Using Seaborn for Visualizing Corona Virus Deaths
Seaborn and Cornavirus Graphs¶
Introduction¶
The Financial Times have a been releasing a very good set of graphics, tracking Cornaviros Virus deaths in a variety of countries. I think they have been using R to do their graphics.
Recently, they released their dataset, and I decided to practise some visualizations of my own, in Python.
Now, there is a ethical question here: each months data point represents suffering, misery, and grief. It seems a little unfeeling to use it as example of data visualization. However, important data needs thoughtful data visualization: it took a little digging to get exactly the techniques I use here, and it may useful for others.
Notebook Setup¶
watermark
documents my environment, black
is my chosen formatter
%load_ext watermark
%load_ext lab_black
The watermark extension is already loaded. To reload it, use: %reload_ext watermark The lab_black extension is already loaded. To reload it, use: %reload_ext lab_black
All imports go here
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import dates
import sys
import os
import subprocess
import datetime
import platform
import datetime
data = pd.read_csv('../data/ft_excess_deaths.csv')
data.head()
country | region | period | year | month | week | date | deaths | expected_deaths | excess_deaths | excess_deaths_pct | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | Italy | Italy | week | 2015 | 1 | 2.0 | 2015-01-09 | 15531.0 | 15531.0 | 0.0 | 0.000000 |
1 | Italy | Italy | week | 2015 | 1 | 3.0 | 2015-01-16 | 15490.0 | 15664.0 | -174.0 | -1.110827 |
2 | Italy | Italy | week | 2015 | 1 | 4.0 | 2015-01-23 | 14965.0 | 15283.0 | -318.0 | -2.080743 |
3 | Italy | Italy | week | 2015 | 1 | 5.0 | 2015-01-30 | 14810.0 | 14907.0 | -97.0 | -0.650701 |
4 | Italy | Italy | week | 2015 | 2 | 6.0 | 2015-02-06 | 15495.0 | 14834.0 | 661.0 | 4.455980 |
data['country'].unique()
array(['Italy', 'Netherlands', 'Ecuador', 'Spain', 'France', 'Turkey', 'Indonesia', 'Russia', 'Brazil', 'Peru', 'Chile', 'US', 'UK', 'Belgium', 'Portugal', 'Denmark', 'Austria', 'Germany', 'Sweden', 'South Africa', 'Norway', 'Israel', 'Iceland', 'Switzerland'], dtype=object)
Clean up the date column (create a new column)
data['date2'] = pd.to_datetime(
data['date'], format='%Y-%m-%d'
)
Visualizations¶
For my purposes, I decided to select those data rows for each country as a whole (there are rows for sub-regions with a number of countries).
One key insite of the Financial Times analysis is that mortality due to the virus is best estimated by year on year mortality comparisions. Excess deaths in 2020, compared to previous years, is an estimate of deaths due to the virus. For the first plot we show the excess deaths for a 10 year time span, for each country.
data3 = data[data['country'] == data['region']]
I want to produce a number of mini-graphs, one for each country, and I want each subplot to be formatted the same way. We create a function for that. Date x-tick labels can be a pain, because they overlap. We fix that by not labelling every tick mark, truncating the default label, and rotating the text. To help in reading off the maximum mortality rate, we draw a grid from the y axis, and draw the y=0 line.
def set_subplot_style(*args, **kwargs):
# get the current Axes object
ax = plt.gca()
# just show year in x axis labels
hfmt = dates.DateFormatter('%Y')
# we just want ticks and labels at every second year
ax.xaxis.set_major_locator(dates.YearLocator(2))
ax.xaxis.set_major_formatter(hfmt)
# rotate x tick labels
ax.tick_params(axis='x', labelrotation=90)
# draw y=0 axis (de-emphised)
ax.axhline(0, color='grey', alpha=0.5)
# draw grid from y axis only
ax.grid(axis='y', which='major', alpha=0.5)
# end set_subplot_style
We now use Seaborn to create a grid of graphs for the data in our data3
dataframe, where each mini-graph relates to one country. The grid will be five wide. We then use methods of the grid
object (especially the map
method) to run the same graphing and layout in each subplot. Each country will have its own color for line plots. Note the call grid.set_titles('{col_name}')
that gives us the country name in each mini-graph title
We want a large figure title, so we have to scrunch the min-graph grid down a little. This makes room for the title, and text providing the data source.
grid = sns.FacetGrid(
data3,
col='country',
hue='country',
col_wrap=5,
height=3,
)
# set our style for each subplot
grid.map(set_subplot_style)
# plot data in each subplot
grid.map(plt.plot, 'date2', 'excess_deaths')
# set subplot title to be country name
grid.set_titles('{col_name}')
# rename all x and y axis labels
grid.set_xlabels('Date')
grid.set_ylabels('Excess Deaths')
# put on a big Figure title, then make room for it (need top 10%)
grid.fig.suptitle(
'Financial Times: Excess mortality during the Covid-19 pandemic\n',
size=20,
)
grid.fig.subplots_adjust(top=0.9, bottom=0.05)
# add source of data, center of figure, just below title
plt.figtext(
0.5,
0.94,
'Source: https://github.com/Financial-Times/coronavirus-excess-mortality-data',
horizontalalignment='center',
)
Text(0.5, 0.94, 'Source: https://github.com/Financial-Times/coronavirus-excess-mortality-data')
The graphic above show the exceptional nature of 2020.
