
Flux CD
D1 Reference Architecture

Guide

Rationale and security considerations for the adoption of
Flux CD D1 reference architecture on Kubernetes

Table of Contents

Executive Summary 2
Introduction and Objective 3
Background 5

Organisation Suitability 5
User Personas 5

Low Level Design Description 8
Cluster Operating Model and Architecture 8
Example Workflows 14

Further Implementation Guidance 27
Securing GitHub 27
Multi-Tenancy Considerations 33
Other Security and Availability Considerations 38

About ControlPlane Enterprise for Flux CD 40
Appendix 42

Administrative Tasks 42
About 49
Team 49
Reviewers 49

controlplane 1

Executive Summary
Flux CD, a cloud native Continuous Deployment tool, has emerged as a crucial
component in modern GitOps pipelines. In this guide we delve into the intricacies of
deploying a Flux CD reference architecture, offering a comprehensive understanding
of the project’s functionality, implementation, and best practices, to aid organisations
seeking to harness the power of Flux CD for streamlined Continuous Deployment in
cloud native environments.

It is mainly intended for those with some previous Flux knowledge, but whether you
are a seasoned DevOps practitioner or a newcomer to the field, we will equip you
with the knowledge and insights needed to succeed in your Flux CD journey.

We provide essential background information, detailing the prerequisites and
suitability of Flux CD for various organisational setups. Through the delineation of
user personas and roles, we elucidate how Flux CD fits into different team dynamics,
ensuring a tailored approach to implementation.

The guide then delves into the low-level design description of Flux CD, elucidating
the cluster operating model and architecture, and exploring the intricacies of the
d1-fleet, d1-infra, and d1-apps repositories and their roles within the Flux ecosystem.

Drawing on real-world examples we outline various workflows, including the process
of adding a new Application team and managing applications effectively, with
implementation guidance addressing crucial aspects of GitOps such as GitHub as a
production service, user access control, and authorization.

We further cover Flux CLI usage and alternatives, namespace RBAC considerations,
and address potential security concerns, including tenant denial of service abuse and
the role Kyverno policies play within Flux to help isolate tenants.

Finally, readers will find additional information about the subscription-based
ControlPlane Enterprise for Flux, which supports the full-time employment of core
maintainers to work on the upstream Flux CD project, and an appendix containing
the most common administration tasks.

controlplane 2

Introduction and Objective
In modern cloud native computing, efficiently and securely managing infrastructure
and applications is crucial. Cloud native technologies have exposed the limitations of
traditional infrastructure management methods in meeting the demands of agility,
scalability, security and reliability.

GitOps embodies the principles of Git, the popular version control system, to
automate the deployment, monitoring, and management of cloud environments.
GitOps is used for operating modern cloud native infrastructure and applications, at
its core, GitOps treats infrastructure as code, enabling teams to define, track, and
version their infrastructure configurations alongside application code.

GitOps promotes a declarative approach to infrastructure management, where the
desired state of the system is defined in code and stored in a Git repository.
Continuous synchronisation between the desired state described in the Git
repository and the actual state of the system is achieved through automated
workflows and reconciliation mechanisms.

As organisations continue to embrace cloud native technologies and adopt DevOps
practices, GitOps emerges as a foundational framework for managing cloud
environments at scale. In this guide, we explore Flux, a leading GitOps tool, and its
role in revolutionising cloud operations by streamlining the deployment, monitoring,
and management of Kubernetes clusters and cloud native applications. We delve
into the features, benefits, and best practices of Flux, illustrating how it enables
organisations to embrace GitOps principles and unlock the full potential of cloud
native ecosystems with improved security.

The purpose of this guide is to provide a comprehensive reference architecture
demonstrating how Flux can address the needs of organisations with multiple teams
looking to deploy applications on Kubernetes using GitOps principles. The guide
aims to build upon the existing Flux documentation, showcasing how Flux can
orchestrate multi-tenant clusters while catering to the different teams and
stakeholders within an organisation.

We build upon the existing Flux documentation, which features a quickstart guide
orchestrating a single cluster, to demonstrate how Flux can orchestrate large fleets of
multi-tenant clusters with the D1 Reference Architecture.

This guide caters for the different teams and stakeholders within an organisation (i.e.
platform, services and application teams), whilst maintaining scalability, operational
efficiency and security. We focus on the main challenges organisations face when

controlplane 3

adopting Flux CD in multi-team, multi-tenant environments, providing solutions to
difficulties such as:

● Segregating responsibilities and access between platform, services, and
application teams

● Maintaining security and compliance in a multi-tenant environment
● Ensuring scalability and operational efficiency in large-scale deployments
● Implementing best practices for GitOps workflows and repository structures

After completing this guide, readers will have a clear understanding of how to
implement a Flux CD reference architecture that caters to the needs of their specific
organisational structure. They will be equipped with the knowledge and best
practices to:

● Set up and manage multi-tenant Kubernetes clusters using Flux CD
● Define and maintain a repository structure that supports collaboration

between platform, services, and application teams
● Implement secure GitOps workflows and access control mechanisms

The reference architecture detailed within the next sections can be deployed with
either Enterprise for Flux CD or the open source version of Flux, as both have feature
parity.

This document is the first of a series of reference architectures designed to meet the
complex needs of different organisational structures and ways of working.

controlplane 4

Background

Organisation Suitability
Organisations that would be suitable for this particular reference architecture
implementation are likely to meet some of the following criteria:

● Homogenisation of application packaging into containers
● Choice of Kubernetes as the orchestration platform
● A large number of clusters, or requirements to group applications resulting in

multi-tenant, multi-cluster fleets
● Namespace as a Service operating model that involves a central Platform

team responsible for Kubernetes cluster provisioning, fleet maintenance, and
user experience, with application teams as cluster tenants

● Service teams responsible for maintaining and operating an individual service
across a fleet of clusters (e.g. observability/security tools)

● GitHub (or equivalent) qualifies as a production-level service in terms of
security and availability

User Personas
When operating Kubernetes clusters at scale, it is critical to define the
responsibilities of those who are setting up the Kubernetes environment from those
who use that Kubernetes environment. Within this document, we have named the
former the Platform team, while the latter is referred to as the Application team.

controlplane 5

Platform Team

Characteristic Description

Goals ● Provisioning and maintenance of multi-tenant
Kubernetes clusters across the organisation

