in which case
the width will be that expressly specified. Thus the following examples:

\starttabulate[|l|r|p|]
\starttabulate[|l|p(4cm)|]
\starttabulate[|r|p(.6\textwidth)|]
\starttabulate[|p|p|p|]

The first example will create a table with three columns, the first and second
of a single line, aligned, to the left and right respectively, and the third,
which will occupy the remaining width and the height required to house all
its contents. In the second example, the second column will measure exactly
four centimetres wide, whatever its content; but if it does not fit in that
space, it will take up more than one line. The third example calculates the
width of the second column in proportion to the maximum width of the
line, and in the last example, there will be three columns that will be the
width available in equal parts.

Note that, in reality, if a cell is a quadrilateral, what the “p” specifier does is authorise a
variable height for the cells in a column, depending on the length of the text.

Chapter 13 Images, tables and other floating objects 272

3. Adding indications to the description of the column, about the font
style and variant to be used: once the basic nature of the column (width
and height, automatic or fixed, of the cells) has been decided, we can still add,
in the description of the contents of the column, a character representative
of the format in which it must be written. These characters can be “B” for
bold, “I” for italic, “S” for slanted, “R” for Roman style lettering or “T” for
typewriter style lettering.

4. Other additional aspects that can be specified in the description of
table columns

:

• Columns with maths formulas: the “m” and “M” specifiers enable maths
mode in a column without the need to specify it in each of its cells. The
cells in this column will not be able to hold normal text.

Although TEX, ConTEXt's predecessor, came into existence for typesetting any kind of
maths, until now I have hardly said anything about writing maths. In the maths mode
(which I will not be explaining) ConTEXt alters our normal rules and even uses different
fonts. The maths mode has two varieties: one we could call linear in that the formula
is housed within a line containing normal text (“m” indicator), and the complete maths
mode that displays formulas in an environment where there is no normal text. The
main difference between the two modes, in a table, is basically the size which the
formula will be written in and the horizontal and vertical space surrounding it.

• Add extra horizontal white space around the contents of the cells in a
column: with the “in”, “jn” and “kn” indicators we can add extra white
space to the left of the column contents (“in”), to the right (“jn”) or to
both sides (“kn”). In all three cases “n” represents the number by which to
multiply the white space that would normally be left without one of these
specifiers (by default the average is an em). So, for example, “|j2r|” will
indicate that we are faced with a column that will be aligned to the right,
and in which we want a blank space of 1 em's width.

• Adding text before or after the contents of each cell in a column. The
b{Text} and a{Text} specifiers cause the text between curly brackets to
be written before (“b”, from before) or after (“a”, from after) the cell's
contents.

• Applying a format command to the entire column. The “B”, “I”, “S”, “R”
“T” indicators we mentioned previously do not cover all the format possi
bilities: e.g. there is no indicator for small caps, or for sans serif, or that

Chapter 13 Images, tables and other floating objects 273

affects the font size. With the “f\Command” indicator we can specify a for
mat command that is automatically applied to all cells in a column. For
example, “|lf\sc|” will typeset the column's contents in small caps.

• Applying any command to all the cells in the column. Finally, the
“h\Command” indicator will apply the specified command to all cells in the
column.

In table 13.1 some examples of table format specification strings are shown.

Format specifier Meaning
|l| Generates a column whose width is automatically

left-aligned.
|rB| Generates a column whose width is automatically

right-aligned, and in bold.
|cIm| Generates a column enabled for maths content.

Centred and in italics.
|j4cb{---}| This column will have contents centred, will begin

with an em dash (—) and will add 2 ems white
space to the right.

|l|p(.7\textwidth)| generates two columns: the first is left-aligned and
width automatic. The second takes up 70% of the
total width of the line.

Table 13.1 Some examples of how to
specify the format of the columns in tabulate

Once the table has been designed, its contents need to be input. To explain how
to do this I will start by describing how a table should be filled in where we have
lines separating rows and columns:

• We always start by drawing a horizontal line. In a table this is done with the
\HL command (from Horizontal Line).

• Then we write the first line: at the beginning of each cell we must indicate that
a new cell begins and that a vertical line must be drawn. This is done with the
\VL command (from Vertical Line). So we start with this command, and we
write the content of each cell. Every time we change cells we repeat the \VL
command.

Chapter 13 Images, tables and other floating objects 274

• At the end of a row, we expressly indicate that a new row is going to be started
with the \NR command (from Next Row). After it we repeat the \HL to draw
a new horizontal line.

• And so, one by one, we write all the rows of the table. When we finish we add,
as an extra, a \NR command and another \HL to close the grid with the bottom
horizontal line.

If we do not want to draw the table grid, we remove the \HL commands and replace
the \VL commands with \NC (from New Column).

It's not especially difficult when we get the hang of it, although when we look at the
source code for a table it's hard to get an idea what it will look like. In table 13.2
we see the commands that can (and must) be used within a table. There are some
that I have not explained, but I think the description I have given is enough.

Command Meaning
\HL Inserts a horizontal line
\NC Begins a new column
\NR Begins a new row
\VL Inserts a vertical line delimiting a column (used

in place of \NC)
\NN Begins a column in maths mode (used in place of

\NC)
\TB Adds some extra vertical space between two rows
\NB Indicates that the next row starts an indivisible

block within which there cannot be a page break

Table 13.2 Commands to be used within a table

And now, as an example I will transcribe the code with which table 13.2 was
written.

\placetable
[here]
[tbl:tablecommands]
{Commands to be used within a table}

{\starttabulate[|l|p(.6\textwidth)|]
\HL
\NC {\bf Command}
\NC {\bf Meaning}
\NR
\HL
\NC \tex{HL}
\NC Inserts a horizontal line
\NR
\NC \tex{NC}

Chapter 13 Images, tables and other floating objects 275

\NC Begins a new column
\NR
\NC \tex{NR}
\NC Begins a new row
\NR
\NC \tex{VL}
\NC Inserts a vertical line delimiting a column (used in place of \tex{NC})
\NR
\NC \tex{NN}
\NC Begins a column in maths mode (used in place of \tex{NC})
\NR
\NC \tex{TB}
\NC Adds some extra vertical space between two rows
\NR
\NC \tex{NB}
\NC Indicates that the next row starts an indivisible block within which there
cannot be a page break
\NR
\HL
\stoptabulate}

The reader will notice that in general I have used one (or two) lines of text for
each cell. In a real source file I would have only used a line of text for each cell;
in the example I have split the lines that are too long. Using a single line per cell
makes it easier for me to write the table because what I do is to write the contents
of each cell, without row or columns separation commands. When everything is
written, I select the text from the table and ask my text editor to insert “\NC ” at
the beginning of each line. After that, every two lines (because the table has two
columns) I insert a line that adds the \NR command, because every two columns
starts a new row. Finally, by hand, I insert the \HL commands at the points where
I want a horizontal line to appear. It takes me almost longer to describe it than
to do it!

But also see how, within a table, we can use ConTEXt's ordinary commands. In
particular in this table we continually use \tex which is explained in section 10.2.3.

13.4 Aspects common to images, tables
and other floating objects

We already know that images and tables do not have to be floating objects, but they
are good candidates to be so, although they have to be inserted in the document by
means of the \placefigure or \placetable commands. In addition to these two
commands, and with the same structure, in ConTEXt we have the \placechemical
command (to insert formulas chemicals), the \placegraphic command (to insert
graphics) and the \placeintermezzo command for inserting a structure that Con
TEXt calls Intermezzo and which I suspect refers to framed text fragments. All

Chapter 13 Images, tables and other floating objects 276

these commands are in turn concrete applications of a more general command
that is \placefloat whose syntax is the following:

\placefloat[Name] [Options] [Label] {Title} {Contents}

Note that \placefloat is identical to \placefigure and \placetable except
for the first argument that in \placefloat takes the name of the floating object.
This is because each type of floating object can be inserted into the document with
two different commands: \placefloat[TypeName] or \placeTypeName. In other
words: \placefloat[figure] and \placefigure are exactly the same command,
just as \placefloat[table] is the same command as \placetable.

I will therefore speak from now on of \placefloat, but please note that everything
I say will also apply to \placefigure or \placetable which are specific applica
tions of said command.

The \placefloat arguments are:

• Name. refers to the floating object in question. It can be some predetermined
floating object (figure, table, chemical, intermezzo) or a floating object
created by ourselves using \definefloat (see section 13.5).

• Options. A series of symbolic words that tell ConTEXt how it should insert the
object. The great majority of these refer to where to insert it. We will see this
in the next section.

• Label. A label for future internal references to this object.

• Title. The title text to be added to the object. Regarding its configuration, see
section 13.4.2.

• Contents. This depends, of course, on the type of object. For images it is usually
a \externalimage command; for tables, the commands that will create the
table; for intermezzi, a framed text fragment; etc.

The first three arguments, which are introduced in square brackets, are optio
nal. The last two (which are introduced between curly brackets) are mandatory,
although they can be empty. So, for example: \placefloat{}{} will insert:

Figure 13.4

Chapter 13 Images, tables and other floating objects 277

in the document.

Note: We see that ConTEXt considered that the object to be inserted was an
image, since it was numbered as an image and included in the list of images.
This makes me assume that images are the default floating objects.

