{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "ILsAojF_nXzT" }, "source": [ "# Link to the lab\n", "\n", "https://tinyurl.com/inlplab5" ] }, { "cell_type": "markdown", "metadata": { "id": "KVkKP3mNWP4c" }, "source": [ "# Setup\n", "\n", "We'll use fasttext wiki embeddings in our embedding layer, and pytorch-crf to add a CRF to our BiLSTM." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "collapsed": true, "id": "shI-n-rp8nU2", "jupyter": { "outputs_hidden": true }, "outputId": "077dc499-179c-488b-fa2d-d79c881c5d56", "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: fasttext in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (0.9.2)\n", "Requirement already satisfied: pybind11>=2.2 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from fasttext) (2.10.0)\n", "Requirement already satisfied: numpy in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from fasttext) (1.23.0)\n", "Requirement already satisfied: setuptools>=0.7.0 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from fasttext) (61.2.0)\n", "Requirement already satisfied: pytorch-crf in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (0.7.2)\n", "Requirement already satisfied: datasets in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (2.4.0)\n", "Requirement already satisfied: responses<0.19 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (0.18.0)\n", "Requirement already satisfied: dill<0.3.6 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (0.3.5.1)\n", "Requirement already satisfied: numpy>=1.17 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (1.23.0)\n", "Requirement already satisfied: pyarrow>=6.0.0 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (9.0.0)\n", "Requirement already satisfied: tqdm>=4.62.1 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (4.64.0)\n", "Requirement already satisfied: aiohttp in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (3.8.1)\n", "Requirement already satisfied: multiprocess in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (0.70.13)\n", "Requirement already satisfied: requests>=2.19.0 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (2.28.1)\n", "Requirement already satisfied: pandas in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (1.4.3)\n", "Requirement already satisfied: xxhash in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (3.0.0)\n", "Requirement already satisfied: fsspec[http]>=2021.11.1 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (2022.7.1)\n", "Requirement already satisfied: huggingface-hub<1.0.0,>=0.1.0 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (0.9.1)\n", "Requirement already satisfied: packaging in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from datasets) (21.3)\n", "Requirement already satisfied: pyyaml>=5.1 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (6.0)\n", "Requirement already satisfied: filelock in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.8.0)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (4.3.0)\n", "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from packaging->datasets) (3.0.9)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from requests>=2.19.0->datasets) (1.26.9)\n", "Requirement already satisfied: certifi>=2017.4.17 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from requests>=2.19.0->datasets) (2022.6.15)\n", "Requirement already satisfied: charset-normalizer<3,>=2 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from requests>=2.19.0->datasets) (2.1.0)\n", "Requirement already satisfied: idna<4,>=2.5 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from requests>=2.19.0->datasets) (3.3)\n", "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from aiohttp->datasets) (4.0.2)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from aiohttp->datasets) (1.2.0)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from aiohttp->datasets) (6.0.2)\n", "Requirement already satisfied: attrs>=17.3.0 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from aiohttp->datasets) (21.4.0)\n", "Requirement already satisfied: yarl<2.0,>=1.0 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from aiohttp->datasets) (1.8.1)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from aiohttp->datasets) (1.3.1)\n", "Requirement already satisfied: pytz>=2020.1 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from pandas->datasets) (2022.1)\n", "Requirement already satisfied: python-dateutil>=2.8.1 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from pandas->datasets) (2.8.2)\n", "Requirement already satisfied: six>=1.5 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n", "Collecting sklearn\n", " Using cached sklearn-0.0-py2.py3-none-any.whl\n", "Collecting scikit-learn\n", " Using cached scikit_learn-1.1.2-cp310-cp310-macosx_10_9_x86_64.whl (8.7 MB)\n", "Collecting threadpoolctl>=2.0.0\n", " Using cached threadpoolctl-3.1.0-py3-none-any.whl (14 kB)\n", "Requirement already satisfied: scipy>=1.3.2 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from scikit-learn->sklearn) (1.9.0)\n", "Requirement already satisfied: numpy>=1.17.3 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from