● Providing a tenant-friendly experience
● Adhering to SLA uptime and security requirements

Behaviours ● Plans feature releases that are tested and trialled in
non-production environments first (these may include
feature deprecations i.e. Kubernetes API deprecations)

● Issues hotfix releases to all environments to address
availability issues and bugs

● Maintains the same configuration in all clusters
● Uses cluster admin console/CLI access to troubleshoot

issues

Motivations ● Wants a simple way of managing clusters en masse
● Prefers minimal cluster-specific configuration
● Wants to eradicate cluster configuration drift

Pain Points ● Application teams not configuring their applications in
accordance with best practice

● Managing releases at scale, obtaining a feedback loop to
understand when new releases break application
workloads

Risk Behaviours ● Will not apply security policy to own namespaces and
will run privileged platform workloads without assessing
for least privilege on the cluster

controlplane 6

Application Team

Characteristic Description

Goals ● Building and running containerised applications on
Kubernetes

Behaviours ● Has different configurations between non-production
and production environments (i.e. log levels, external
endpoint addresses)

● Requires multiple namespaces in non-production
clusters

● Aims to release as frequently as possible.

Motivations ● A simple mechanism for consuming Kubernetes
● Instant deployment feedback

Pain Points ● May not be Kubernetes configuration experts
● Kubernetes platform changes may cause breaking

changes to their application

Risk Behaviours ● Will configure their applications by any means possible
to get them working, which without preventive controls
could cause security misconfigurations or unusual
configurations for the Platform team to support

● Will turn off namespace level controls to get their
applications working if required

controlplane 7

Low Level Design Description

Cluster Operating Model and Architecture

D1 Architecture Repositories Structure
To enable the requirements and needs of the user personas described in the
previous section, the next repository structure has been created:

Figure 1: D1 Architecture - repository structure

d1-fleet Repository

Utilised by the Platform team only, who are admins on all clusters in order to:

● Bootstrap Flux with multi-tenancy restrictions on fleet clusters
● Configure the delivery of platform components (defined in d1-infra repository)
● Configure the delivery of applications (defined in d1-apps repository)

controlplane 8

d1-infra Repository

This repository is managed by the Platform team who are responsible for the
Kubernetes infrastructure. This repository is used to define the Kubernetes
infrastructure components such as:

● Cluster add-ons (CRD controllers, admission controllers, monitoring, logging,
etc.)

● Cluster-wide definitions (Namespace, IngressClass, StorageClass, etc.)
● Pod security standards
● Network policies

In larger organisations, where dedicated teams may be responsible for services (i.e. a
security team managing policies, secrets team managing secrets operators, or
observability team managing Prometheus), these teams will be configuring their
components within this repository.

d1-apps Repository

Each Application team responsible for the delivery of an application running on the
Kubernetes cluster fleet will be allocated an Application Repository, hosting
application components such as:

● Flux HelmRepository CR pointing to the application Helm charts in container
registries

● Flux HelmRelease CR for the applications with custom configuration per
environment

This repository is reconciled on the cluster fleet by Flux as the namespace admin,
and can't contain Kubernetes cluster-wide definitions such as CRDs, ClusterRoles,
Namespaces, etc.

Access to this repository is restricted to the dev teams and the Flux bot account. The
Flux bot should be the only account with direct push access to themain branch.

Branching Strategy
The main branch of the d1-fleet repo controls all Flux instances, and the
Kustomization/GitRepository pointers to the d1-infra and d1-apps repositories.

The infra components and applications on Staging clusters are controlled by the
main branch of the respective repositories, whilst Production clusters are
synchronised against the production branch. This permits the Flux image

controlplane 9

https://github.com/controlplaneio-fluxcd/d1-fleet?tab=readme-ov-file#flux-github-pat-for-tenant-components

automation controllers to automatically deploy updated Helm Charts in Staging
whilst ensuring that protected branches (a Pull Request is needed to merge the
content into the production branch) and appropriate release controls are applied to
the Production environment. See Protected branches for further details.

You can also refer to the diagram within the D1 Architecture Repositories Structure
section of the document.

Update Automation
Flux enables continuous deployment through image automation controllers so new
application versions can be deployed to any environment. Within the D1 architecture,
this is used to automate deployments to Staging clusters.

During the Staging cluster bootstrap, the image-reflector-controller and
image-automation-controller are deployed (see here). It is not necessary to deploy
the automation components to Production clusters. Pushes to the main branches
will be performed by at least one Staging cluster.

These controllers work together to automatically update the HelmReleases stored in
themain branch. More details on the process can be found here.

This automation is built around different components:
1. ImageRepository CR. This tells Flux which container registry to scan for new

tags
2. ImagePolicy CR. This tells Flux which semver range to use when filtering tags
3. Specific markers on the affected manifests to tell where Flux should update

the version and with which policy (i.e. in a HelmRelease
.spec.chart.spec.version)

4. ImageUpdateAutomation CR. This tells Flux which Git repository to write image
updates to. The PAT associated with the GitRepository CR used by
ImageUpdateAutomation must have enough privileges to perform pushes on
themain branch (see here)

As soon as Flux detects an update then:
5. The HelmReleasemanifests will be updated on themain branch
6. The HelmRelease on all the Staging clusters will be reconciled to the new

version

To update Production clusters:

controlplane 10

https://fluxcd.io/flux/guides/image-update/
https://semver.org/

7. Open and approve a pull request to the production branch
8. Wait for Flux to reconcile the updated HelmRelease CRs on all the Production

clusters

Figure 2: Update Automation

controlplane 11

Following the d1 model, ImageRepository, ImagePolicy and manifest markers are
pushed to the repository by the tenant responsible. ImageUpdateAutomation CR and
the RBAC needed to reconcile the update automation components are deployed on
the fleet repository by the Platform team for each tenant.

controlplane 12

Example Workflows

Cluster Onboarding
The bootstrap procedure is a one-time operation that sets up the Flux controllers on
the cluster (in this case a Staging cluster), and configures the delivery of platform
components and applications.