13.4.1 Floating object insertion options
The Options argument in \placefigure, \placetable and \placefloat controls
different aspects regarding the insertion of these types of objects. Mainly the place
on the page where the object will be inserted. Here several values are supported,
each of a different nature:

• Some of the insertion places are established in relation to page elements (top,
bottom inleft, inright, inmargin, margin, leftmargin, rightmar
gin, leftedge, rightedge, innermargin, inneredge, outeredge, in
ner, outer). It must, of course, be an object that can fit in the area where it
is intended to be placed and space must have been reserved for that element
in the page layout. Regarding this, see section 5.2 and 5.3.

• Other possible insertion places are more related to the text surrounding the
object, and are an indication of where the object should be placed so that the
text flows around it. Fundamentally the left and right values.

• The here option is interpreted as a recommendation to keep the object at
the point in the source file where it is located. This recommendation will not
be respected if the pagination requirements do not allow it. This indication
is reinforced if we add the force option which means exactly that: force the
insertion of the object at that point. Note that by forcing the insertion at a
particular point, the object will no longer be floating.

• Other possible options relate to the page on which the object is to be inserted:
“page” inserts it on a new page; “opposite” inserts it on the page opposite
the current one; “leftpage” on an even page; “rightpage” on an odd page.

There are some options that are not related to the location of the object. Among
them:

• none: This option suppresses the title.

• split: This option allows the object to extend over more than one page. It
must, of course, be an object that is divisible by nature, such as a table. When
this option is used and the object is split, it can no longer be said to be floating.

Chapter 13 Images, tables and other floating objects 278

13.4.2 Configuring floating object titles
Unless we use the “none” option in \placefloat, by default, floating objects are
associated with a title that consists of three elements:

• The name of the type of object in question This name is exactly that of the
object type; so if, for example, we define a new floating object called “sequence”
and we insert a “sequence” as a floating object, the title will be “Sequence 1”.
Simply capitalise the name of the object.

Despite what has just been said, if the main language of the document is not English, the
English name for predefined objects, like for example the “figure” or “table” objects,
will be translated; So, for example, the “figure” object in documents in Spanish are
called “Figura”, while the “table” object is called “Tabla”. These Spanish names for
predefined objects can be changed with \setuplabeltext as explained in section 10.5.3.

• Its number. By default the objects are numbered by chapters, and so the first
table in Chapter 3 will be table ‘3.1’.

• Its contents. Introduced as an argument of \placefloat.

With \setupcaptions or \setupcaption[Object] we can change the numbering
system and the appearance of the title itself. The first command will affect all the
titles of all objects, and the second will affect only the title of a particular type of
object:

• As for the numbering system, this is controlled by the number, way, prefix
segments and numberconversion options:

– number can adopt the yes, no or none values and controls whether there
will be a number or not.

– way indicates whether the numbering will be sequential throughout the
document (way=bytext), or whether it will recommence at the beginning
of each chapter (way=bychapter) or section (way=bysection). In the case
of a restart, it is appropriate to coordinate the value of this option with the
prefixsegments option.

– prefixsegments indicates if the number will have a prefix, and what this
will be. Thus prefixsegments=chapter causes the number of objects to
always start with the chapter number, while prefixsegments=section will
precede the object number with the section number.

– numberconversion controls the kind of numeration. The values for this op
tion can be: Arabic numbers (“numbers”), lower case (“a”, “characters”),

Chapter 13 Images, tables and other floating objects 279

upper case (“A”, “Characters”), small caps “KA”), upper case Roman nume
rals (“I”, “R”, “Romannumerals”), lower case (“i”, “r”, “romannumerals”
or small caps (“KR”)).

• The appearance of the title itself is controlled by numerous options. I will list
them, but for a detailed explanation of the meaning of each one of them, I
refer to section 7.4.4 where the control of the appearance of the sectioning
commands is explained, as the options are largely the same. The options in
question are:

– To control the format of all the elements of the title, style, color, com
mand.

– To control the format only of the name for the kind of object: headstyle,
headcolor, headcommand, headseparator.

– To control only the numbering format: numbercommand.

– To control only the format of the title itself: textcommand.

• We can also control other aspects such as the distance between the different
elements that make up the title, the width of the title, its placement in relation
to the object, etc. I refer here to the information in ConTEXt wiki regarding
the options that can be configured with this command.

13.4.3 Combined insertion of two or more objects
To insert two or more different objects in the document, such that ConTEXt keeps
them together and deals with them as a single object, we have the \startcombi
nation environment whose syntax is:

\startcombination[Ordering] ... \stopcombination

where Ordering indicates how the objects should be ordered: if they all need to be
ordered horizontally, Ordering only indicates the number of objects to be combi
ned. But if we want to combine the objects in two or more rows, we will have to
indicate the object number per row, followed by the number of rows, and separating
both numbers by the * character. For example:

\startcombination[3*2]
{\externalfigure[test1]}
{\externalfigure[test2]}
{\externalfigure[test3]}
{\externalfigure[test4]}
{\externalfigure[test5]}
{\externalfigure[test6]}

\stopcombination

https://www.contextgarden.net/

Chapter 13 Images, tables and other floating objects 280

which will produce the following alignment of images.

name: test1

file: test1

state: unknown

name: test3

file: test3

state: unknown

name: test5

file: test5

state: unknown

name: test2

file: test2

state: unknown

name: test4

file: test4

state: unknown

name: test6

file: test6

state: unknown

In the previous example, the images I have combined actually do not exist, which
is why, instead of the images, ConTEXt has generated text boxes with information
about them.

See, on the other hand, how each element to be combined within \startcombi
nation, is enclosed within curly brackets.

In fact, \startcombination not only allows us to connect and align images, but
any kind of box such as texts inside a \startframedtext environment, tables, etc.
To configure the combination we can use the \setupcombination command and
we can also create pre-configured combinations using \definecombination.

13.4.4 General configuration of floating objects
We have already seen that with \placefloat we can control the location of the
floating object being inserted and some other details. It is also possible to configure:

• The global characteristics of a particular type of floating object. This is done
with \setupfloat[Name of type of floating object].

• The global characteristics of all floating objects in our document. This is done
with \setupfloats.

Bear in mind that in the same way that \placefloat[figure] is equivalent to
\placefigure, \setupfloat[figure] is equivalent to \setupfigures, and \se
tupfloat[table] is equivalent to \setuptables.

Regarding the configurable options for these, I refer to the ConTEXt official list of
commands (section 3.6).

Chapter 13 Images, tables and other floating objects 281

13.5 Defining additional floating objects
The \definefloat command allows us to define our own floating objects. Its
syntax is:

\definefloat[Singular name] [Plural name] [Configuration]

Where the Configuration argument is an optional argument that allows us to
already indicate the configuration of this new object at the time of its creation.
We can also do it later with \setupfloat[Name in the singular].

Since we are ending our introduction with this section, I am going to take advantage
of it to go a little deeper into the apparent jungle of ConTEXt commands which,
once understood, is not so much of a jungle but is, in fact, quite rational.

Let's start by asking ourselves what a floating object really is forConTEXt, the
answer being that it is an object with the following characteristics:

• That it has a certain margin of freedom with respect to its location on the
page.

• That is has a list associated with it, that allows it to number these kinds of
objects and, eventually, to generate an index of them.

• That it has a title

• That, when the object can really float, it must be treated as an inseparable
unit, meaning (in TEX terminology) enclosed in a box.

In other words, the floating object is actually made up of three elements: the object
itself, the list associated with it, and the title. To control the object itself we only
need one command to set up its location and another to insert the object into the
document; to set up the list aspects, general list control commands are sufficient,
and to set up the title aspects, the general title control commands.

And this is where the genius of ConTEXt comes in: a simple command to control
floating objects (\setupfloats), and a simple command to insert floating objects:
\placefloat, could have been designed: but what ConTEXt does is to:

1. Design a command to link a name to a specific floating object configuration.
This is the \definefloat command, which does not actually link one name,
but two names, one in the singular and one in the plural.

2. Create, together with the global floating objects configuration command, a
command that allows us to configure only a specific type of object: \setup
float[Object].

Chapter 13 Images, tables and other floating objects 282

3. Add to the floating object location command, (\placefloat), an argument
that allows us to differentiate between one or other type: (\placefloat[Ob
ject]).

4. Create commands, including the object name, for all actions of a floating object.
Some of these commands (which are actually clones of other more general
commands) will use the object's name in the singular and others will use it in
the plural.

Therefore, when we create a new floating object and tell ConTEXt what its name
is in the singular and the plural, ConTEXt:

• Reserves a space in memory to store the specific configuration of that object
type.

• Creates a new list with the singular name of that object type, since floating
objects are associated with a list.

• Creates a new kind of “title” linked to this new object type, in order to maintain
a customised configuration of these titles.

• And finally, it creates a group of new commands specific to that new object
type, whose name is actually a synonym for the more general command.

In table 13.3 we can see the commands that are automatically created when we
define a new floating object, as well as the more general commands they are sy
nonyms of:

Command Synonym of Example
\completelistof<PluralName> \completelist[PluralName] \completelistoffigures
\place<SingularName> \placefloat[SingularName] \placefigure
\placelistof<PluralName> \placelist[PluralName] \placelistoffigures
\setup<SingularName> \setupfloat[SingularName] \setupfigure

Table 13.3 Commands that are automatically
created when a new floating object is created

Actually, some additional commands are created which are synonymous with the previous ones
and since I have not included them in the explanation of the chapter, I have omitted them from
table 13.3: \start<NameSingular>, \start<NameSingular>text and \startplace<Name
Singular>.