scikit-learn->sklearn) (1.23.0)\n", "Requirement already satisfied: joblib>=1.0.0 in /Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/site-packages (from scikit-learn->sklearn) (1.1.0)\n", "Installing collected packages: threadpoolctl, scikit-learn, sklearn\n", "Successfully installed scikit-learn-1.1.2 sklearn-0.0 threadpoolctl-3.1.0\n" ] } ], "source": [ "!pip install fasttext\n", "!pip install pytorch-crf\n", "!pip install datasets\n", "!pip install sklearn" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "qTxj2GUD86Mt" }, "outputs": [], "source": [ "%reload_ext autoreload\n", "%autoreload 2\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "id": "K23XIfU19JC6" }, "outputs": [], "source": [ "import io\n", "from math import log\n", "from numpy import array\n", "from numpy import argmax\n", "import torch\n", "import random\n", "from math import log\n", "from numpy import array\n", "from numpy import argmax\n", "import numpy as np\n", "from torch.utils.data import Dataset, DataLoader\n", "from torch import nn\n", "from torch.optim import Adam\n", "from torchcrf import CRF\n", "from torch.optim.lr_scheduler import ExponentialLR, CyclicLR\n", "from typing import List, Tuple, AnyStr\n", "from tqdm.notebook import tqdm\n", "from sklearn.metrics import precision_recall_fscore_support\n", "import matplotlib.pyplot as plt\n", "from copy import deepcopy\n", "from datasets import load_dataset, load_metric\n", "from sklearn.metrics import confusion_matrix\n", "import torch.nn.functional as F\n", "import heapq" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "1WG_TMG29Jkh" }, "outputs": [], "source": [ "def enforce_reproducibility(seed=42):\n", " # Sets seed manually for both CPU and CUDA\n", " torch.manual_seed(seed)\n", " torch.cuda.manual_seed_all(seed)\n", " # For atomic operations there is currently \n", " # no simple way to enforce determinism, as\n", " # the order of parallel operations is not known.\n", " # CUDNN\n", " torch.backends.cudnn.deterministic = True\n", " torch.backends.cudnn.benchmark = False\n", " # System based\n", " random.seed(seed)\n", " np.random.seed(seed)\n", "\n", "enforce_reproducibility()" ] }, { "cell_type": "markdown", "metadata": { "id": "Y0-F6_Wb9Ams" }, "source": [ "# Sequence Classification - recap\n" ] }, { "cell_type": "markdown", "metadata": { "id": "kk7Nm4aD1Le_" }, "source": [ "\n", "Sequence classification is the task of \n", "- predicting a class (e.g., POS tag) for each separate token in a textual input\n", "- label tokens as beginning (B), inside (I), or outside (O) \n", "- predicting which tokens from the input belong to a span, e.g.:\n", " - which tokens from a document answer a given question (extractive QA)\n", "\n", " - which tokens in a news article contain propagandistic techniques\n", "\n", " - the spans can be of different types, e.g. type of a Named Entity (NE) -- Person, Location, Organisation\n", " - ([More datasets for structured prediction](https://huggingface.co/datasets?languages=languages:en&task_categories=task_categories:structure-prediction&sort=downloads))" ] }, { "cell_type": "markdown", "metadata": { "id": "OHp8Z6Pc89h7" }, "source": [ "## Named entity recognition" ] }, { "cell_type": "markdown", "metadata": { "id": "viwPhyqMaQhi" }, "source": [ "\n", "\n", "- identify the **entities** that appear in a document and their types\n", "- e.g., extract from the following sentence all names of the people, locations, and organizations:\n", "\n", "<style type=\"text/css\">\n", ".tg {border-collapse:collapse;border-spacing:0;}\n", ".tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;\n", " overflow:hidden;padding:10px 5px;word-break:normal;}\n", ".tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;\n", " font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}\n", ".tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:top}\n", "</style>\n", "<table class=\"tg\">\n", "<tbody>\n", " <tr>\n", " <th class=\"tg-0pky\">Sundar</th>\n", " <th class=\"tg-0pky\">Pichai</th>\n", " <th class=\"tg-0pky\">is</th>\n", " <th class=\"tg-0pky\">the</th>\n", " <th class=\"tg-0pky\">CEO</th>\n", " <th class=\"tg-0pky\">of</th>\n", " <th class=\"tg-0pky\">Alphabet</th>\n", " <th class=\"tg-0pky\">,</th>\n", " <th class=\"tg-0pky\">located</th>\n", " <th class=\"tg-0pky\">in</th>\n", " <th class=\"tg-0pky\">Mountain</th>\n", " <th class=\"tg-0pky\">View</th>\n", " <th class=\"tg-0pky\">,</th>\n", " <th class=\"tg-0pky\">CA</th>\n", " </tr>\n", " <tr>\n", " <td class=\"tg-0pky\">PER</td>\n", " <td class=\"tg-0pky\">PER</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">ORG</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">LOC</td>\n", " <td class=\"tg-0pky\">LOC</td>\n", " <td class=\"tg-0pky\">LOC</td>\n", " <td class=\"tg-0pky\">LOC</td>\n", " </tr>\n", "</tbody>\n", "</table>\n", "\n", "- we have labelled all of the tokens associate with their classes as the given type (PER: Person, ORG: Organization, LOC: Location, O: Outside). **Question: What are some issues that could arise as a result of this tagging?" ] }, { "cell_type": "markdown", "metadata": { "id": "bG7fTfhRdulS" }, "source": [ "In practice, we will also want to denote