The bootstrap procedure requires the following:
● Flux CLI
● A Github Bot Account Personal Access Token (PAT) with suitable permissions
● Cluster admin permissions on a provisioned Kubernetes cluster

The Flux CLI or Terraform Module can be called within a cluster provisioning pipeline
or used from an administrator's machine. See the flux bootstrap command for
further details, discussion on Flux CLI usage can be found in Flux CLI usage &
Alternatives.

The Flux CLI will use the bot PAT to push two commits to the d1-fleet repository:
1. The first commit is used to write the configuration of the

clusters/staging/flux-system/gotk-components.yaml file, which contains the
flux-system Namespace, RBAC, NetworkPolicies, CRDs and the controller
Deployments

2. Second commit to create the clusters/staging/flux-system/gotk-sync.yaml file
which contains the Flux GitRepository and Kustomization custom
resources for setting up the cluster reconciliation

This Flux CLI will perform the following actions on the cluster:
3. Creates a Kubernetes Secret named flux-system in the flux-system

namespace that contains the bot PAT
4. Builds the cluster/staging/flux-system kustomize overlays with the

multi-tenancy patches and applies the generated manifests to the cluster to
kick off the reconciliation

From this point on, the Flux controllers will:
5. Reconcile the cluster state with the desired state within the fleet repository
6. The tenant folder within the fleet repository contains GitRepository CRs that

point to d1-infra and d1-apps repositories as further sources, as well as
bootstrap configuration (namespace/RBAC) for those tenants

controlplane 13

https://fluxcd.io/flux/cmd/flux_bootstrap/

7. The Flux controllers subsequently reconcile the cluster state with the desired
state within the d1-infra and d1-apps repositories

controlplane 14

Figure 3: Example Workflow - Cluster onboarding

controlplane 15

Adding a New Infra Component
This process is followed by the Platform team to add a new infrastructural
component to the fleet. The diagram below shows where and when the manifests
for a new infra component are pushed to the different repositories.

Figure 4: Example Workflow - Adding a new infrastructure component

controlplane 16

To onboard a component from the d1-infra repository, the Platform team should fulfil
the following requirements:

● Read-write access to d1-fleet repository
● Read-write access to d1-infra repository, onmain and on production branches

The Platform team should then push on d1-infra main branch:
1. Add the infra component manifests and overlay to the

[d1-infra]/components/NEW_COMPONENT/controllers folder, in order to
a. Deploy the needed Namespace
b. Deploy a new Flux ServiceAccount that is going to be responsible for

the reconciliation of all the controllers belonging to that namespace
c. Deploy a new ClusterRoleBinding that will assign cluster-admin

ClusterRole to the Flux SA
d. Deploy the component itself (i.e. using HelmRelease) and any needed

CRDs
2. Add the needed manifests and overlay to the

[d1-infra]/components/NEW_COMPONENT/configs, in order to deploy any
configuration and custom resources used by that component

3. Automatize updates (optional):
a. Add ImageRepository and ImagePolicy CR to [d1-infra]/update folder

and reference it in [d1-infra]/kustomization.yamlmanifest
b. Add all the needed markers for the update automation workflow

Then, the team should push on d1-fleet main branch to start the reconciliation:
4. (Optional) add any useful cluster variable to

[d1-fleet]/clusters/CLUSTER/runtime-info.yaml ConfigMap
5. Add new Kustomizations in [d1-fleet]/tenants/infra/components that will act

as a pointer to the newly created manifests in controllers and configs
folders of d1-infra repo. An explicit dependency between controllers and
configs has to be declared, in order for the controller to be deployed before
the configs

6. Add the reference to this Kustomization in
[d1-fleet]/tenants/infra/components/kustomization.yaml in order to start the
reconciliation for this component

Flux will then:
7. Reconcile the infra tenant and then notice two new Kustomizations for the

component (for controllers and configs)
8. Reconcile the RBAC and namespace from

[d1-infra]/components/NEW_COMPONENT/controllers folder
(HelmRepository, HelmRelease, etc)

controlplane 17

Unset

9. Reconcile the HelmRepository, HelmRelease from
[d1-infra]/components/NEW_COMPONENT/controllers folder

10. Reconcile the objects from [d1-infra]/components/NEW_COMPONENT/configs
folder

Finally, the Platform team will open and approve a pull request on the d1-infra
production branch to apply the changes to the Production cluster.

An infrastructural tenant might be organised in the following way:

component/
├── controllers # CRD definitions and controllers
│ ├── base # common definitions (NS, RBAC, HelmRepositories, HelmReleases)
│ ├── production # production specific HelmRelease values
│ └── staging # staging specific HelmRelease values
└── configs # Custom Resources of controllers

├── base # common definitions
├── production # production specific values
└── staging # staging specific values

You can find a practical example in the Appendix.

controlplane 18

Adding a New Application Team/Tenant
The Platform team should be responsible for adding a new tenant for each
Application team, following the process below.

Figure 5: Example Workflow - Adding a new Application team/tenant

controlplane 19

To onboard an application tenant the platform should fulfil the following
requirements:

● Read-write access to d1-fleet repository
● Knows the PAT for the new tenant (see here for further considerations)

The Platform team should prepare the d1-fleet repo for the new tenant in the
following way:

1. Create a secret storing the PAT for this tenant repo on all the affected clusters,
via the flux create secret git command (see here for additional consideration
on this topic)

2. Create a new folder [d1-fleet]/tenants/NEW_TENANT that will store all the
tenant manifests (i.e. [d1-fleet]/tenants/apps. This will be populated by
resources for each application (Namespace, GitRepository, Kustomization,
RBAC, etc)

3. Make sure all the resources deployed by this tenant can be easily filtered by a
label

4. Push a Kyverno policy in [d1-fleet]/tenants/NEW_TENANT/policies to sync all
the secrets stored in flux-system Namespace belonging to this tenant to the
application namespaces. Doing so will allow Flux controllers to be able to
retrieve the needed secrets without crossing namespaces. This can be done
using the previously declared label

5. Push a new Kustomization CR to each affected cluster in
[d1-fleet]/clusters/CLUSTER/NEW_TENANT-tenant.yaml that will act as a
pointer to the newly created folders and files

6. (optional) Push the manifests needed for the update automation:
a. Dedicated Namespace apps-update
b. GitRepository CR that will act as a pointer to the new tenant Git

repository, with proper push permissions on themain branch
c. ImageUpdateAutomation CR that will update the manifests in the new

tenant Git repository in the components folder
d. RBAC (ServiceAccount + RoleBinding) used to reconcile the update

components for this new tenant
e. Kustomization CR that will start reconciliation for the the update folder
f. Kustomize overlay to include all the resources declared before and to

add the toolkit.fluxcd.io/role: automation label

Flux will then:
7. Reconcile the tenants and then notice a new Kustomization for the new

tenant

controlplane 20

Unset

8. Start reconciling the new tenant folder [d1-fleet]/tenants/NEW_TENANT
9. Reconcile the ClusterPolicy CRs

Namespaces and RBAC manifests for the tenant might be created using the flux
create tenant command.