I have used the command used for images as an example of the commands created
when defining a new floating object; and I did so because images, like tables and
the rest of the floats predefined by ConTEXt, are actual cases of \definefloat:

\definefloat[chemical][chemicals]
\definefloat[figure][figures]

Chapter 13 Images, tables and other floating objects 283

\definefloat[table][tables]
\definefloat[intermezzo][intermezzi]
\definefloat[graphic][graphics]

Finally, we see that in reality ConTEXt in no way controls any kind of material
included in each particular floating object; it presumes that this is the author's
job. This is why we can also insert text with the \placefigure or \placetable
commands. However, the text that is input with \placefigure is included in the
list of images, and if input with \placetable, in the list of tables.

284

Appendices

285

Appendix A
Installing, configuring

and updating ConTEXt
TEX's main distributions (TeX Live, teTeX, MikTeX, MacTeX, etc.) include a
version of ConTEXt. However, this is not the most updated version. In this appen
dix I will explain two procedures to install two different versions of ConTEXt; the
first includes both ConTEXt Mark II and Mark IV and the second includes only
ConTEXt Mark IV.

The installation procedure follows the same steps on any operating system; but
the details change from one system to another. However, we can simplify things
in such a way that in the following lines I will distinguish between two big groups
of systems:

• Unix-type systems: This includes Unix itself, as well as GNU Linux, Mac
OS, FreeBSD, OpenBSD or Solaris. The procedure is basically the same in all
these systems; there are some very small differences that I will highlight in the
appropriate place.

• Windows systems, that includes the different versions of that operating sys
tem: Windows 10 (the latest version, I think), Windows 8, Windows 7, Windows
Vista, Windows XP, Windows NT, etc.

Important note on the installation process on Microsoft Windows systems:

ConTEXt, like all TEX systems, is designed to work from a terminal; the programs and procedures
for installation, too. In Windows this is also perfectly possible and should not create any major
difficulty. The problem is that, on the one hand Windows users are not always used to doing
this, and on the other, since Windows came into being in the illusion (false) that everything in
a computer system could be done graphically, in general the versions of that operating system
do not advertise too much about how to use the terminal. And then, it is common for each
version of this system to change the name of the program that runs the terminal and how
to open it. As far as I know, the Windows terminal emulation program has been given many
names: “DOS window”, “Command Prompt”, “cmd”, etc. The location of this program in the
Windows application menu also changes depending on the version of Windows in question.

I stopped using Windows-based systems in 2004, so there is little I can do here to help the
reader. He or she will have to figure out, on their own, how to open a terminal in their particular
version of the operating system; which shouldn't be too difficult.

Appendix A Installing, configuring and updating ConTEXt 286

1 Installing and configuring
“ConTEXt Standalone”

The ConTEXt distribution known as “Standalone”, also known as “ConTEXt Sui
te”, is a complete and updated distribution of ConTEXt, which downloads the
necessary files from the Internet, does not take up too much disk space, is easy to
update, and above all — hence the name Standalone — is contained in a single
directory which can be located anywhere we want on the hard disk. It would even
be possible for a single computer to have several versions of ConTEXt each in its
own directory. This distribution includes the fonts, binary files and documenta
tion needed to run ConTEXt Mark II (which implies the TEX PdfLatex and XeTeX
engines), and ConTEXt Mark IV (which implies the LuaTeX engine).

For information about TEX engines, see section 1.4.1; and on TEX engines in relation to Con
TEXt, as well as the versions known as Mark II and Mark IV, section 1.5.1.

The following explains how to install, run, update and restore “ConTEXt Standa
lone” on our system. The data and procedures provided here are a summary of
the much more extensive information included in the ConTEXt wiki, to which I
have added some additional detail drawn from a wikibook on ConTEXt hosted on
wikibooks. If there is any problem with the installation, or if you want to extend
any detail, you should directly consult any of these (though the latter is in French)

1.1 Installation
Installing “ConTEXt Standalone” means having an Internet connection, and im
plies the following steps:

1. Creating the directory in which ConTEXt will be installed.
2. Downloading the installation script into this directory.
3. Running this script with the desired options.
4. Making some final adjustments.

Step 1: creating the installation directory

This, in fact, has nothing to do with ConTEXt and we have to assume that every
user will know how to do it. In Windows systems the normal way is to do it from
the file manager. On Unix-type systems, it can be done from a file manager or from
a terminal. It is important, however, to keep in mind that it is not recommended
that the installation directory contains any blank space in your path. I personally
also tend to shy away from using non-English directory names with things like
accented vowels in them.

https://wiki.contextgarden.net/ConTeXt_Standalone##Unix-like_platforms_.28Linux.2FMacOS_X.2FFreeBSD.2FSolaris.29
https://fr.wikibooks.org/wiki/ConTeXt/Installation

Appendix A Installing, configuring and updating ConTEXt 287

From now on I will assume that the installation directory is, in Unix-like systems,
“~/context/” and in Windows, “C:\Programs\context”.

Step 2: Download the installation script into the installation
directory

The installation script will differ according to the operating system you are insta
lling on:

• On Unix-like systems it can be downloaded, with a web browser, or, from a
terminal with “wget” or “rsync”:

wget http://minimals.contextgarden.net/setup/first-setup.sh
rsync rsync://minimals.contextgarden.net/setup/first-setup.sh

• On Windows-type systems, as far as I know, there are no standard tools for
downloading from the console. It has to be done with a web browser. The
download address can be any of the following:

http://minimals.contextgarden.net/setup/context-setup-mswin.zip
http://minimals.contextgarden.net/setup/context-setup-win64.zip

Once downloaded, in Windows you have to unzip the file,

Step 3: Run the installation script

The installation script must be run from the terminal. In Unix-type systems the
name of the script is “first-setup.sh” and can be run with bash or sh. In Win
dows-type systems the script is called “first-setup.bat” and is run by simply
typing its name in the system console or MS-DOS window from the installation
directory.

The installation script allows for the following options:

• --context: this option determines which version of ConTeXt will be installed,
whether the most recent development version (“–context=latest”) or the latest
stable version (“–context=beta”). The default value is “beta”.

• --engine: allows us to indicate whether we want to install Mark IV
(“–engine=luatex”, the default value) or Mark II.

• --modules: also install the ConTeXt extension modules that do not belong to
the distribution as such, but that offer interesting additional utilities. To do
this we need to indicate “–modules=all”.

With regard to the installation options, I believe that the information in the wiki is now obsolete.
There it says that to install only Mark IV you need to explicitly indicate the "–engine=luatex"

http://minimals.contextgarden.net/setup/context-setup-mswin.zip
http://minimals.contextgarden.net/setup/context-setup-win64.zip

Appendix A Installing, configuring and updating ConTEXt 288

option and that the "–context=latest" option installs the latest stable version, not the deve
lopment version. However, from halfway through 2020 the content of first-setup.sh changed,
and taking a look inside it I found that to install the very latest version you need to expressly
indicate "–context=latest", and that "–engine=luatex" is enabled by default.

The French Wikibook I mentioned at the beginning adds two other possible options
to the options I just mentioned (documented on the ConTEXt wiki): “–fonts=all”
and “goodies=all”. ConTeXtgarden doesn't mention them, but including them in
the installation command as well doesn't hurt. Therefore I would advise you to
run the installation script with the following options (depending on whether we
are on a Unix- or Windows-type system):

• Unix: bash first-setup.sh --context=latest --modules=all --fonts=all --goodies=all
• Windows: first-setup.bat --context=latest --modules=all --fonts=all --goodies=all

This, depending on the speed of our Internet connection, may take some time, but
not too much.

Configuring a proxy

The installation script uses rsync to obtain the necessary files. So, if you are behind a proxy
server, you need to specify its details to rsync. The easiest way to set this is to set the variable
RSYNC_PROXY in the terminal or in your startup script (.bashrc or the corresponding file
for each shell). Replace the username, password, proxyhost and proxyport with the correct
information. This is done, on Unix-type systems, with the “export” command, and in Windows-
type systems with the “set” command. For example:

export RSYNC_PROXY=username:password@proxyhost:proxyport

Sometimes, when we are behind a firewall, port 873 may be closed for outgoing TCP connec
tions. If port 22 is open for ssh connections, one trick that can be used is to connect to a
computer somewhere outside the firewall and tunnel into port 873 (using the nc program).

export RSYNC_CONNECT_PROG='ssh tunelhost nc %H 873'

where the ‘tunnelhost’ is the machine outside the firewall we have access to. Of course, this
machine must have nc and port 873 open for the outgoing TCP connection

After running “first-setup” in the installation directory two new directories will
appear called, “bin” and “tex” respectively.