which tokens are the beginning of an entity, and which tokens are inside the full entity span, giving the following tagging:\n", "\n", "<style type=\"text/css\">\n", ".tg {border-collapse:collapse;border-spacing:0;}\n", ".tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;\n", " overflow:hidden;padding:10px 5px;word-break:normal;}\n", ".tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;\n", " font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}\n", ".tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:top}\n", "</style>\n", "<table class=\"tg\">\n", "<tbody>\n", " <tr>\n", " <th class=\"tg-0pky\">Sundar</th>\n", " <th class=\"tg-0pky\">Pichai</th>\n", " <th class=\"tg-0pky\">is</th>\n", " <th class=\"tg-0pky\">the</th>\n", " <th class=\"tg-0pky\">CEO</th>\n", " <th class=\"tg-0pky\">of</th>\n", " <th class=\"tg-0pky\">Alphabet</th>\n", " <th class=\"tg-0pky\">,</th>\n", " <th class=\"tg-0pky\">located</th>\n", " <th class=\"tg-0pky\">in</th>\n", " <th class=\"tg-0pky\">Mountain</th>\n", " <th class=\"tg-0pky\">View</th>\n", " <th class=\"tg-0pky\">,</th>\n", " <th class=\"tg-0pky\">CA</th>\n", " </tr>\n", " <tr>\n", " <td class=\"tg-0pky\">B-PER</td>\n", " <td class=\"tg-0pky\">I-PER</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">B-ORG</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">O</td>\n", " <td class=\"tg-0pky\">B-LOC</td>\n", " <td class=\"tg-0pky\">I-LOC</td>\n", " <td class=\"tg-0pky\">I-LOC</td>\n", " <td class=\"tg-0pky\">I-LOC</td>\n", " </tr>\n", "</tbody>\n", "</table>\n", "\n", "**Question: What are some other tagging schemes that you think could be good?**\n", "\n", "Modeling the dependencies between the predictions can be useful: for example knowing that the previous tag was `B-PER` influences whether or not the current tag will be `I-PER` or `O` or `I-LOC`." ] }, { "cell_type": "markdown", "metadata": { "id": "uOi3HWggedf9" }, "source": [ "## Download and prepare the data\n", "\n", "We'll use a small set of Wikipedia data labelled with people, locations, organizations, and \"miscellaneous\" entities." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 569, "referenced_widgets": [ "378fa5d2ca2d4005a0824d512c74bab9", "054c24038d3e46559503463d23ddc389", "d835d9ae913b4b8aa79195bbb65c67a2", "100fee07db9a428ca681de6261a83220", "878b7dbe92304f56be3f6cd519318522", "d7fdc539d31c456498d6db7558c984fb", "ab7ed4ca77bf4370820cdd932267885d", "85b3a26f64e74fb299bea1ff292ec8c3", "c537cce1751b48d482cfbcfc6611e64e", "2b5d33ab96a746edbefa19cbbd3f28d8", "7db97d142d2844fdb9b785cc7d9648f7", "c7c6f6a5c86543f898e9598387d61437", "8f4c1790ec104d208484a5e0b300d7bd", "4373ceede55c499c9203d3fde6b31082", "d12355d50fdc46f691212830c5510648", "66fdff54c9fb4054b20461f69befb50a", "e781457369704f12b9808104bcd8821f", "f90f4b96b9c34ee79bf9db54d9376086", "272da6e0838841a4a7107392d6e29f41", "33640913b31b41a2a3e705cdee4e3324", "f692ec41d40240508e620cc561355166", "6ea12b0213b34770b91671d3ff7c90c9", "8014b553c7214e85a760bdfdb56d20d5", "bd909e355e85410683c23061f9e07518", "ee98e3dec8e74ccda89c58ba82ad4f87", "f01e0f0622a8403698d736e175cabd0f", "a99fb612b1564315903fc6cac33259fb", "520d60e185c7447f93e23c9accc27258", "6b70e5760c6243248cb3c6d81723416c", "58ee651ead9a408aae427ff74958ea4d", "757d72ff8d77442687874f18efd8a31d", "f3b08eaf8c754d5683a6442c29084d36", "1c5b754a90354f739cb3e5660e1eeadf", "be289fccdfa64228839b0b60774b29d9", "aedc1a90c62f4385af8827f7203aaeba", "eca645bca6f54b0580ad1d6fc3c02780", "8f1fcc4069d34ac39fa705730cc62a3a", "99f713f428d24c89a309b447bdc2cdf1", "704acba671124ede9f4bcedfaa2217ed", "9b55e7f888934a8cbb94e15946fd6653", "d4052b6974ac4068a470650ce3863f94", "4aa399acdf824ddc8f98d49ea633821e", "d373c5ded26447bfb1a3ad0e86bb3720", "76ce4bf8d41a4b51af901000791dbb76" ] }, "id": "BoEPDmb6QTw5", "outputId": "b4e2e71c-63f8-46f2-ae37-f4a3957850a1" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "90bc7b241ead44cb8b21bd98f95149dc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading builder script: 0%| | 0.00/2.58k [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1267c3d89f2746778cad1cbc7d5548b8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading metadata: 0%| | 0.00/1.61k [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading and preparing dataset conll2003/conll2003 (download: 959.94 KiB, generated: 9.78 MiB, post-processed: Unknown size, total: 10.72 MiB) to /Users/knf792/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/9a4d16a94f8674ba3466315300359b0acd891b68b6c8743ddf60b9c702adce98...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6bbb7b119ba842e384b238c600a20fa8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading data: 0%| | 0.00/983k [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating train split: 0%| | 0/14041 [00:00<?, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating validation split: 0%| | 0/3250 [00:00<?, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Generating test split: 0%| | 0/3453 [00:00<?, ? examples/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Dataset conll2003 downloaded and prepared to /Users/knf792/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/9a4d16a94f8674ba3466315300359b0acd891b68b6c8743ddf60b9c702adce98. Subsequent calls will reuse this data.