The Application team responsible for the new application tenant will have to
manage their manifests inside the newly pointed Git repository.

An application tenant might be organised in namespaces in the following way:

.
├── components
│ ├── <namespace>
│ │ ├── base
│ │ ├── production
│ │ └── staging
│ └── <namespace>
│ ├── base
│ ├── production
│ └── staging
└── update

Managing an Application
Manifests that deploy namespaced objects belonging to the app are managed in the
proper app tenant. Adding a new app will require joint work between the Platform
team and the Application team responsible for that application. The Application
team should identify the needed resources that can’t be deployed by a namespaced
admin role to the Platform team. This is because they cannot be automatically
reconciled by the Flux role that will be assigned to the application’s namespace

controlplane 21

https://fluxcd.io/flux/cmd/flux_create_tenant/
https://fluxcd.io/flux/cmd/flux_create_tenant/

Figure 6: Example Workflow - Managing an application

To onboard a new application in an existing tenant the Platform team should fulfil
the following requirement:

● Read-write access to d1-fleet repository

The Application team should fulfil the following requirement:
● Read-write access to the application tenant

The Application team should push on the application tenant:
1. Push the needed manifests (i.e. HelmRepository and HelmRelease) on their

controlplane 22

Unset

repository
2. Push any needed environment overlays
3. Pull request onmain branch to apply changes on Production clusters
4. (optional) Push the manifests needed for the update automation

(ImagePolicy and ImageRepository)

The Platform team should then push on d1-fleet repo all the manifests to prepare the
environment creating non-namespaced objects:

5. Namespace
6. RBAC (ServiceAccount + RoleBinding) for Flux reconciliation for that specific

application
7. GitRepository CR that will act as a pointer to the tenant Git repository
8. Kustomization CR to start the reconciliation for that repo on the application

folder
9. Kustomize overlay to include all the resources declared before

Make sure all the resources above are tagged with a tenant identifier (see here).

Flux will then:
10. Reconcile the application tenant and then notice a new Kustomization for

the application
11. Reconcile RBAC, CRDs and Namespace
12. Reconcile the objects from [d1-apps]/components/APP folder

(HelmRepository, HelmRelease, etc)

This would be a possible structure for an application folder in d1-fleet repo:

./tenants/apps/components/<namespace>/
├── kustomization.yaml
├── namespace.yaml
├── rbac.yaml
└── sync.yaml

controlplane 23

Further Implementation Guidance

Securing GitHub
The D1 reference architecture uses GitHub as the version control system. The next
sections detail the security aspects to be taken into account for a safer Flux
integration. For further information about GitHub security controls and how to
implement them, please visit the GitHub official documentation.

Having permissions to push configuration into the infra or fleet repositories is
equivalent to having cluster-admin permissions over the cluster, as the account
which is reconciling the state has been granted cluster-admin permissions. With the
d1-apps repository, the blast radius would be reduced, as anything the applications
team pushes to the d1-apps repository will be reconciled with namespace admin
permissions. Hence, securing GitHub becomes critically important within Flux d1, or
any GitOps architecture.

The security measures detailed below are overall guidance, but there may be
additional considerations to be taken into account for each specific scenario.

GitHub as a Production Service
It is necessary to analyse the tolerance of the target organisation to a potential Flux
outage. A GitHub outage would prevent the deployment of workloads within the
onboarded clusters. The fallback would be to resort to manual deployment with
administration of the cluster and management of applications conducted by the
platform and Application teams respectively.

Therefore, analysing the service level agreements offered by GitHub in its different
plans is a key factor to take into account within the whole Flux D1 architecture
deployment. Internal Git repositories or mirrors may help to migitate this risk.

User Access Control and Authorisation
In order to minimise the risk of malicious deployments, any interaction with Flux
integrated repositories should only be allowed to those individuals and processes
which actually need it. In order to guarantee proper access control to the Flux
repositories the next GitHub controls should be enforced:

● Two-factor authentication: enforced for all users to prevent unauthorised
access to GitHub repositories

controlplane 24

https://docs.github.com/en

● Team access controls to the repositories: proper segregation of duties and
least privilege, using fine-grained access control to regulate access to the Flux
repositories. Using GitHub Teams and adding the necessary users within the
platform and application repositories allows granting only the necessary
permissions

○ Limit access to d1-fleet and d1-infra repositories: access to these
repositories should be reserved for Platform teammembers. Ideally, this
GitHub team might be used to authorise direct administrative cluster
access following a break glass process, in order to guarantee a 1 to 1
mapping between access to these repositories (that will be reconciled
with cluster-admin roles) and those who can gain direct administrative
cluster access (via kubectl or consoles)

○ Limit access to application repositories: repositories that store the
manifests that will deploy the applications, i.e. d1-apps, should be
reserved for Application team(s). Multiple teams will use multiple
repositories that should be added as separate tenants

In Github, personal accounts have no possibility to create specific roles, but the other
tiers permit the creation of up to three custom roles to allow more fine grained
access control to the Flux repositories. Recommended permissions to be granted for
the repositories and teams proposed above:

● Applications Team
○ d1-fleet: no permissions
○ d1-infra: no permissions
○ d1-apps: Members with write permissions, at least two admins within

the repository or two owners

● Platform Team
○ d1-fleet: write permissions, at least two admins within the repository or

two owners
○ d1-infra: write permissions, at least two admins within the repository or

two owners
○ d1-apps: see here for different alternatives

This least privilege configuration may not be fully suitable for every organisation. If
additional permissions are needed within the target organisation, it is always
advisable to keep the access permissions to the minimum possible for both the
Platform and Application team.