Step 4: Final adjustments (Only on GNU Linux)

In GNU Linux systems there are many directories where fonts can be installed.
If we want ConTEXt to use these fonts we must tell it where to find them. To do
this we must add the following line to the “tex/setuptex” file created after the
installation:

export OSFONTDIR="~/.fonts:/usr/share/fonts:/usr/share/texmf/fonts/opentype/”

Appendix A Installing, configuring and updating ConTEXt 289

with which the environment variable OSFONTDIR is loaded with the three direc
tories in which the fonts installed in the system are normally located

The /usr/share/texmf/fonts/ will only be there if there is some other installation of TEX
or other systems based on it in our operating system; in this case it should be included in
the OSFONTDIR path so we can use the opentype fonts that such an installation may have
included. If you have any commercial fonts that you want ConTEXt to use, you have to make
sure that the path to these is one of those included in OSFONTDIR, or otherwise, add the
path to this variable. I have seen, for example, that some fonts are installed in /usr/local/fonts
instead of /usr/share/fonts.

Finally, it may be a good idea to have ConTEXt generate a database with the
necessary files for execution. This will be done by running the following three
commands from a terminal:

. ~/context/tex/setuptex
context --generate
context --make

The first instruction is a point (dot). That's an abbreviation for bash's internal
source command. We can also, of course, run source if it's more convenient for
us.

1.2 Running “ConTEXt Standalone”
“ConTEXt Standalone” has been designed to be able to coexist with other insta
llations of TEX systems, which is an advantage because it allows us to have several
different versions installed on the same operating system; but in order to exploit
this advantage it is essential that the environment variables needed to run ConTEXt
are not set permanently, because every time we start a terminal to run “context”
from it, we'll have to start by loading these environment variables into memory.
They are contained in the “tex/setuptex” (Unix) or “tex/setuptex.bat” (Win
dows) file. This is done:

• In Unix-type systems, after opening the terminal in which we want to use
“context”, by running either of the following two commands:

source ~/context/tex/setuptex
. ~/context/tex/setuptex

(assuming that the directory where the version of “context” we want to use
is “~/context”).

• In Windows-type systems, by running the tex\setuptex.bat command from
the installation directory in the terminal from which we will use ConTEXt.

If there is no other installation of TEX or any of its derivatives in our system, we
can avoid this by automating the execution of this order every time a terminal is
opened:

Appendix A Installing, configuring and updating ConTEXt 290

• On Unix-like systems this is done by including it in the file containing the
general terminal startup script (usually “.bashrc”).

The configuration file of a terminal depends on the shell program that the terminal uses
by default. If this is bash (which is the most used in GNU Linux systems), the file read
at the beginning is .bashrc. The sh and ksh shells use a file called .profile, zsh uses
.zshenv, and tcsh or csh read the .cshrc file. Some specific implementation may change
the names of these files and so, for example, .bashrc is sometimes called .bash_profile.

• In Windows-type systems we can create a shortcut on the desktop that runs
cmd.exe and then edit it, putting as a command to run when we double click
on it:

C:\WINDOWS\System32\cmd.exe /k C:\Programs\context\tex\setuptex.bat

Another possibility, if we do not wish to run this script each time we want to use
ConTeXt, nor want to permanently set the environment variables necessary for it
to be run, is to do it from the text editor itself, instead of running ConTeXt from
a terminal. How you do this depends on the particular text editor you are using.
The ConTeXt wiki provides information on how to set up various common editors:
LEd, Notepad++, Scite, TeXnicCenter, TeXworks, vim and some others.

1.3 Updating the version of “ConTEXt Standalo
ne” or returning to an earlier version

Mark IV is still under development, so “ConTEXt Standalone” is often updated.
To update our installation just repeat the process: we download a new version of
“first-setup.sh” and run it.

If, for whatever reason, we want to go back to a previous version of “ConTEXt
Standalone”, just run “first-setup” with the “--context=date” option, where
date is the date corresponding to the version we want to recover. Note that the
date has to be introduced in the US months-days-years format.

The complete list of ConTEXt versions and associated dates can be found at this
link.

Finally, keep in mind that after reinstalling the system, whether it is to upgrade
or to return to a previous version, on GNU Linux systems you will have to run
step 4 of the installation again, which I have called “Final Adjustments”.

2 Installing LMTX
If we only plan to use ConTEXt Mark IV, and we want to compile our projects not
directly with LuaTeX but with LuaMetaTex, a simplified LuaTeX that uses less

https://minimals.contextgarden.net/current/context/
https://minimals.contextgarden.net/current/context/

Appendix A Installing, configuring and updating ConTEXt 291

system resources and that can work on less powerful systems, instead of “ConTEXt
Standalone”, we need to install LMTX which is the latest version of ConTEXt.
The name is an acronym of the name of the TEX engine being used: LuaMetaTeX.
This version was launched in 2019, and since approximately May 2020 it is the
recommended default ConTEXt distribution as suggested in ConTEXt wiki.

The current development of LMTX is intense, and the beta version can change several times
a week. Some of its developments, moreover, temporarily pose certain incompatibilities with
Mark IV, and so, for example, while I am writing these lines, the latest version of LMTX (August
4, 2020) produces an error with the \Caps command. Therefore I would advise newcomers, for
the moment, to work with “ConTEXt Standalone” instead.

2.1 The installation itself
The installation is as simple as:

• Step 1: Decide on the directory you want to install LMTX in, and, if neces
sary, create it. I will assume that the installation is done in a directory called
“context” located in our user directory.

• Step 2: Download (to the installation directory) the zip file from the ConTEXt
wiki that corresponds to your operating system and processor. It can be any
of the following:

– GNU/Linux
⋆ X86 Processor
⊳ 32 bit version.
⊳ 64 bit version.

⋆ ARM Processor
⊳ 32 bit version.
⊳ 64 bit version.

– Microsoft Windows
⋆ 32 bit version
⋆ 64 bit version

– Mac OS, versión de 64 bits
– FreeBSD
⋆ 32 bit version.
⋆ 64 bit version.

– OpenBSD6.6
⋆ 32 bit version.
⋆ 64 bit version.

– OpenBSD6.7
⋆ 32 bit version.
⋆ 64 bit version.

https://www.contextgarden.net/
https://wiki.contextgarden.net/Installation
https://wiki.contextgarden.net/Installation
http://lmtx.pragma-ade.nl/install-lmtx/context-linux.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-linux-64.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-linux-armhf.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-linux-aarch64.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-mswin.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-win64.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-osx-64.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-freebsd.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-freebsd-amd64.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-openbsd6.6.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-openbsd6.6-amd64.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-openbsd6.7.zip
http://lmtx.pragma-ade.nl/install-lmtx/context-openbsd6.7-amd64.zip

Appendix A Installing, configuring and updating ConTEXt 292

If you don't know whether your system is 32-bit or 64-bit, chances are – unless
your computer is very old – it's 64-bit. If you don't know whether your processor
is X86 or ARM, it's most likely X86.

• Step 3: Unzip, the file downloaded in the previous step into the installa
tion directory. A folder will be created called “bin” and two files, one called
“installation.pdf”, that contains more detailed information about the ins
tallation, and a second file which is the actual installation program called
“install.sh” (in Unix-type systems) or “install.bat” (in Windows sys
tems).

• Step 4: Run the installation program (“install.sh” or “install.bat”). It
needs an Internet connection as the installation program searches the web for
the files it needs.

– On Unix-type systems the installation program, located in the installation
directory, is run from a terminal, either with bash, or with sh. It is not
necessary to have administrator privileges, unless the installation directory
is outside the user's “home” directory.

– In Windows-type systems, you must open a terminal, move to the installa
tion directory, and from the terminal, run install.bat. It is not necessary
here either that the installation program is run as a system administrator,
but it is recommended that this be done so that symbolic links of the files
can be used, thus saving disk space.

• Step 5 inform the system of the path to LMTX:

In Windows systems, the installation program generates a file, called
“setpath.bat” which updates all the configuration files necessary to let Win
dows know that you have installed LMTX in the system and where you has
done so. In GNU Linux systems, FreeBSD or Mac OS no script that automates
the task is generated, so we must incorporate the address for the ConTEXt
binaries in the system's PATH variable, which we would get by running in the
terminal, from the installation:

export PATH="InstallationDir/tex/texmf-Platform/bin:"$PATH

where InstallationDir is the installation directory (for example, “/ho
me/user/context”) and texmf-Platform will vary according to the version of
LMTX we have installed. For example, an installation on a 64 bit Linux sys
tem, texmf-Platform will be “texmf-linux-64”. Therefore we should run the
following command from the terminal:

export PATH="/home/user/context/texmf-linux-64/bin:"$PATH

Appendix A Installing, configuring and updating ConTEXt 293

This command will include LMTX in the system path, only as long as the
terminal from which it has been run remains open. If we want this to be done
automatically every time a terminal is opened, we must include this command
in the configuration file of the shell program used by default in the system.
The name of this file changes according to which shell program it is: bash, sh,
zsh, ksh, tcsh, csh... On most Linux systems, which use bash, the file is called
“.bashrc” so we should run the following command from our home directory:

echo 'export PATH="/home/user/context/texmf-linux-64/bin:"$PATH >> .bashrc

Important note: By executing this step, we will disable the possibility of using
other versions of ConTEXt on our system, such as the one incorporated in TeX
Live or “ConTEXt Standalone”. If we want to make both versions compatible,
it is preferable to use the procedure described in section 3.