\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "79ea6d948af040d6b4245ecc090af3f3", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/3 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "DatasetDict({\n", " train: Dataset({\n", " features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],\n", " num_rows: 14041\n", " })\n", " validation: Dataset({\n", " features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],\n", " num_rows: 3250\n", " })\n", " test: Dataset({\n", " features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],\n", " num_rows: 3453\n", " })\n", "})" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "datasets = load_dataset(\"conll2003\")\n", "datasets" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "qU6qEpOTQknb", "outputId": "294acb1c-fab4-40e4-fbc9-5e6067f9e2e9" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dataset({\n", " features: ['id', 'tokens', 'pos_tags', 'chunk_tags', 'ner_tags'],\n", " num_rows: 14041\n", "})\n", "{'id': '0', 'tokens': ['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.'], 'pos_tags': [22, 42, 16, 21, 35, 37, 16, 21, 7], 'chunk_tags': [11, 21, 11, 12, 21, 22, 11, 12, 0], 'ner_tags': [3, 0, 7, 0, 0, 0, 7, 0, 0]}\n", "Sequence(feature=ClassLabel(num_classes=9, names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC'], id=None), length=-1, id=None)\n", "['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC']\n" ] } ], "source": [ "print(datasets['train'])\n", "print(datasets['train'][0])\n", "print(datasets[\"train\"].features[f\"ner_tags\"])\n", "print(datasets[\"train\"].features[f\"ner_tags\"].feature.names)" ] }, { "cell_type": "markdown", "metadata": { "id": "pIZdSxg6fOHb" }, "source": [ "We'll create the word embedding space:\n", "- with FastText pretrained embeddings\n", "- using all of the *vocabulary from the train and dev splits*, plus the most frequent tokens from the trained word embeddings. This will reduce the embeddings size!" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ABBIslsS9_1U", "outputId": "d393b804-b108-4336-f916-b48bbc54e14b" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "--2022-10-06 09:18:40-- https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip\n", "Resolving dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)... 172.67.9.4, 104.22.74.142, 104.22.75.142\n", "Connecting to dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)|172.67.9.4|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 681808098 (650M) [application/zip]\n", "Saving to: ‘wiki-news-300d-1M.vec.zip’\n", "\n", "wiki-news-300d-1M.v 100%[===================>] 650,22M 11,9MB/s in 49s \n", "\n", "2022-10-06 09:19:30 (13,3 MB/s) - ‘wiki-news-300d-1M.vec.zip’ saved [681808098/681808098]\n", "\n", "Archive: wiki-news-300d-1M.vec.zip\n", " inflating: wiki-news-300d-1M.vec \n" ] } ], "source": [ "!wget https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip\n", "!unzip wiki-news-300d-1M.vec.zip" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "AU1ldp1VArxU" }, "outputs": [], "source": [ "# Reduce down to our vocabulary and word embeddings\n", "def load_vectors(fname, vocabulary):\n", " fin = io.open(fname, 'r', encoding='utf-8', newline='\\n', errors='ignore')\n", " n, d = map(int, fin.readline().split())\n", " tag_names = datasets[\"train\"].features[f\"ner_tags\"].feature.names\n", " final_vocab = tag_names + ['[PAD]', '[UNK]', '[BOS]', '[EOS]']\n", " final_vectors = [np.random.normal(size=(300,)) for _ in range(len(final_vocab))]\n", " for j,line in enumerate(fin):\n", " tokens = line.rstrip().split(' ')\n", " if tokens[0] in vocabulary or len(final_vocab) < 30000:\n", " final_vocab.append(tokens[0])\n", " final_vectors.append(np.array(list(map(float, tokens[1:]))))\n", " return final_vocab, np.vstack(final_vectors)\n", "\n", "class FasttextTokenizer:\n", " def __init__(self, vocabulary):\n", " self.vocab = {}\n", " for j,l in enumerate(vocabulary):\n", " self.vocab[l.strip()] = j\n", "\n", " def encode(self, text):\n", " # Text is assumed to be tokenized\n", " return [self.vocab[t] if t in self.vocab else self.vocab['[UNK]'] for t in text]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "4OgHYnqV-CzF", "outputId": "cead7528-df83-4a52-8261-ba9f26ff78c3" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "size of vocabulary: 40630\n" ] } ], "source": [ "vocabulary = (set([t for s in datasets['train'] for t in s['tokens']]) | set([t for s in datasets['validation'] for t in s['tokens']]))\n", "vocabulary, pretrained_embeddings = load_vectors('wiki-news-300d-1M.vec', vocabulary)\n", "print('size of vocabulary: ', len(vocabulary))\n", "tokenizer = FasttextTokenizer(vocabulary)" ] }, { "cell_type": "markdown", "metadata": { "id": "03GlNGdjffvJ" }, "source": [ "The main difference in the dataset reading and collation functions is that we now return a sequence of labels instead of a single label as in text classification." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "DDNdg8kNCYxa" }, "outputs": [], "source": [ "def collate_batch_bilstm(input_data: Tuple) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:\n", " input_ids = [tokenizer.encode(i['tokens']) for i in input_data]\n", " seq_lens = [len(i) for i in input_ids]\n", " labels = [i['ner_tags'] for i in input_data]\n", "\n", " max_length = max([len(i) for i in input_ids])\n", "\n", " input_ids = [(i + [0] * (max_length - len(i))) for i in input_ids]\n", " labels = [(i + [0] * (max_length - len(i))) for i in labels] # 0 is the id of the O tag\n", "\n", " assert (all(len(i) == max_length for i in input_ids))\n", " assert (all(len(i) == max_length for i in labels))\n", " return torch.tensor(input_ids), torch.tensor(seq_lens), torch.tensor(labels)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "EAJsgXF_IZUQ", "outputId": "b25fbeae-e7f8-4794-89a0-72b2f9bb8063" }, "outputs": [ { "data": { "text/plain": [ "(tensor([[36231, 48, 10, 33561, 30770, 8120, 31121, 21803, 10, 36750,\n", " 15]]),\n", " tensor([11]),\n", " tensor([[0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0]]))" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dev_dl = DataLoader(datasets['validation'], batch_size=1, shuffle=False, collate_fn=collate_batch_bilstm, num_workers=0)\n", "next(iter(dev_dl))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "AIHamPlSIgS5", "outputId": "549bf33b-8cc7-4720-c255-5a877992f3d3" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'id': '0', 'tokens': ['CRICKET', '-', 'LEICESTERSHIRE', 'TAKE', 'OVER', 'AT', 'TOP', 'AFTER', 'INNINGS', 'VICTORY', '.'], 'pos_tags': [22, 8, 22, 22, 15, 22, 22, 22, 22, 21, 7], 'chunk_tags': [11, 0, 11, 12, 13, 11, 12, 12, 12, 12, 0], 'ner_tags': [0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0]}\n", "(tensor([[36231, 48, 10, 33561, 30770, 8120, 31121, 21803, 10, 36750,\n", " 15]]), tensor([11]), tensor([[0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0]]))\n" ] } ], "source": [ "print(datasets['validation'][0])\n", "print(collate_batch_bilstm([datasets['validation'][0]]))" ] }, { "cell_type": "markdown", "metadata": { "id": "oo6sp4It9Txz" }, "source": [ "# Creating the model" ] }, { "cell_type": "markdown", "metadata": { "id": "cQIYJ0Q_gILv" }, "source": [ "## LSTM model for sequence classification\n", "\n", "You'll notice that the BiLSTM model is mostly the same from the text classification and language modeling labs. " ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "id": "nVsVJgToVrdz" }, "outputs": [], "source": [ "# Define the model\n", "class BiLSTM(nn.Module):\n", " \"\"\"\n", " Basic BiLSTM-CRF network\n", " \"\"\"\n", " def __init__(\n", " self,\n", " pretrained_embeddings: torch.tensor,\n", " lstm_dim: int,\n", " dropout_prob: float = 0.1,\n", " n_classes: int = 2\n", " ):\n", " \"\"\"\n", " Initializer for basic BiLSTM network\n", " :param pretrained_embeddings: A tensor containing the pretrained BPE embeddings\n", " :param lstm_dim: The dimensionality of the BiLSTM network\n", " :param dropout_prob: Dropout probability\n", " :param n_classes: The number of output classes\n", " \"\"\"\n", "\n", " # First thing is to call the superclass initializer\n", " super(BiLSTM, self).__init__()\n", "\n", " # We'll define the network in a ModuleDict, which makes organizing the model a bit nicer\n", " # The components are an embedding layer, a 2 layer BiLSTM, and a feed-forward output layer\n", " self.model = nn.ModuleDict({\n", " 'embeddings': nn.Embedding.from_pretrained(pretrained_embeddings, padding_idx=pretrained_embeddings.shape[0] - 1),\n", " 'bilstm': nn.LSTM(\n", " pretrained_embeddings.shape[1], # input size\n", " lstm_dim, # hidden size\n", " 2, # number of layers\n", " batch_first=True,\n", " dropout=dropout_prob,\n", " bidirectional=True),\n", " 'ff': nn.Linear(2*lstm_dim, n_classes),\n", " })\n", " self.n_classes = n_classes\n", " self.loss = nn.CrossEntropyLoss()\n", " # Initialize the weights of the model\n", " self._init_weights()\n", "\n", " def _init_weights(self):\n", " all_params = list(self.model['bilstm'].named_parameters()) + \\\n", " list(self.model['ff'].named_parameters())\n", " for n,p in all_params:\n", " if 'weight' in n:\n", " nn.init.xavier_normal_(p)\n", " elif 'bias' in n:\n", " nn.init.zeros_(p)\n", "\n", " def forward(self, inputs, input_lens, hidden_states = None, labels = None):\n", " \"\"\"\n", " Defines how tensors flow through the model\n", " :param inputs: (b x sl) The IDs into the vocabulary of the input samples\n", " :param input_lens: (b) The length of each input sequence\n", " :param labels: (b) The label of each sample\n", " :return: (loss, logits) if `labels` is not None, otherwise just (logits,)\n", " \"\"\"\n", "\n", " # Get embeddings (b x sl x edim)\n", " embeds = self.model['embeddings'](inputs)\n", "\n", " # Pack padded: This is necessary for padded batches input to an RNN - https://stackoverflow.com/questions/51030782/why-do-we-pack-the-sequences-in-pytorch\n", " lstm_in = nn.utils.rnn.pack_padded_sequence(\n", " embeds,\n", " input_lens.cpu(),\n", " batch_first=True,\n", " enforce_sorted=False\n", " )\n", "\n", " # Pass the packed sequence through the BiLSTM\n", " if hidden_states:\n", " lstm_out, hidden = self.model['bilstm'](lstm_in, hidden_states)\n", " else:\n", " lstm_out, hidden = self.model['bilstm'](lstm_in)\n", "\n", " # Unpack