2020 Deaths¶
We now want to focus on 2020. We show the datatypes of the data3
DataFrame object. Then we create a timestamp for the last day of 2019, and select all data rows with a date greater than that value.
data3.dtypes
country object region object period object year int64 month int64 week float64 date object deaths float64 expected_deaths float64 excess_deaths float64 excess_deaths_pct float64 date2 datetime64[ns] dtype: object
pd.to_datetime('2020-01-01')
Timestamp('2020-01-01 00:00:00')
data4 = data3[
data3['date2'] > pd.to_datetime('2019-12-31')
].copy()
Check that we only have 2020 data rows
min(data4['date2'])
Timestamp('2020-01-03 00:00:00')
We have slightly different formatting rules now, mostly in labelling the months (not years) on the x axis
def set_subplot_style2(*args, **kwargs):
# get the current Axes object
ax = plt.gca()
# just show month in x axis labels
hfmt = dates.DateFormatter('%m')
# we just want ticks and labels at every month
ax.xaxis.set_major_locator(dates.MonthLocator())
ax.xaxis.set_major_formatter(hfmt)
# rotate x tick labels
ax.tick_params(axis='x', labelrotation=90)
# draw y=0 axis (de-emphised)
ax.axhline(0, color='grey', alpha=0.5)
# draw grid from y axis only
ax.grid(axis='y', which='major', alpha=0.5)
# end set_subplot_style2
Now we can see the tragedy unfolding in each country. One technical note: it is important to do the actual plotting grid2.map(plt.plot, ...
before the call to grid2.map(set_subplot_style2)
, because my function has a call to axhline
, which needs to know the maximum and minimum x values being plotted.
grid2 = sns.FacetGrid(
data4,
col='country',
hue='country',
col_wrap=5,
height=3,
)
# plot data in each subplot
grid2.map(plt.plot, 'date2', 'excess_deaths')
# set our style for each subplot
grid2.map(set_subplot_style2)
# set subplot title to be country name
grid2.set_titles('{col_name}')
# rename all x and y axis labels
grid2.set_xlabels('Month (2020)')
grid2.set_ylabels('Excess Deaths')
# put on a big Figure title, then make room for it (need top 10%)
grid2.fig.suptitle(
'Financial Times: Excess mortality during the Covid-19 pandemic\n',
size=20,
)
grid2.fig.subplots_adjust(top=0.9, bottom=0.05)
# add source of data, center of figure, just below title
plt.figtext(
0.5,
0.94,
'Source: https://github.com/Financial-Times/coronavirus-excess-mortality-data',
horizontalalignment='center',
)
Text(0.5, 0.94, 'Source: https://github.com/Financial-Times/coronavirus-excess-mortality-data')
Worst Affected Countries¶
Next, I decided to select those countries that had a monthly death rate (at least once) greater the some threshold (here, 5,000 deaths).
I get the list of all countries, and only keep those that have a maximum monthly death rate greater than the threshold.
Then I create a boolean mask that filters out those countries not in our list.
DEATH_THRESHHOLD = 5000
death_countries = [
c
for c in data4['country'].unique()
if max(data4[data4['country'] == c]['excess_deaths'])
> DEATH_THRESHHOLD
]
death_countries
mask = [c in death_countries for c in data4['country']]
This time I want the compare each country in a closer context with each other country, so I use a Seaborn relplot
. I elect to use a small marker to show the actual data points. The default x axis labels are fine in the plot (being larger). Given the size of my plot, I make the lines a little wider
g = sns.relplot(
x='date2',
y='excess_deaths',
kind='line',
hue='country',
data=data4[mask],
alpha=1,
height=10,
linewidth=2,
marker='o',
markersize=4,
)
# rename all x and y axis labels
g.set_xlabels('Month (2020)')
g.set_ylabels('Excess Deaths')
g.fig.suptitle(
'Financial Times: Excess mortality during the Covid-19 pandemic\n',
size=20,
)
g.fig.subplots_adjust(top=0.9, bottom=0.05)
# add source of data, center of figure, just below title
plt.figtext(
0.5,
0.94,
'Source: https://github.com/Financial-Times/coronavirus-excess-mortality-data',
horizontalalignment='center',
)
# draw y=0 axis (de-emphised)
plt.axhline(0, color='grey', alpha=0.5)
# draw grid from y axis only
plt.grid(axis='y', which='major', alpha=0.5)
%watermark
2020-06-07T12:12:20+10:00 CPython 3.7.1 IPython 7.2.0 compiler : MSC v.1915 64 bit (AMD64) system : Windows release : 10 machine : AMD64 processor : Intel64 Family 6 Model 94 Stepping 3, GenuineIntel CPU cores : 8 interpreter: 64bit
# show info to support reproducibility
theNotebook = 'death.ipynb'
def python_env_name():
envs = subprocess.check_output(
'conda env list'
).splitlines()
# get unicode version of binary subprocess output
envu = [x.decode('ascii') for x in envs]
active_env = list(
filter(lambda s: '*' in str(s), envu)
)[0]
env_name = str(active_env).split()[0]
return env_name
# end python_env_name
print('python version : ' + sys.version)
print('python environment :', python_env_name())
print('current wkg dir : ' + os.getcwd())
print('Notebook name : ' + theNotebook)
print(
'Notebook run at : '
+ str(datetime.datetime.now())
+ ' local time'
)
print(
'Notebook run at : '
+ str(datetime.datetime.utcnow())
+ ' UTC'
)
print('Notebook run on : ' + platform.platform())
python version : 3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AMD64)] python environment : ac5-py37 current wkg dir : C:\Users\donrc\Documents\JupyterNotebooks\PythonNotebookProject\develop Notebook name : death.ipynb Notebook run at : 2020-06-07 12:12:24.326835 local time Notebook run at : 2020-06-07 02:12:24.326835 UTC Notebook run on : Windows-10-10.0.18362-SP0