If it is necessary to segregate the permissions among different Application teams, it
is recommended to add a different tenant.

controlplane 25

Protected Branches
Considering the specific Flux integration with GitHub repositories, these controls are
recommended at a branch level:

● d1-fleet Repo → main branch: Pull Requests to be approved by at least two
approvers as Flux reconciles from this branch, and it is critical for cluster
service account permissions

● d1-infra Repo → main branch: Pull Requests to be approved by at least one
approver. This has the objective of having an extra review in case of
overly-permissive manifests, and to detect earlier potential deviations. Flux bot
has to be able to bypass this rule in order to automate updates on this branch.
Further explanation on how to protect the branch and allow the bypass is
given at the end of this section

● d1-infra Repo → production branch: Pull Requests to be approved by at least
two approvers, as this is the branch Flux reconciles state and it will use cluster
admin permissions, in the same way as the fleet repository

● d1-apps Repo → main branch: Pull Requests to be approved by at least one
approver, to guarantee there is at least a peer review for any new artefact to be
created within the cluster. Flux bot has to be able to bypass this rule in order
to automate updates on this branch. Further explanation on how to protect
the branch and allow the bypass is given at the end of this section

● d1-apps Repo → production branch: Pull Requests to be approved by at least
two approvers. Similarly to what happens with the Flux infra repository, this is
the branch the source controller will reconcile from and then deploy the new
artefacts using an account with namespace administration permissions. Even
though this service account does not have as wide permissions as the one
used to reconcile the Infra or Fleet repositories, it is still possible to get control
over cluster nodes deploying malicious artefacts and try to escalate privileges
from there

In order to protect the branches previously mentioned, it is necessary to create a
branch protection rule as next:

1. Go to the corresponding repository within GitHub
2. Click on Settings → branches → new protection rule
3. Check require a pull request before merging

a. Inside this rule, enable require approvals
b. Select the number of approvals suggested previously or any other

suitable for your organisation
c. Select Allow specified actors to bypass required pull requests
d. Search for the flux-bot-account you created for the bootstrap and add it

controlplane 26

4. Finally, populate the Branch Name Pattern at the top of the page with any
pattern matching the needed criteria, in the previously exposed cases, you can
populate withmain

5. At the bottom of the page click on the create button

This will request every user who wants to make a change to the branch to require a
pull request which also needs to be approved, but it will also allow the
flux-bot-account to bypass the rule and push from the Flux deployed cluster directly
tomain, using the provisioned PAT.

Signed Commits
When developers work locally, Git allows them to set the author of their changes and
the identity of the committer. This, potentially, makes it difficult for other people to
be confident that commits and tags were actually created by the author in the
commit message. To help solve this problem you can sign commits and tags. GitHub
marks signed commits and tags with a verification status.

To give other users increased confidence in the identity attributed to each user’s
commits and tags, it is recommended that all the organisation’s users are mandated
to enable the vigilant mode. With vigilant mode enabled, all of the commits and
tags are marked with their verification status.

Flux - Github Role Based Access Control (RBAC)

Bot Account

As mentioned in the Cluster Onboarding section, a new GitHub account for the Flux
bot is required. This account will be used by the Flux CLI and the Flux controllers
running on clusters to authenticate with GitHub during cluster bootstrap, fleet
(d1-fleet repo) and infrastructure (d1-infra repo) reconciliation.

For convenience, the newly created Flux bot account will be managed by the
Platform team in your organisation with the following permissions:

● Read and write access to the d1-fleet repository (required for cluster bootstrap)
● Push access to the main branch of the d1-fleet repository (required for cluster

bootstrap)
● Read and write access to the d1-infra and d1-apps repositories (required for

cluster and application reconciliation and image automation)

controlplane 27

https://docs.github.com/en/authentication/managing-commit-signature-verification/displaying-verification-statuses-for-all-of-your-commits

For these permissions to be granted, the bot account must be part of the GitHub
Organisation and also part of an Organisation Team that has read and write
permissions to all relevant repositories.

Personal Access Tokens

To allow Flux to use the bot account, Personal Access Tokens (PATs) must be
generated, these are used by the Flux controllers to authenticate using the bot
account. To prevent Application tenant privilege escalation through the use of a
shared PAT, multiple PATs are generated, a single PAT for access to fleet and infra
repositories, and a unique PAT for each new Application team with access limited to
that Application team's repositories only.

The platform PAT has the following permissions for the d1-infra and d1-fleet
repositories:

● Administration -> Access: Read-only
● Commit statuses -> Access: Read and write
● Contents -> Access: Read and write
● Metadata -> Access: Read-only

This token will be stored in all clusters to authenticate with GitHub to pull the fleet's
desired state from the d1-fleet and d1-infra repositories. The token is also used to
automate the Helm chart updates in the d1-infra repository, where the bot account
has push access to themain branch.

To start reconciling the cluster from an application tenant, a new PAT has to be
created with the following permissions:

● Administration -> Access: Read-only
● Commit statuses -> Access: Read and write
● Contents -> Access: Read and write
● Metadata -> Access: Read-only

This PAT should be limited in access to the application repository only (i.e. d1-apps).

This token will be stored in all clusters before onboarding the apps tenant (see here)
and will be used by Flux to authenticate with GitHub and to start reconciling the
tenant from the d1-apps repository. The token is also used to automate the Helm
chart updates in the d1-apps repository, where the bot account has push access to
the main branch (see here for additional considerations on read-write PAT).

controlplane 28

As soon as the clusters need to be reconciled from a new tenant, a new dedicated
PAT should be created, with limited access to the repositories belonging to that
tenant.

N.b. Deploy Keys are an option supported by Flux, but are not considered within this
guide owing to a lack of key expiry.