2.2 Installing extension modules in LMTX
ConTEXt LMTX does not incorporate a procedure for installing or upgrading the
ConTEXt extension modules. However, in ConTEXt wiki there is a script that allows
you to install and update all the modules along with the rest of the installation.

To do this we need to copy the aforementioned script, paste it into a text file
located in the main LMTX installation directory (the one containing install.sh
or install.bat) and run it from a terminal. I have personally verified that this
works on a GNU Linux system. I'm not sure if it will work on a Windows system,
since I don't have any version of that operating system to check it with.

2.3 Updating LMTX
Updating LMTX is as simple as running the installation program again: it will
check the installed files against those on the web server and update as necessary.

If the website from which the files are obtained has changed, we obviously need to
also change this address in the installation script; although perhaps it is easier to
download a new version of the installation files in the same directory and extract
from it the new “install.sh” or “install.bat”; or, even easier, unzip the file
with the installation program and reinstall without first needing to removing the
old files.

2.4 Creating a file that loads the variables into
memory needed for LMTX (only GNU/Linux
systems)

“ConTEXt Standalone” contains, as we already know, a (“tex/setuptex”) file that
loads into memory all the variables needed to run it, but LMTX does not include

https://wiki.contextgarden.net/Modules##ConTeXt_LMTX

Appendix A Installing, configuring and updating ConTEXt 294

a similar file. We can, however, easily create it ourselves and store it, for example,
as “setuplmtx” in the “tex” directory. The commands that this file could have
would be:

export PATH="~/context/LMTX/tex/texmf-linux-64/bin:"\$PATH
echo "Adding ~/context/LMTX/tex/texmf-linux-64/bin to PATH"
export TEXROOT="~/context/LMTX/tex"
echo "Setting ~/context/LMTX/tex as TEXROOT"
export OSFONTDIR="~/.fonts:/usr/share/fonts:/usr/share/texmf/fonts/opentype/"
echo "Loading font directories into memory"
alias lmtx="~/context/LMTX/tex/texmf-linux-64/bin/context"
echo "Creating an alias to run lmtx"

With this, besides loading into memory the paths and variables needed to run
LMTX we would be enabling the “lmtx” command as a synonym of “context”.

After creating this file, before being able to use LMTX, where we intend to use it
we should run the following in the terminal:

source ~/context/LMTX/tex/setuplmtx

all this assuming that LMTX is installed in “ /context/LMTX” and that we have
called this file “setuplmtx” and stored it in “ /context/LMTX/tex”.

The above is what I do, to work with LMTX in the same way I used to work with “ConTEXt
Standalone”. However, I do not exclude the possibility that in LMTX it is not necessary, for
example, to load into memory the variable OSFONTDIR, since I am struck by the fact that
ConTEXt wiki says nothing about this.

3 Using several versions of ConTEXt on
the same system (only for Unix-type
systems)

The operating system utility called alias allows us to associate different names
with different versions of ConTEXt. So we can use, for example, the version of
ConTEXt included in TeX Live and LMTX; or the Standalone version and LMTX.

For example, if we store the versions of LMTX downloaded in January and Au
gust 2020 in different directories, we could write the following two instructions in
“.bashrc” (or equivalent file read by default when opening a terminal):

alias lmtx-01=”/home/user/context/202001/tex/texmf-linux-64/bin/context”
alias lmtx-08=”/home/user/context/202008/tex/texmf-linux-64/bin/context”

These instructions will associate the names lmtx-01 with the version of LMTX ins
talled in the “context/202001” directory and lmtx-08 with the version installed
in “context/202008”.

295

Appendix B
Commands for generating

maths and non-maths sym
bols

In the following tables you will find the commands that generate a variety of
symbols, checked one by one by myself; most of them (but not all) are preferably
for use in mathematics.

I am aware that how they are arranged could well be open to improvement. The
problem is that since I am more of a literature background, I do not know what
many of these symbols are used for in maths; and often I'm not even sure if it's
really a case of symbols used in maths. That's why I made a group of the symbols
that I am reasonably sure are not used for mathematics, and where the rest are
concerned I grouped the different symbols according to certain recognisable shapes
(triangles, squares, asterisks, rhombuses, arrows, points). I have arranged the rest
of the symbols, probably they are ones used in maths, alphabetically (from the
command that generates them).

The tables, moreover, are not exhaustive. I am sure that there are many more
symbols that can be generated with ConTEXt, although I have not found any
document or web page that collects them all. Those collected here are, for the
most part, symbols that work in TEX or in LATEX, and that I have verified as also
working in ConTEXt. Many of these symbols only work in maths mode in LATEX
(enclosed in ‘$’). In ConTEXt, as is easy to see in the tables that follow, that is
only necessary in very few cases.

Money and symbols for legal use

© \copyright ® \registered ¢ \textcent
℗ \textcircledP ¤ \textcurrency $ \textdollar
₫ \textdong € \texteuro ƒ \textflorin
£ \textsterling ¥ \textyen ™ \trademark

Appendix B Commands for generating maths and non-maths symbols 296

Triangles, círcles, squares and other shapes

△ \triangle ◯ \bigcirc □ \square
◁ \triangleleft ∘ \circ ■ \blacksquare
▷ \triangleright • \bullet ⊡ \boxdot
▽ \triangledown ⊛ \circledast ⊟ \boxminus
▼ \blacktriangledown ⊚ \circledcirc ⊞ \boxplus
◀ \blacktriangleleft ⊝ \circleddash ⊠ \boxtimes
▶ \blacktriangleright ⨁ \bigoplus ∗ \ast
▲ \blacktriangle ⨂ \bigotimes ✠ \maltese
≜ \triangleq ⊕ \oplus ⋆ \star
⋄ \diamond ⊖ \ominus ♣ \clubsuit
◊ \lozenge ⊗ \otimes ♡ \heartsuit
♦ \blacklozenge ⊘ \oslash ♠ \spadesuit
♢ \diamondsuit ⊙ \odot ⌀ \varnothing

Arrows:

← \leftarrow, \gets → \rightarrow, \to ↔ \leftrightarrow
↚ \nleftarrow ↛ \nrightarrow ⇔ \Leftrightarrow
⟵ \longleftarrow ⟶ \longrightarrow ⟷ \longleftrightarrow
⇚ \Lleftarrow ⇛ \Rrightarrow ⟺ \Longleftrightarrow
⇍ \nLeftarrow ⇏ \nRightarrow ⇋ \leftrightharpoons
↰ \Lsh ↱ \Rsh ↭ \leftrightsquigarrow
↤ \mapsfrom ↦ \mapsto ⇎ \nLeftrightarrow
⟻ \longmapsfrom ⟼ \longmapsto ↮ \nleftrightarrow
⤆ \Mapsfrom ⤇ \Mapsto ⇄ \rightleftarrows
⟽ \Longmapsfrom ⟾ \Longmapsto ⇌ \rightleftharpoons
↢ \leftarrowtail ↣ \rightarrowtail ↕ \updownarrow
↞ \twoheadleftarrow ↠ \twoheadrightarrow ⇕ \Updownarrow
↻ \circlearrowleft ↺ \circlearrowright ⇅ \updownarrows
↶ \curvearrowleft ↷ \curvearrowright ↑ \uparrow
↩ \hookleftarrow ↪ \hookrightarrow ⇑ \Uparrow
↽ \leftharpoondown ⇁ \rightharpoondown ⇈ \upuparrows
↼ \leftharpoonup ⇀ \rightharpoonup ↟ \twoheaduparrow
⇇ \leftleftarrows ⇉ \rightrightarrows ↿ \upharpoonleft
↫ \looparrowleft ↬ \looparrowright ↾ \upharpoonright
↙ \swarrow ↘ \searrow ↓ \downarrow
↖ \nwarrow ↗ \nearrow ⇓ \Downarrow
⇜ \leftsquigarrow ⇝ \leadsto, \rightsquigarrow ⇊ \downdownarrows
⟺ \iff ↡ \twoheaddownarrow ⇃ \downharpoonleft
⟹ \implies ⇂ \downharpoonright

Punctuation

∵ \because ⋅ \cdot ⋅ \cdotp
⋯ \cdots · \centerdot ∶ \colon
⋱ \ddots … \dots . \ldotp
… \ldots … \textellipsis ∴ \therefore
⋮ \vdots „ \quotedblbase " \quotedbl

Appendix B Commands for generating maths and non-maths symbols 297

Symbols mainly for mathematical use:

ℵ \aleph ⨿ \amalg ∠ \angle
≈ \approx ≊ \approxeq ≍ \asymp
∽ \backsim \ \backslash ⊼ \barwedge
≬ \between ⋂ \bigcap ⋃ \bigcup
⨆ \bigsqcup ⨄ \biguplus ⋁ \bigvee
⋀ \bigwedge ⊥ \bot ⋈ \bowtie
≎ \Bumpeq ∩ \cap \Cap
≗ \circeq ∁ \complement ≅ \cong
∐ \coprod ∪ \cup ⋓ \Cup
⋞ \curlyeqprec ⋟ \curlyeqsucc ⋎ \curlyvee
⋏ \curlywedge ⊣ \dashv † \dagger, dag
‡ \ddagger, ddag ♢ \diamondsuit ÷ \div
⋇ \divideontimes ≐ \doteq ≑ \doteqdot
∔ \dotplus ℓ \ell ∅ \emptyset
≖ \eqcirc ⪖ \eqslantgtr ⪕ \eqslantless
≡ \equiv ð \eth ∃ \exists
∃! \exists! ≒ \fallingdotseq ♭ \flat
∀ \forall ⌢ \frown ≥ \geq, \ge
⩾ \geqslant ≫ \gg ⋙ \ggg
⪊ \gnapprox ≩ \gneqq ⋧ \gnsim
⪆ \gtrapprox ⋗ \gtrdot ⋛ \gtreqless
⪌ \gtreqqless ≷ \gtrless ≳ \gtrsim
ℏ \hbar ♡ \heartsuit ℏ \hslash
⨌ \iiiint ℑ \Im 𝚤 \imath
∈ \in ∞ \infty ∫ \int
⊺ \intercal 𝚥 \jmath ∧ \land
⋋ \leftthreetimes ≤ \leq, \le ≦ \leqq
⩽ \leqslant ⪅ \lessapprox ⋖ \lessdot
⋚ \lesseqgtr ⪋ \lesseqqgtr ≶ \lessgtr
≲ \lesssim ≪ \ll ⋘ \lll
⪉ \lnapprox ⪇ \lneq ≨ \lneqq
⋦ \lnsim ∨ \lor ⋉ \ltimes
∡ \measuredangle ⊧ \models ∓ \mp
⊸ \multimap ⊯ \nVDash ∇ \nabla
♮ \natural ≆ \ncong ≠ \neq
¬ \neg o \lnot ∄ \nexists ≱ \ngeq
≯ \ngtr ∋ \ni ≰ \nleq
≮ \nless ∤ \nmid ̸≈ \not\approx
̸≡ \not\equiv ̸∼ \not\sim ̸≃ \not\simeq
∉ \notin ∦ \nparallel ⊀ \nprec
≁ \nsim ⊈ \nsubseteq ⊁ \nsucc
⊉ \nsupseteq ⋫ \ntriangleleft ⋬ \ntrianglelefteq
⋪ \ntriangleright ⋭ \ntrianglerighteq ⊬ \nvdash
⊭ \nvDash ∮ \oint ∥ \parallel
∂ \partial ⊥ \perp ‰ \perthousand
± \pm ≺ \prec ≼ \preccurlyeq
⪯ \preceq ⋨ \precnsim ≾ \precsim
′ \prime ∏ \prod ∝ \propto
ℜ \Re ⋌ \rightthreetimes ≓ \risingdotseq

Appendix B Commands for generating maths and non-maths symbols 298

⋊ \rtimes ♯ \sharp ∼ \sim
≃ \simeq ⌣ \smile ∢ \sphericalangle
⊓ \sqcap ⊔ \sqcup ⊏ \sqsubset
⊑ \sqsubseteq ⊐ \sqsupset ⊒ \sqsupseteq
⊂ \subset ⋐ \Subset ⊆ \subseteq
⊊ \subsetneq ≻ \succ ≽ \succcurlyeq
⪰ \succeq ⋩ \succnsim ≿ \succsim
∑ \sum ⊃ \supset ⋑ \Supset
⊇ \supseteq ⊋ \supsetneq

√
\surd

± \textpm × \times ⊤ \top
△ \triangle ⊎ \uplus ⊨ \vDash
⊩ \Vdash ∨ \vee o \lor ⊻ \veebar
‖ \Vert ⊪ \Vvdash ∧ \wedge o \land
℘ \wp ≀ \wr

Other symbols

¶ \P § \S ℃\celsius
✓ \checkmark ℧ \mho Ω \ohm
° \textdegree № \textnumero ␣ \textvisiblespace

299

Appendix C
Index of commands

The commands discussed in this introduction are listed in this index. Some are
simply mentioned, almost in passing, in which case the page that appears in the
index indicates where they are mentioned. But other commands are the subject
of some more detailed explanation. In this case, only the place where the detailed
explanation begins is listed in the index, although the command may be cited in
other places in the introduction as well.

Not included in the index:

• The \stopSomething that close a construction previously opened with \star
tSomething, unless the text says something special about the \stop command,
or is treated at a different location than the one where the corresponding
\start command is.

• Commands aimed at generating symbols, all found in Appendix B.

• In the case of commands that generate a diacritic or letter, and that have an
upper case and a lower case version, to generate the upper case or lower case
letter respectively, only the lower case version is included.

a
\aa 184
\aacute 183
\about 170
\abreve 183
\acircumflex 183
\adaptlayout 95
\adaptpapersize 89
\adiaeresis 183
\ae 185
\aeligature 185
\agrave 183
\alpha 186
\amacron 183

\aring 184
\at 170
\atilde 183
\atleftmargin 106
\atpage 172
\atrightmargin 106

b
\backslash 45
\\ 219
\begingroup 62, 63
\beta 186
\bf 116
\bfa 116

Appendix C Index of commands 300

\bfb 116
\bfc 116
\bfd 116
\bfx 116
\bfxx 116
\bgroup 62, 63
\bi 116
\bia 116
\bib 116
\bic 116
\bid 116
\bigbodyfont 118
\bix 116
\bixx 116
\blank 73, 212
\bold 116
\bolditalic 116
\boldslanted 116
\break 219
\bs 116
\bsa 116
\bsb 116
\bsc 116
\bsd 116
\bsx 116
\bsxx 116
\buildmathaccent 187
\buildtextaccent 187
\buildtextbootomcomma 187
\buildtextbottomdot 187
\buildtextcedilla 187
\buildtextgrave 187
\buildtextmacron 187
\buildtexttognek 187

c
\Cap 192
\c 184
\ca 202
\calligraphic 115
\cap 192
\ccedilla 184
\cf 115

\chapter 129
\chi 186
\clip 268
\clubpenalty 226
\color 123
\colored 123
\completecontent 147
\completelist 157
\completelistofchemicals 158
\completelistoffigures 158, 265
\completelistofgraphics 158
\completelistofintermezzi 158
\completelistoftables 158, 270
\completindex 163
\crlf 219
\currentdate 204

d
\date 204
\de 202
\define 58
\definealternativestyle 120
\defineblank 213
\definebodyfontenvironment 117
\definebodyfontswitch 119
\definecapitals 193
\definecharacter 186
\definecharacterkerning 197
\definecolor 125
\definecombination 280
\definecombinedlist 159
\defineconversionset 99
\definedelimitedtext 206
\definedescription 249
\defineenumeration 251
\definefloat 281
\definefontfeature 185
\definefontstyle 119
\defineframed 256
\defineframedtext 256
\definehead 142
\defineinterlinespace 221
\defineitemgroup 249

Appendix C Index of commands 301

\defineitems 249
\definelayout 96
\definelinenumbering 223
\definelines 222
\definelist 157
\definemargindata 107
\definenarrower 210
\definenote 232
\definepapersize 89
\defineparagraphs 239
\defineregister 164
\definesectionblock 144
\definestartstop 60
\definestretched 197
\definesymbol 243
\definetext 105
\definetype 195
\definetyping 195
\delta 186
\dontleavehmode 115

e
\eacute 183
\ebreve 183
\ecircumflex 183
\ediaeresis 183
\egrave 183
\egroup 62, 63
\em 120
\emacron 183
\emdash 74
\en 201
\enableregime 70
\endash 74
\endgraf 208
\endgroup 62, 63
\endnote 230
\enskip 198
\environment 79
\epsilon 186
\es 201
\eta 186
\etilde 183

\externalfigure 261

f
\fillinline 253
\footnote 230
\fr 201
\framed 255
\from 178

g
\gamma 186
\getbuffer 256
\getmarking 104
\godown 214
\goto 178

h
\H 184
\HL 273
\hairline 252
\handwritten 115
\hbox 217
\head 245
\hfill 198
\high 193
\hl 253
\hskip 198
\hw 115
\hyphen 74
\hyphenatedurl 177
\hyphenatedurlseparator 178
\hyphenation 217

i
\i 184
\iacute 183
\ibreve 183
\icircumflex 183
\idiaeresis 183
\igrave 183
\imacron 183
\in 170
\index 161

Appendix C Index of commands 302

\inframed 255
\ininner 106
\ininneredge 106
\ininnermargin 106
\inleft 106
\inleftedge 106
\inleftmargin 106
\inmargin 106
\inother 106
\inouter 106
\inouteredge 106
\inoutermargin 106
\input 76
\inright 106
\inrightedge 106
\inrightmargin 106
\iota 186
\it 116
\ita 116
\italic 116
\italicbold 116
\itb 116
\itc 116
\itd 116
\item 244
\items 248
\itilde 183
\its 245
\itx 116
\itxx 116

j
\j 184

k
\kappa 186
\kcedilla 184

l
\l 184
\labeltext 204
\lambda 186
\language 200

\lastpagenumber 100
\lastrealpagenumber 100
\lastuserpagenumber 100
\lcedilla 184
\leftaligned 225
\letterbackslash 178
\letterescape 178
\letterhash 178
\letterhat 45
\letterpercent 178
\lettertilde 45
\linenote 230
\loadinstalledlanguages 200
\lohi 193
\low 193

m
\mainlanguage 200
\mar 245
\margintext 106
\mediaeval 116
\midaligned 225
\minus 74
\mirror 268
\mono 115
\month 204
\mu 186

n
\NB 274
\NC 274
\NN 274
\NR 274
\ncedilla 184
\noheaderandfooterlines 104
\noindentation 209
\nolist 131, 134
\nomarking 131, 134
\normal 116
\note 231
\notesenabledfalse 237
\notesenabledtrue 237
\nowhitespace 211