the packed sequence --> (b x sl x 2*lstm_dim)\n", " lstm_out, lengths = nn.utils.rnn.pad_packed_sequence(lstm_out, batch_first=True)\n", "\n", " # Get logits (b x seq_len x n_classes)\n", " logits = self.model['ff'](lstm_out)\n", " outputs = (logits, lengths)\n", " if labels is not None:\n", " loss = self.loss(logits.reshape(-1, self.n_classes), labels.reshape(-1))\n", " outputs = outputs + (loss,)\n", "\n", " return outputs" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "id": "oH_92rb8VvEd" }, "outputs": [], "source": [ "def train(\n", " model: nn.Module, \n", " train_dl: DataLoader, \n", " valid_dl: DataLoader, \n", " optimizer: torch.optim.Optimizer, \n", " n_epochs: int, \n", " device: torch.device,\n", " scheduler=None,\n", "):\n", " \"\"\"\n", " The main training loop which will optimize a given model on a given dataset\n", " :param model: The model being optimized\n", " :param train_dl: The training dataset\n", " :param valid_dl: A validation dataset\n", " :param optimizer: The optimizer used to update the model parameters\n", " :param n_epochs: Number of epochs to train for\n", " :param device: The device to train on\n", " :return: (model, losses) The best model and the losses per iteration\n", " \"\"\"\n", "\n", " # Keep track of the loss and best accuracy\n", " losses = []\n", " learning_rates = []\n", " best_f1 = 0.0\n", "\n", " # Iterate through epochs\n", " for ep in range(n_epochs):\n", "\n", " loss_epoch = []\n", "\n", " #Iterate through each batch in the dataloader\n", " for batch in tqdm(train_dl):\n", " # VERY IMPORTANT: Make sure the model is in training mode, which turns on \n", " # things like dropout and layer normalization\n", " model.train()\n", "\n", " # VERY IMPORTANT: zero out all of the gradients on each iteration -- PyTorch\n", " # keeps track of these dynamically in its computation graph so you need to explicitly\n", " # zero them out\n", " optimizer.zero_grad()\n", "\n", " # Place each tensor on the GPU\n", " batch = tuple(t.to(device) for t in batch)\n", " input_ids = batch[0]\n", " seq_lens = batch[1]\n", " labels = batch[2]\n", "\n", " # Pass the inputs through the model, get the current loss and logits\n", " logits, lengths, loss = model(input_ids, seq_lens, labels=labels)\n", " losses.append(loss.item())\n", " loss_epoch.append(loss.item())\n", "\n", " # Calculate all of the gradients and weight updates for the model\n", " loss.backward()\n", "\n", " # Optional: clip gradients\n", " #torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)\n", "\n", " # Finally, update the weights of the model\n", " optimizer.step()\n", " if scheduler != None:\n", " scheduler.step()\n", " learning_rates.append(scheduler.get_last_lr()[0])\n", "\n", " # Perform inline evaluation at the end of the epoch\n", " f1 = evaluate(model, valid_dl)\n", " print(f'Validation F1: {f1}, train loss: {sum(loss_epoch) / len(loss_epoch)}')\n", "\n", " # Keep track of the best model based on the accuracy\n", " if f1 > best_f1:\n", " torch.save(model.state_dict(), 'best_model')\n", " best_f1 = f1\n", "\n", " return losses, learning_rates" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "id": "LQkyUeyhV1D3" }, "outputs": [], "source": [ "def evaluate(model: nn.Module, valid_dl: DataLoader):\n", " \"\"\"\n", " Evaluates the model on the given dataset\n", " :param model: The model under evaluation\n", " :param valid_dl: A `DataLoader` reading validation data\n", " :return: The accuracy of the model on the dataset\n", " \"\"\"\n", " # VERY IMPORTANT: Put your model in \"eval\" mode -- this disables things like \n", " # layer normalization and dropout\n", " model.eval()\n", " labels_all = []\n", " preds_all = []\n", "\n", " # ALSO IMPORTANT: Don't accumulate gradients during this process\n", " with torch.no_grad():\n", " for batch in tqdm(valid_dl, desc='Evaluation'):\n", " batch = tuple(t.to(device) for t in batch)\n", " input_ids = batch[0]\n", " seq_lens = batch[1]\n", " labels = batch[2]\n", " hidden_states = None\n", "\n", " logits, _, _ = model(input_ids, seq_lens, hidden_states=hidden_states, labels=labels)\n", " preds_all.extend(torch.argmax(logits, dim=-1).reshape(-1).detach().cpu().numpy())\n", " labels_all.extend(labels.reshape(-1).detach().cpu().numpy())\n", "\n", " P, R, F1, _ = precision_recall_fscore_support(labels_all, preds_all, average='macro')\n", " print(confusion_matrix(labels_all, preds_all))\n", " return F1" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "id": "ycIjTfhBZGNJ" }, "outputs": [], "source": [ "lstm_dim = 128\n", "dropout_prob = 0.1\n", "batch_size = 8\n", "lr = 1e-2\n", "n_epochs = 10\n", "n_workers = 0 # set to a larger number if you run your code in colab\n", "\n", "device = torch.device(\"cpu\")\n", "if torch.cuda.is_available():\n", " device = torch.device(\"cuda\")\n", "\n", "# Create the model\n", "model = BiLSTM(\n", " pretrained_embeddings=torch.FloatTensor(pretrained_embeddings), \n", " lstm_dim=lstm_dim, \n", " dropout_prob=dropout_prob, \n", " n_classes=len(datasets[\"train\"].features[f\"ner_tags\"].feature.names)\n", " ).to(device)" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "afc43fa359df4352ba07ba5e5d00054d", "95164b73146c4484873e302a514db3cb", "00fdcbd96cb94d3eb4ebce2dd65453df", "69dac05df03a4505bf57ddee27c052c7", "5230116d8f9d40fbb22be74eb6bddba8", "04e7a1a51fc843a28998e9c233eb6b53", "ed85ba97e4db4aa4870c97fb5dae9320", "032c119a998a43efa68e584df3832d19", "7afee097ce0d4179a71382e1a770347d", "bba4178aa4d44e9d91190d821d05b7ee", "2614645b079b49bea5d51d1f8d99a38f", "f01071efe73b4151a3b75e73dd249c48", "b314e1ca91b1434e951253e9bebf6b0b", "0258bc4f1039499f8d27f95ea6881d4b", "470e65e908714a76a9a1aaeb9b889b62", "ca708c2a421b4dd9a744970e3d9ae610", "70a96efaef804fd8ad5ce058b130a5d8", "0dedc3af2f79435a8f866cd47b0258ff", "47d6e470ee324f50aa0b2ff7539a5308", "1d004bcd0131429296f108282d445751", "5e341b1c7e5346caad69ba22a54ec4dc", "dc5d256cae234801877fb9ce3ca792cf", "8ce8e901bde44dd6bf7de4ca40f35a5b", "e1c62c4d464b451ebf33b77b2e8dbba6", "931f034c69de4c379d851d93eb1a9084", "ddd1301e94394e62bacf916ad4880292", "bfcbe3d471ad412ca4161ee4fbb4125d", "485299f0fd8e4f5ba78bd3d109366717", "a6d38f7eb3cf43b58c5335f3b5557ff6", "969beef0e2184558a1c741abc45e021b" ] }, "id": "xOdf3IBNV4hx", "outputId": "5b93d989-a102-4195-d7ec-88af05f514a9" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5f809429d2864a5583df712280a659ae", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "40b91a1be31a49e1908d48f429ed5b43", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[345419 47 10 49 52 14 2 41 13]\n", " [ 23 1789 5 1 0 20 0 3 1]\n", " [ 25 16 1260 0 4 0 0 1 1]\n", " [ 37 82 0 1135 27 44 0 16 0]\n", " [ 32 5 11 8 678 2 10 1 4]\n", " [ 25 12 0 34 8 1741 3 14 0]\n", " [ 6 0 0 0 37 2 211 0 1]\n", " [ 65 17 0 34 3 22 1 775 5]\n", " [ 47 1 5 0 51 1 5 16 220]]\n", "Validation F1: 0.8935076155280685, train loss: 0.14170506390146825\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9905795cb97e465db4761a99e8e9c8fa", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9c73b8e5df714dde91128829b89940bc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[345436 62 2 45 22 11 2 33 34]\n", " [ 31 1781 5 4 0 14 0 6 1]\n", " [ 25 22 1249 2 1 0 2 1 5]\n", " [ 23 56 1 1191 21 22 0 27 0]\n", " [ 49 5 15 7 613 11 13 3 35]\n", " [ 25 13 0 50 0 1727 1 21 0]\n", " [ 11 0 3 1 12 7 211 1 11]\n", " [ 43 17 0 35 1 6 0 813 7]\n", " [ 27 2 5 0 16 2 0 18 276]]\n", "Validation F1: 0.9018831260482847, train loss: 0.02657376601092108\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "db0a329c85724a348955cac7f3f17ea9", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e451fda0ea3e4d54a344803b78fb0f82", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[345456 29 14 48 20 20 0 37 23]\n", " [ 27 1752 18 20 1 20 0 4 0]\n", " [ 17 9 1273 1 0 0 1 1 5]\n", " [ 38 23 1 1216 15 23 0 25 0]\n", " [ 36 1 10 8 659 2 10 0 25]\n", " [ 12 8 0 62 3 1727 4 20 1]\n", " [ 8 0 0 1 23 3 214 2 6]\n", " [ 41 12 0 47 3 8 0 793 18]\n", " [ 27 1 6 1 19 2 0 7 283]]\n", "Validation F1: 0.9104821085939905, train loss: 0.017478332217572713\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "168d2049bcfe4ccea1e2112caa756dae", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c55f08461a6c4e77aacecf939756973b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[345508 31 3 37 10 10 1 23 24]\n", " [ 23 1794 7 7 0 7 0 3 1]\n", " [ 21 11 1272 0 0 0 0 1 2]\n", " [ 50 50 0 1190 12 19 0 19 1]\n", " [ 50 2 25 12 628 2 10 2 20]\n", " [ 29 20 0 51 4 1695 1 35 2]\n", " [ 11 0 6 0 14 3 212 1 10]\n", " [ 75 12 0 28 1 6 0 795 5]\n", " [ 32 1 5 0 12 2 2 15 277]]\n", "Validation F1: 0.9107918478008801, train loss: 0.012492643622691443\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a813eafb1e7440f180c043c92b3abcf6", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cafc279d8b75492a84aa58268cf67bc7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[345519 20 2 40 25 10 0 21 10]\n", " [ 29 1776 6 13 2 13 0 2 1]\n", " [ 25 11 1268 0 1 0 0 1 1]\n", " [ 37 19 1 1222 12 30 0 20 0]\n", " [ 49 0 9 11 661 6 5 1 9]\n", " [ 14 7 0 36 3 1761 1 14 1]\n", " [ 11 0 0 0 19 2 221 0 4]\n", " [ 62 10 0 33 3 8 0 801 5]\n", " [ 30 1 5 3 24 2 1 12 268]]\n", "Validation F1: 0.9245278623743088, train loss: 0.008772710909356139\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ce55418c435649b0b711e3eab634cfee", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4c19c8b62e7b4889bea4d7f06fea8aa4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[345475 33 2 25 41 20 1 36 14]\n", " [ 25 1782 3 4 2 21 0 4 1]\n", " [ 21 16 1260 1 3 0 2 2 2]\n", " [ 40 38 0 1170 30 34 1 28 0]\n", " [ 34 0 10 3 674 9 7 0 14]\n", " [ 16 7 0 28 3 1757 3 21 2]\n", " [ 10 0 3 0 14 3 225 0 2]\n", " [ 62 13 0 26 3 14 0 792 12]\n", " [ 30 1 6 2 16 1 5 20 265]]\n", "Validation F1: 0.9140443357471715, train loss: 0.00545991696425629\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "100b60679e3e4ec296f59634506868c8", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2aeff848b84b49fd9e48539bab9079ee", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[345466 14 2 56 29 14 2 40 24]\n", " [ 25 1767 2 23 1 18 1 4 1]\n", " [ 21 10 1261 1 6 0 4 1 3]\n", " [ 29 21 0 1224 16 24 1 26 0]\n", " [ 34 1 7 9 677 5 6 0 12]\n", " [ 7 5 0 46 2 1758 2 16 1]\n", " [ 9 0 0 0 13 3 227 0 5]\n", " [ 47 8 0 39 3 8 0 811 6]\n", " [ 28 2 5 2 19 