PAT Management Considerations

The above model is based for convenience on several trade-offs that must be
carefully considered:

● PATs are generated by the same bot account that belongs to the Platform
team with read-write permissions on all the repos. As an alternative, PATs
might be generated frommultiple accounts belonging to different teams with
limited privileges only on the repositories the PAT will have access to. However,
more granularity might require additional effort and less velocity

● PATs will be added as Kubernetes secrets by the Platform team during cluster
bootstrap and during tenant onboarding. This means that the Platform team
has to know these tokens. The Platform team might be the same team that
manages the GitHub organisation, therefore they might be responsible for
creating repositories, teams, bot accounts, and the PATs too. The team will
then inherit read and write access to all the repositories, regardless of the
tenant. This simplified model might not fit well with all organisations if a
stricter segregation of duties is in place

● Mixed and more complex responsibility models affect how, when and by
whom repositories, accounts, and PATs are created. As an example, credentials
and/or PATs might be created by a dedicated GitHub team with administrative
access to the organisation but without direct access to the clusters. Therefore,
secrets — either bot credentials or ready-to-use PATs — will have to be
securely shared between the GitHub and the Platform team, affecting how
clusters are bootstrapped and/or tenants are onboarded

● As PATs expire by design, when deciding on a PAT management model,
rotation must be taken into account. For a single Platform team-managed bot
account, it should be possible for PATs to be rotated en masse, assisted by
automation. Should separate teams be responsible for different bots and their
respective PATs, then rotation will be their responsibility. No artefact will be
pruned by Flux if the token is not renewed before the expiration date.
However, no further update from the repo will be reconciled by the cluster
until the PAT is renewed

controlplane 29

Extending to other Git Providers
This model is specifically intended to work with GitHub permission models. This may
be adapted to other Git providers as long as the PAT and team permissions are kept
as similar as possible and follow the least privilege principle. Any consideration of SLA
for the alternative provider is left to the enterprise.

Multi-Tenancy Considerations

Multi-Tenancy Configuration of Flux

Kustomization

The D1 model relies on the Flux multi-tenancy configuration. As far as this model is
concerned the tenants have restricted access to the cluster(s) according to the
Kubernetes RBAC configured by the platform admins. The repositories owned by
tenants are reconciled on the cluster(s) by Flux, under the Kubernetes account(s)
assigned by platform admins.

According to the official documentation, the Flux installation is locked down using
the following patches during the bootstrap process (see here for Production clusters
Kustomize overlay):

● Deny cross-namespace access to Flux custom resources, thus ensuring that a
tenant can’t use another tenant’s sources or subscribe to their events

● Deny access to Kustomize remote bases, thus ensuring all resources refer to
local files, meaning only the Flux Sources can affect the cluster state

● All Kustomizations and HelmReleases which do not have
.spec.serviceAccountName specified will use the default account from the
tenant’s namespace for deployment. Tenants have to specify a service account
in their Flux resources to be able to deploy workloads in their namespaces as
the default account has no permissions

● The flux-system Kustomization is set to reconcile under a service account
with cluster-admin role, allowing platform admins to configure cluster-wide
resources and provision the tenant’s namespaces, service accounts and RBAC

Default Service Account

Even if application tenants are reconciled with service accounts with namespaced
admin roles, particular attention should be paid to the default service account.
default is the fallback account for Kustomization and HelmReleases with no
.spec.serviceAccountName specified, therefore this should be carefully monitored to
guarantee no unnecessary roles are assigned to it.

controlplane 30

https://fluxcd.io/flux/installation/configuration/multitenancy/
https://github.com/controlplaneio-fluxcd/d1-fleet/blob/main/clusters/prod-eu/flux-system/kustomization.yaml

Flux Impersonation Model

In d1, Flux uses multiple service accounts to act on the cluster:
● default in flux-system is used as a fallback service account when no service

account is explicitly specified in .spec.serviceAccountName
● kustomize-controller in flux-system namespace is used to reconcile

d1-fleet, sync Flux components and reconcile the tenant pointers. In addition,
this is used to create non-namespaced resources for the application tenant.
This service account is used to reconcile the cluster policy that will sync
needed secrets and configmaps across the namespaces

● flux-infra in each infrastructure namespace is used to reconcile the
infrastructural controllers (details in Figure 6)

● flux-apps in each application namespace is used to reconcile the applicative
components (details in Figure 7)

The multi-tenancy lock will allow Flux to only impersonate service accounts
belonging to the same namespace where the Kustomization/HelmRelease is being
deployed to.

controlplane 31

Figure 7: Flux impersonation model - flux-infra

controlplane 32

Figure 8: Flux impersonation model - flux-apps

controlplane 33

Flux Controller Kubernetes RBAC Considerations for Multi-Tenancy
As part of onboarding an infrastructure component, or a namespace for an
Application team to the cluster, the Platform team will define the permissions and
service account used by the kustomize-controllers and helm-controllers to perform
the deployments within Kubernetes. These are defined within the d1-fleet repo
(example in link)

Within the provided example repos, it is important to note that these are namespace
admin permissions for application tenants and cluster admin permissions for
infrastructure components. You should analyse these permissions and define your
own roles based on your use case with the following caveats:

● These permissions are not configured in line with least privilege
● If Infrastructure components are managed by external teams, providing those

teams with cluster admin permissions via Flux provides an escalation route for
non-Platform teammembers

● admin ClusterRole can vary from distribution to distribution. Binding to a role
that includes ‘*’s is strongly discouraged

● It is likely that both application and Platform teams will need to configure
their applications or infrastructure components to use custom resources such
as cert-manager CRs, and these need to be added to the roles that Flux
impersonates so that deployment can occur

Policy Pack for Multi-Tenancy
The following Kyverno policies are stored within the [d1-fleet]/tenants/apps/policies.
Each one of them has a specific purpose and might require additional consideration:

Secret Cloning and Least Privilege

Application tenants are able to access the Git repository via a secret stored in the
application (i.e. backend/frontend) namespaces. The D1 model currently requires the
Platform team to create these secrets (via flux create secret git command) in the
flux-system namespace and then let a Kyverno policy sync them in the applicative
namespaces belonging to that tenant (here for more details). The secret stores a
single PAT with read-write permissions per tenant, for both reconciliation (fetch
updates from the repo and apply them to the cluster) and update automation
(update manifests on themain branch).

An attacker might be able to exploit a vulnerable application with enough privileges
to access this read-write PAT and use it to affect the tenant main branch, directly
affecting all the Staging clusters. As an alternative, an attacker might be able to

controlplane 34

https://github.com/controlplaneio-fluxcd/d1-fleet/blob/main/tenants/apps/components/backend/rbac.yaml

mount the secret in an arbitrary application, if no guardrails are implemented (i.e.
admission controller policy).

It would be preferable to use a read-only PAT for reconciliation (synced to all the
application namespace belonging to that tenant) and a read/write PAT for the
update automation workflow (stored in a single namespace where no workflow is
executed).