Appendix C Index of commands 303

\nu 186

o
\o 184
\oacute 183
\obreve 183
\ocircumflex 183
\odiaeresis 183
\oe 185
\oeligature 185
\ograve 183
\omacron 183
\omega 186
\omicron 186
\os 116
\otilde 183
\overbar 255
\overbars 255
\overstrike 255
\overstrikes 255

p
\page 100
\pagenumber 100, 104
\pagereference 168
\par 208
\parindent 65
\parskip 66
\part 129
\phi 186
\pi 186
\placebookmarks 179
\placechemical 275
\placecontent 147
\placefigure 263
\placefloat 276
\placegraphic 275
\placeindex 163
\placeintermezzo 275
\placelist 157
\placelistofchemicals 158
\placelistoffigures 158, 265
\placelistofgraphics 158

\placelistofintermezzi 158
\placelistoftables 158, 270
\placelocalfootnotes 232
\placenotes 232
\placetable 269
\pretolerance 218
\product 80
\project 82
\psi 186

q
\qquad 198
\quad 198
\quotation 206
\quote 206

r
\ReadFile 78
\r 184
\ran 245
\rcedilla 184
\readfile 78
\realpagenumber 100
\ref 171
\reference 168
\regular 115
reserved characters
\{ 45
\} 45
\$ 45
\backslash 45
\letterhat 45
\lettertilde 45
\# 45
\% 45
\& 45
_ 45
\| 45

\rho 186
\rightaligned 225
\rm 115
\rma 116
\rmb 116

Appendix C Index of commands 304

\rmc 116
\rmd 116
\rmx 116
\rmxx 116
\roman 115
\rotate 268

s
\sans 115
\sansserif 115
\sc 116
\scedilla 184
\section 129
\seeindex 162
\serif 115
\sethyphenatedurlafter 177
\sethyphenatedurlbefore 177
\sethyphenatedurlnormal 177
\setupalign 224
\setuparranging 95
\setupbackgrounds 122
\setupblank 213
\setupbodyfont 112, 114
\setupbottomtexts 106
\setupcapitals 193
\setupcaption 278
\setupcaptions 278
\setupcharacterkerning 197
\setupcolors 122
\setupcolumns 238
\setupcombinedlist 148
\setupcounter 233
\setupdescription 250
\setupendnotes 233
\setupenumeration 252
\setupexternalfigures 266
\setupfillinlines 253
\setupfloat 280
\setupfloats 280
\setupfooter 104
\setupfootertexts 102, 105
\setupfootnotes 233
\setupframed 256

\setupframedtext 256
\setuphead 132
\setupheader 104
\setupheadertexts 102, 105
\setupheadnumber 136
\setupheads 132
\setupheadtext 147
\setuphyphenmark 199
\setupindenting 209
\setupinteraction 174
\setupinterlinespace 220
\setuplabeltext 203
\setuplanguage 202
\setuplayout 93
\setuplinenote 230
\setuplinenumbering 223
\setuplines 222
\setuplist 151
\setupmargindata 107
\setupnarrower 210
\setupnotation 233
\setupnotations 233
\setupnote 233
\setupnotes 233
\setuppagenumbering 98
\setuppapersize 86
\setupparagraphs 239
\setupregister 163, 164
\setupsectionblock 144
\setupspacing 196
\setupstretched 197
\setuptables 270
\setuptextrule 255
\setuptolerance 218, 226
\setuptoptexts 106
\setuptype 195
\setuptyping 195
\setupurl 177
\setupuserpagenumber 98
\setupwhitespace 211
\showbodyfontenvironment 118
\showcolor 124
\showcolorcomponents 125

Appendix C Index of commands 305

\showfont 114
\showframe 92
\showinstalledlanguages 200
\showlayout 92
\showsetups 92
\showsymbolset 190
\sigma 186
\sl 116
\sla 116
\slanted 116
\slantedbold 116
\slb 116
\slc 116
\sld 116
\slx 116
\slxx 116
\smalcaps 116
\smallbodyfont 118
\smallbold 118
\smallbolditalic 118
\smallboldslanted 118
\smallitalicbold 118
\smallslanted 118
\smallslantedbold 118
\somewhere 172
\space 198
\ss 115, 184
\ssa 116
\ssb 116
\ssc 116
\ssd 116
\ssx 116
\ssxx 116
\start 62
\startalignment 225
\startappendices 143
\startbackmatter 143
\startbodymatter 143
\startbuffer 256
\startchapter 129
\startchemical 256
\startcolor 124
\startcolumns 238

\startcombination 256, 279
\startcomponent 80
\startenvironment 79
\startfiguretext 265
\startformula 256
\startframedtext 255
\startfrontmatter 143
\starthiding 257
\startitem 244
\startitemize 243
\startlegend 257
\startlinecorrection 257
\startlinenumbering 222
\startlines 221
\startlocalfootnotes 232
\startMPpage 90
\startmode 257
\startnarrower 210
\startnotmode 257
\startopposite 257
\startpacked 212
\startpagefigure 90
\startpart 129
\startproduct 80
\startproject 82
\startquotation 257
\startsection 129
\startsetups 61
\startstandardmakeup 257
\startsubject 129
\startsubsection 129
\startsubsubsection 129
\startsubsubsubject 129
\startsubsubsubsection 129
\startsubsubsubsubject 129
\startTEXpage 90
\starttabulate 270
\starttext 75
\starttextrule 255
\starttitle 129
\starttyping 194
\stop 62
\stoptext 75

Appendix C Index of commands 306

\stretched 196
\structureuservariable 132
\sub 245
\subject 129
\subsection 129
\subsubject 129
\subsubsection 129
\subsubsubject 129
\subsubsubsection 129
\subsubsubsubject 129
\support 115
\switchtobodyfont 114
\sym 245
\symbol 190

t
\TB 274
\TeX 20, 21
\tau 186
\tcedilla 184
\teletype 115
\tex 195
\textheight 95
\textreference 168
\textrule 254
\␣ 198
\textwidth 95
\tf 116
\tfa 116
\tfb 116
\tfc 116
\tfd 116
\tfx 116
\tfxx 116
\theta 186
\thinrule 253
\thinrules 253
\title 129
\tolerance 218
\translate 205
\tt 115
\tta 116
\ttb 116

\ttc 116
\ttd 116
\ttx 116
\ttxx 116
\tx 116
\txx 116
\typ 195
\type 194

u
\u 183
\uacute 183
\ubreve 183
\ucircumflex 183
\udiaeresis 183
\ugrave 183
\umacron 183
\underbar 255
\underbars 255
\unhyphenated 217
\upsilon 186
\usecolors 124
\useexternalfigure 261
\usemodule 200
\useregime 70
\userpagenumber 100
\usesymbols 190
\useURL 176
\utilde 183

v
\VL 273
\varepsilon 186
\varkappa 186
\varphi 186
\varpi 186
\varrho 186
\varsigma 186
\vartheta 186
\vbox 102
\vfill 214
\vl 253
\vskip 214

Appendix C Index of commands 307

w
\WORD 191
\WORDS 191
\Word 191
\Words 191
\whitespace 212
\widowpenalty 226
\word 191
\wordright 225

\writebetweenlist 155
\writetolist 154

x
\xi 186

z
\zeta 186

	Preface
	1 ConTEXt: a general overview
	1.1 What is ConTEXt then?
	1.2 Typesetting texts
	1.3 Markup languages
	1.4 TEX and its derivatives
	1.4.1 TEX engines
	1.4.2 Formats derived from TEX

	1.5 ConTEXt
	1.5.1 A short history of ConTEXt
	1.5.2 ConTEXt versus LATEX
	1.5.3 A good understanding of the dynamics of working with ConTEXt
	1.5.4 Getting help with ConTEXt

	2 Our first source file
	2.1 Preparing the experiment:essential tools
	2.2 The experiment itself
	2.3 The structure of our example file
	2.4 Some additional details on how to run “context”
	2.5 Managing errors

	3 Commands and other fundamental concepts of ConTeXt
	3.1 ConTEXt's reserved characters
	3.2 Commands themselves
	3.3 Scope of the commands
	3.3.1 Commands that do or do not require a scope to be indicated
	3.3.2 Commands requiring an express indication of where they begin and end (environments)

	3.4 Command operation options
	3.4.1 Commands that can work in several different ways
	3.4.2 Commands that configure how othercommands work (\setupSomething)
	3.4.3 Setting up customised versions of configurable commands (\defineSomething)

	3.5 Summary of command syntax andoptions, and on the use of square and curly brackets when calling them
	3.6 The official list ofConTEXt commands
	3.7 Defining new commands
	3.7.1 General mechanism for definingnew commands
	3.7.2 Creating new environments

	3.8 Other fundamental concepts
	3.8.1 Groups
	3.8.2 Dimensions

	3.9 Self-learning method for ConTEXt

	4 Source files and projects
	4.1 Encoding source files
	4.2 Characters in the source file(s) that ConTEXt treats in a special way
	4.2.1 Blank spaces (white space) and tabs
	4.2.2 Line breaks
	4.2.3 Rules/dashes