Runtime Information

flux-runtime-info ConfigMap can be used by Kustomization and therefore by
workloads (infra or applicative). D1 does not allow Flux controllers to make
cross-namespace references. Similarly to PAT secrets, the ConfigMap is automatically
copied in all the namespaces by Kyverno policy (sync-flux-configmaps), making
the content of the ConfigMap potentially available to every workload.

No confidential information should be stored in this ConfigMap, in line with best
practice.

Other Security and Availability Considerations

Flux CLI Usage & Alternatives
The guide describes cluster bootstrapping using the Flux CLI from a Platform team
member's device, with the Flux CLI consuming the kubeconfig file on the device as
well as the GitHub Flux Bot Personal Access Token.

With phishing and administrator device compromise becoming an increasingly
common attack vector, devices should be hardened appropriately for this use case,
with the Platform team subject to security awareness training.

Within regulated organisations, handling of privileged Kubernetes credentials, such
as cluster-admin for Production clusters, would not normally be permissible on a
Platform team member's device, including the Flux CLI. Alternatives include using a
dedicated Bastion VM in the same VPC as the cluster to run the CLI or the Flux
Terraform provider, or using CI runners with credentials (PAT and Kubernetes
credentials) stored as CI secrets.

controlplane 35

https://registry.terraform.io/providers/fluxcd/flux/latest
https://registry.terraform.io/providers/fluxcd/flux/latest

Update Automation Service Level
In the D1 architecture, the controllers responsible for the update automation
workflow are only deployed in Staging clusters (see here). That means that the
manifests stored on the repo are automatically going to be updated only if at least
one Staging cluster is available. This is something that should be taken into
consideration and that would depend on which kind of service availability is
expected for the update automation process.

Tenant Denial of Service Abuse Case
Flux’s high-performance reconciliation has the capability to DOS the Kubernetes API
endpoint if a source git repository is arbitrarily filled with a large number of
Kubernetes resources.

This can occur regardless of any Kubernetes admission control policies as Flux
controllers would need to pull, template the resources, authenticate, and send to the
K8s API, which would then receive the resources and parse them before applying
any mutating or validating policies.

In order to mitigate this potential problem, it is considered a good practice to set
quotas for the total number of certain resources of all standard, namespaced
resource types within the application namespaces by using an object count quota.

API Priority and Fairness (APF) is another feature which mitigates a potential Denial
of Service against the API Server. APF introduces a limited amount of queuing so
that no requests are rejected in cases of very brief bursts. Requests are dispatched
from queues using a fair queuing technique so that, for example, a poorly-behaved
controller need not starve others (even at the same priority level).

controlplane 36

https://kubernetes.io/docs/concepts/policy/resource-quotas/#object-count-quota
https://kubernetes.io/docs/concepts/cluster-administration/flow-control/

About ControlPlane Enterprise for Flux CD
In January 2024, we launched ControlPlane Enterprise for Flux CD (CPE-Flux CD),
designed to enhance highly regulated organisations that run and manage
Production Kubernetes environments. CPE-Flux CD provides a secure, stable, and
efficient subscription-based offering for enterprise Kubernetes environments and is
designed to ensure the long-term sustainability of the upstream project.

We provide this sustainability by employing core Flux CD maintainers and offering
additional security and vulnerability remediation enhancements. If your organisation
requires or benefits from these enhancements over the upstream Flux CD project,
CPE-Flux is an option to consider. It features:

● Enhanced security: additional guardrails, hardened and distroless container
images, and FIPS-compliant Flux CD builds

● Vulnerability management: continuous scanning for CVEs, patching and
distribution of Flux CD, and SLAs for critical vulnerabilities with signed VEX
documentation

● Seamless upgrades and maintenance: zero-downtime migration, full
upstream compatibility, OCI-compliant image repositories, compatibility with
the latest six Kubernetes releases, and SLAs for critical vulnerability
remediation

● Dedicated support: developer support portal for tracking and managing
resolution and feature requests

This additional support, and enhanced security feature set, makes ControlPlane
Enterprise for Flux CD a great choice for companies aiming for operational
excellence of their Kubernetes environments, especially those dealing with the traits
of demanding environments such as:

● Security-critical workloads requiring a clear segregation of duties
● Enforced least privilege Service Accounts
● At-scale deployments with large numbers of pods and nodes
● CI/CD pipelines with low latency delivery requirements
● Availability-critical deployments of new features
● Lack of highly specialised personnel capable of debugging low-level Flux CD

integration issues
● Standards or regulations mandating tha third-party integrations have to be

compliant with security best practices

controlplane 37

https://control-plane.io/enterprise-for-flux-cd/

CPE-Flux CD is backed by ControlPlane's Technical Account Architect (TAA) offering
and professional services team, providing additional specialised resources and
support as needed.

It is important to emphasise that while CPE-Flux CD offers these additional security
and remediation enhancements if they are not a requirement in your organisation
you should use the upstream Flux CD project.

ControlPlane's team is available to support you in achieving secure, stable, and
efficient Kubernetes Production environments, whether you choose to use CPE-Flux
or the upstream Flux CD project. By offering CPE-Flux, ControlPlane aims to ensure
the sustainability and continued development of the upstream Flux CD project.

controlplane 38

Unset

Unset

Appendix

Administrative Tasks

Bootstrapping a Staging Cluster
Make sure to set the default context in your kubeconfig to your Staging cluster, then
run bootstrap with:

export GITHUB_TOKEN=<Flux Bot PAT>

flux bootstrap github \
--registry=ghcr.io/fluxcd \
--components-extra=image-reflector-controller,image-automation-controller \
--owner=<owner> \
--repository=d1-fleet \
--branch=main \
--token-auth \
--path=clusters/staging

This command will explicitly enable image-reflector-controller and
image-automation-controller. See here for more details.

Bootstrapping a Production Cluster
Make sure to set the default context in your kubeconfig to the Production cluster
you want to install Flux to, then run bootstrap with:

export GITHUB_TOKEN=<Flux platform PAT>

flux bootstrap github \
--registry=ghcr.io/fluxcd \
--owner=<owner> \
--repository=d1-fleet \
--branch=main \
--token-auth \
--path=clusters/prod-eu

controlplane 39

Unset

Unset

Rotating the PATs
To rotate the main flux-system Secret (used to connect to the fleet and infra
repository) on the currently selected cluster in kubeconfig, the Platform team
should run this command:

flux create secret git flux-system \
--namespace=flux-system \
--url=https://github.com \
--username=git \
--password=$NEW_GITHUB_TOKEN

To rotate the secrets used by Flux to connect to the other tenant's repository on the
currently selected cluster in kubeconfig, the Platform team should run this
command:

flux create secret git flux-<tenant> \
--namespace=flux-system \
--url=https://github.com \
--username=git \
--password=$NEW_GITHUB_TOKEN

These commands should be executed for each of the affected clusters.

The Kyverno policies deployed by D1 will make sure that the secrets are propagated
in the needed namespaces.

Adding an Infra Component
In this example, we are going to deploy MetalLB using Flux. MetalLB is “a load
balancer implementation for bare metal Kubernetes clusters, using standard
routing protocols”.

To do so, the Platform team should perform the following actions on fleet and infra
repositories:

controlplane 40

https://metallb.universe.tf/
https://kubernetes.io

Unset

Infra repository

● Add namespace.yaml in [d1-infra]/components/metallb/base. This will
contain:

○ metallb Namespace definition
○ ServiceAccount and ClusterRoleBinding for Flux reconciliation

apiVersion: v1
kind: Namespace
metadata:
name: metallb
labels:
app.kubernetes.io/component: lb
toolkit.fluxcd.io/tenant: platform-team
pod-security.kubernetes.io/enforce: baseline

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
app.kubernetes.io/component: lb
toolkit.fluxcd.io/tenant: platform-team

name: flux-lb
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin

subjects:
- kind: ServiceAccount
name: flux
namespace: metallb

apiVersion: v1
kind: ServiceAccount
metadata:
name: flux
namespace: metallb
labels:
app.kubernetes.io/component: lb
toolkit.fluxcd.io/tenant: platform-team

● Add metallb.yaml to [d1-infra]/components/metallb/base. This will contain
HelmRepository and HelmRelease, with the common values used by all the
environments

controlplane 41

Unset

Unset

apiVersion: source.toolkit.fluxcd.io/v1beta2
kind: HelmRepository
metadata:
name: metallb
namespace: metallb

spec:
interval: 12h
url: https://metallb.github.io/metallb

apiVersion: helm.toolkit.fluxcd.io/v2beta2
kind: HelmRelease
metadata:
name: metallb
namespace: metallb

spec:
serviceAccountName: flux
interval: 1h
chart:

spec:
version: "0.14.3"
chart: metallb

reconcileStrategy: ChartVersion
sourceRef:
kind: HelmRepository
name: metallb

interval: 12h
install:
crds: Create
timeout: 9m

upgrade:
crds: CreateReplace
timeout: 9m

● Add the IP pool for MetalLB as a cluster variable in runtime-info.yaml

apiVersion: v1
kind: ConfigMap
metadata:
name: flux-runtime-info
namespace: flux-system
labels:

toolkit.fluxcd.io/runtime: "true"
annotations:

controlplane 42

Unset

Unset

kustomize.toolkit.fluxcd.io/ssa: "Merge"
data:
ENVIRONMENT: "staging"
GIT_BRANCH: "main"
CLUSTER_NAME: "staging-1"
CLUSTER_DOMAIN: "preview1.example.com"
LB_IP_POOL: "192.168.10.0/24"

● Add the IPAddressPool and BGPAdvertisement CRs, in
[d1-infra]/components/metallb/configs

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
name: main-pool
namespace: metallb

spec:
addresses:
- ${LB_IP_POOL}

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
name: bgpadvertisement-basic
namespace: metallb

spec:
ipAddressPools:
- main-pool

● Add any needed environment overlays in production and staging folders, on
both controllers and configs

Fleet Repository

● Add new Kustomizations in [d1-fleet]/tenants/infra/components/lb.yaml

tenants/infra
├── components
│ ├── admission.yaml
│ ├── kustomization.yaml
│ ├── lb.yaml # <--

controlplane 43

Unset

│ ├── monitoring.yaml
│ ├── rbac.yaml
│ └── source.yaml
└── update

├── automation.yaml
├── kustomization.yaml
└── sync.yaml

apiVersion: kustomize.toolkit.fluxcd.io/v1
kind: Kustomization
metadata:
name: lb-controllers

spec:
serviceAccountName: flux-infra
interval: 1h
retryInterval: 2m
timeout: 10m
prune: true
wait: true
sourceRef:
kind: GitRepository
name: flux-infra

path: components/metallb/controllers/${ENVIRONMENT}

apiVersion: kustomize.toolkit.fluxcd.io/v1
kind: Kustomization
metadata:
name: lb-configs

spec:
serviceAccountName: flux-infra
dependsOn:
- name: lb-controllers

interval: 1h
retryInterval: 2m
timeout: 5m
prune: true
wait: true
sourceRef:
kind: GitRepository
name: flux-infra

controlplane 44

Unset

path: components/metallb/configs/${ENVIRONMENT}

● Add a reference to lb.yaml in
[d1-fleet]/tenants/infra/components/kustomization.yaml to kick start the
reconciliation

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: flux-system
resources:
- rbac.yaml
- source.yaml
- admission.yaml
- monitoring.yaml
- lb.yaml # <--
labels:
- pairs:

toolkit.fluxcd.io/tenant: infra

controlplane 45

About
ControlPlane is a global cloud native and open source cybersecurity consultancy
operating in London, New York, and Auckland. We have industry-leading expertise in
the architecture, audit, and implementation of zero trust infrastructure for regulated
industries. With a deep understanding of secure-by-design and secure-by-default
cloud, Kubernetes, and supply chain security we conduct threat modelling,
penetration testing, and cloud native security training to the highest standard.

ControlPlane is trusted as the partner of choice in securing: multinational banks;
major public clouds; international financial institutions; critical national infrastructure
programs; multinational oil and gas companies, healthcare and insurance providers;
and global media firms.

https://control-plane.io/

Team Reviewers

Andrea Martino
Miguel Ángel Hernández Ruiz

Rowan Baker

Andrew Martin
Eduardo Olarte
Stefan Prodan
Martin Stadler

controlplane 46

https://control-plane.io/