	4.3 Simple and multifile projects
	4.4 Structure of the source file in simple projects
	4.5 Multifile management in TEX style
	4.5.1 The \input command
	4.5.2 ReadFile and \readfile

	4.6 ConTEXt projects as such
	4.6.1 Environment files
	4.6.2 Components and products
	4.6.3 Projects as such
	4.6.4 Common aspects of environments,components, products and projects

	5 Pages and document pagination
	5.1 Page size
	5.1.1 Setting page size
	5.1.2 Using non-standard page sizes
	5.1.3 Changing the page size at any point in the document
	5.1.4 Adjusting the page size to its contents

	5.2 Elements on the page
	5.3 Page layout (\setuplayout)
	5.3.1 Assigning a size to the different page components
	5.3.2 Adapting the page layout
	5.3.3 Using multiple page layouts
	5.3.4 Other matters related to page layout
	A Distinguishing between odd and even pages
	B Pages with more than one column

	5.4 Page numbering
	5.5 Forced or suggested page breaks
	5.5.1 The \page command
	5.5.2 Joining certain lines or paragraphs to prevent a page break from being inserted between them

	5.6 Headers and footers
	5.6.1 Commands for establishing the content of headers and footers
	5.6.2 Formatting headers and footers
	5.6.3 Defining specific headers and footers and linking them to section commands

	5.7 Inserting text elements in page edges and margins

	6 Fonts and colours in ConTeXt
	6.1 Typographical fonts included in“ConTEXt Standalone”
	6.2 Font features
	6.2.1 Fonts, styles and style variants
	6.2.2 Font size

	6.3 Setting the document's main font
	6.4 Changing font or some font features
	6.4.1 The \setupbodyfont and \switchtobodyfont commands
	6.4.2 Quickly changing style, alternative and size
	6.4.3 Defining commands and key words for font sizes, styles and alternatives

	6.5 Other matters relating to the use of some alternatives
	6.5.1 Italic, slanted and emphasis
	6.5.2 Small caps and fake small caps

	6.6 Use and configuration of colours
	6.6.1 Procedures for typesetting text fragments in colour
	6.6.2 Changing the document's background and foreground colour
	6.6.3 Commands for colouring particular textfragments
	6.6.4 Predefined colours
	6.6.5 To see available colours
	6.6.6 Defining our own colours

	7 Document structure
	7.1 Structural divisions in documents
	7.2 Section types and their hierarchy
	7.3 Syntax common to section commands
	7.4 Format and configuration of sections and their titles
	7.4.1 The \setuphead and \setupheads commands
	7.4.2 Parts of a section title
	7.4.3 Controlling the numbering(in numbered sections)
	7.4.4 Title colour and style
	7.4.5 Location of number and title text
	7.4.6 Commands or actions to be carried out before or after printing the title
	7.4.7 Other configurable features
	7.4.8 Other \setuphead options

	7.5 Defining new section commands
	7.6 The document's macrostructure

	8 Table of contents, indexes, lists
	8.1 Table of contents
	8.1.1 Overall view of the table of contents
	8.1.2 Completely automatic table of contents with a title
	8.1.3 Automatic table of contents without a title
	8.1.4 Elements to incorporate in the TOC: the criterium option
	8.1.5 Layout of the table of contents: the alternative option
	8.1.6 Format of TOC entries
	8.1.7 Manual adjustments to the table of contents
	A Including unnumbered sections in the TOC
	B Manually adding entries to the TOC
	C Exclude a particular section from the TOC belonging to a section type that is included in the TOC
	D Section title text which differs in the TOC from the title in the body of the document

	8.2 Lists, combined lists and table of contents based on a list
	8.2.1 Lists in ConTEXt
	8.2.2 Lists or indexes of images, tables and other items
	8.2.3 Combined lists

	8.3 Index
	8.3.1 Generating the index
	A The prior definition of the entries in the index and the marking of the points in the source file that refer to them
	B Generating the final index

	8.3.2 Formatting the subject index
	8.3.3 Creating other indexes

	9 References and hyperlinks
	9.1 Reference types
	9.2 Internal references
	9.2.1 The label in the reference target
	9.2.2 Commands at the reference point of origin for retrieving data from the target point
	A Basic commands for retrieving information from a label
	B Retrieving information associated with a label with the \ref command
	C Detecting where the link leads to

	9.2.3 Automatic generation of prefixes to avoid duplicate labels

	9.3 Interactive electronic documents
	9.3.1 Enabling interactivity in documents
	9.3.2 Basic configuration for interactivity

	9.4 Hyperlinks to external documents
	9.4.1 Commands that help typeset the hyperlinks but do not create them
	9.4.2 Commands that establish the link

	9.5 Creating bookmarks in the final PDF

	10 Characters, words, text and horizontal space
	10.1 Getting characters not normally accessible from the keyboard
	10.1.1 Diacritics and special letters
	10.1.2 Traditional ligatures
	10.1.3 Greek letters
	10.1.4 Various symbols
	10.1.5 Defining characters
	10.1.6 Use of predefined symbol sets

	10.2 Special character formats
	10.2.1 Upper case, lower case and fake small caps
	10.2.2 Superscript or subscript text
	10.2.3 Verbatim text

	10.3 Character and word spacing
	10.3.1 Automatically setting horizontal space
	10.3.2 Altering the space between characters within a word
	10.3.3 Commands for adding horizontal space between words

	10.4 Compound words
	10.5 The language of the text
	10.5.1 Setting and changing the language
	10.5.2 Configuring the language
	10.5.3 Labels associated with particular languages
	10.5.4 Some language-related commands
	A Date-related commands
	B The \translate command
	C The \quote and \quotation commands

	11 Paragraphs, lines and vertical space
	11.1 Paragraphs and their characteristics
	11.1.1 Automatically indenting first lines of paragraphs
	11.1.2 Special paragraph indenting

	11.2 Vertical space between paragraphs
	11.2.1 \setupwhitespace
	11.2.2 Paragraphs with no extra vertical space between them
	11.2.3 Adding additional vertical space at a particular point in the document
	11.2.4 \setupblank and \defineblank
	11.2.5 Other procedures for achieving more vertical space

	11.3 How ConTEXt builds lines that form paragraphs
	11.3.1 Use of the reserved ‘~’ character
	11.3.2 Word hyphenation
	11.3.3 Tolerance level for line breaks
	11.3.4 Forcing a line break at a certain point

	11.4 Interline space
	11.5 Other matters relating to lines
	11.5.1 Converting line breaks in the source file into line breaks in the final document
	11.5.2 Line numbering

	11.6 Horizontal and vertical alignment
	11.6.1 Horizontal alignment
	11.6.2 Vertical alignment

	12 Special constructions and paragraphs
	12.1 Footnotes and endnotes
	12.1.1 Types of notes in ConTEXt and commands associated with them
	12.1.2 A close look at footnotes and endnotes
	12.1.3 Local notes
	12.1.4 Creating and using customised types of notes
	12.1.5 Configuring notes
	12.1.6 Temporary excluding notes when compiling

	12.2 Paragraphs with multiple columns
	12.2.1 The \startcolumns environment
	12.2.2 Parallel paragraphs

	12.3 Structured lists
	12.3.1 Selection the kind of list and separator between items
	A Unordered lists
	B Ordered lists

	12.3.2 Inputting the items in a list
	12.3.3 Basic list configuration
	12.3.4 Additional list configuration
	12.3.5 Simple lists with the \items command
	12.3.6 Predetermining list behaviour and creating our own list types

	12.4 Descriptions and enumerations
	12.4.1 Descriptions
	12.4.2 Enumerations

	12.5 Lines and frames
	12.5.1 Simple lines
	12.5.2 Lines linked to text
	12.5.3 Framed words or texts

	12.6 Other environments and constructions of interest

	13 Images, tables and other floating objects
	13.1 What are floating objects and what do they do?
	13.2 External images
	13.2.1 Directly inserting images
	13.2.2 Inserting an image with \placefigure
	13.2.3 Inserting images integrated into a text block
	13.2.4 Configuration and transformation of images inserted
	A Insert command options that cause some transformation of the image
	B Specific commands for transforming an image

	13.3 Tables
	13.3.1 General ideas about tables and their placement in the document
	13.3.2 Simple tables with the tabulate environment

	13.4 Aspects common to images, tables and other floating objects
	13.4.1 Floating object insertion options
	13.4.2 Configuring floating object titles
	13.4.3 Combined insertion of two or more objects
	13.4.4 General configuration of floating objects

	13.5 Defining additional floating objects

	A Installing, configuring and updating ConTEXt
	1 Installing and configuring“ConTEXt Standalone”
	1.1 Installation
	1.2 Running “ConTEXt Standalone”
	1.3 Updating the version of “ConTEXt Standalone” or returning to an earlier version

	2 Installing LMTX
	2.1 The installation itself
	2.2 Installing extension modules in LMTX
	2.3 Updating LMTX
	2.4 Creating a file that loads the variables into memory needed for LMTX (only GNU/Linux systems)

	3 Using several versions of ConTEXt on the same system (only for Unix-type systems)

	B Commands for generating maths and non-maths symbols
	C Index of commands