2 3 11 274]]\n", "Validation F1: 0.9206964790962123, train loss: 0.0035528619892963883\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "77a2c7abe0de4abf9ac555ae74887f9a", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3b221478ebb549c6aa349c3ac900d14f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[345500 35 3 28 10 19 2 29 21]\n", " [ 19 1794 2 7 1 14 0 4 1]\n", " [ 22 12 1262 1 5 0 2 1 2]\n", " [ 39 43 0 1201 10 28 1 18 1]\n", " [ 44 1 12 7 650 6 12 1 18]\n", " [ 10 7 0 41 2 1762 2 12 1]\n", " [ 9 0 0 0 7 2 235 0 4]\n", " [ 55 16 0 27 3 13 0 801 7]\n", " [ 29 1 4 1 9 2 8 13 279]]\n", "Validation F1: 0.9228745320291222, train loss: 0.0022250179169699172\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "74b69543d1f4401381a3d4ae19aa46d7", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a7aa4d79afe240c1bbf648e6e6b4421f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[345500 28 2 41 23 10 2 23 18]\n", " [ 21 1784 2 15 1 13 0 5 1]\n", " [ 21 10 1262 2 6 0 1 1 4]\n", " [ 28 36 1 1219 13 26 0 18 0]\n", " [ 39 1 12 6 667 6 9 1 10]\n", " [ 5 7 0 46 3 1761 2 13 0]\n", " [ 11 0 0 0 10 2 232 0 2]\n", " [ 53 11 0 31 3 10 0 808 6]\n", " [ 30 0 4 1 21 1 3 14 272]]\n", "Validation F1: 0.9249685641215538, train loss: 0.0012310007892623906\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e2c9529840fd4509bb55be62b7e30bbf", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a368684d8f064cb2aa64e61d8d87c937", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[345508 24 2 37 19 13 2 24 18]\n", " [ 24 1780 2 14 1 15 0 5 1]\n", " [ 20 9 1264 2 5 0 2 1 4]\n", " [ 31 35 0 1220 12 26 1 16 0]\n", " [ 41 0 12 8 665 7 7 1 10]\n", " [ 7 4 0 43 3 1764 2 14 0]\n", " [ 10 0 0 0 10 2 232 0 3]\n", " [ 53 11 0 31 3 10 0 808 6]\n", " [ 29 0 4 1 18 1 4 18 271]]\n", "Validation F1: 0.925124536751276, train loss: 0.0008371544579220439\n" ] }, { "data": { "text/plain": [ "<All keys matched successfully>" ] }, "execution_count": 78, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_dl = DataLoader(datasets['train'], batch_size=batch_size, shuffle=True, collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "valid_dl = DataLoader(datasets['validation'], batch_size=len(datasets['validation']), collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "\n", "# Create the optimizer\n", "optimizer = Adam(model.parameters(), lr=lr)\n", "scheduler = CyclicLR(optimizer, base_lr=0., max_lr=lr, step_size_up=1, step_size_down=len(train_dl)*n_epochs, cycle_momentum=False)\n", "\n", "# Train\n", "losses, learning_rates = train(model, train_dl, valid_dl, optimizer, n_epochs, device, scheduler)\n", "model.load_state_dict(torch.load('best_model'))" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 328, "referenced_widgets": [ "6cdc774b00ab477d956c98d936c2a422" ] }, "id": "RWxwYR7KV-RA", "outputId": "15ce76cc-1373-4dde-88ed-bca45b3bd1b9" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7af82e38e7e94395b38173cdb0084ba9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[419531 57 20 157 74 86 12 76 47]\n", " [ 113 1363 22 73 9 33 2 1 1]\n", " [ 87 9 1042 2 13 1 2 0 0]\n", " [ 116 27 2 1364 27 89 0 33 3]\n", " [ 55 1 9 11 703 5 33 4 14]\n", " [ 58 18 0 51 3 1502 4 31 1]\n", " [ 27 0 6 0 14 7 202 0 1]\n", " [ 71 9 1 37 6 16 0 557 5]\n", " [ 32 0 3 1 14 3 8 6 149]]\n" ] }, { "data": { "text/plain": [ "0.8411122480145246" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_dl = DataLoader(datasets['test'], batch_size=len(datasets['test']), collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "\n", "evaluate(model, test_dl)" ] }, { "cell_type": "markdown", "metadata": { "id": "89C8rnG3UCgo" }, "source": [ "# Conditional Random Field (CRF) \n", "\n", "\n", "\n", "- learn from and perform inference on data whose predictions depend on each other\n", "- a type of graphical model \n", "- **nodes** are the individual observations you wish to make predictions on \n", "- **edges** are dependencies between the nodes\n", "- the prediction you make for one token can change your belief about the other tokens\n", " - after determiners (DT), adjectives and nouns are much more likely than verbs\n", "- unfortunately, trying to model the dependencies between each node in an arbitrarily sized graph is combinatorial and thus intractable, so we have to make some simplifying assumptions.\n", "\n", "Assumptions for a **linear chain CRF**:\n", "- assume that your data is structured as a sequence\n", "- assume that your prediction at time $t$ is only dependent on your prediction at time $t - 1$\n", "- you make predictions by modeling two things:\n", " - the **probability of a label given your input** ($p(y_{t}|X)$)\n", " - the **probability of a label given the previous label** ($p(y_t|y_{t-1})$).\n", "\n", "In the **BiLSTM-CRF**\n", "- input probabilities $p(y_t|X)$ are modeled using the BiLSTM (as usual)\n", "- the probabilities $p(y_t|y_{t-1})$ are modeled using a transition matrix $V$ of size $n \\times n$ where $n$ is the number of tags (i.e., one transition probability for each possible transition). \n", "- in practice - add a CRF on top of your BiLSTM output logits instead of using a softmax and cross-entropy on the BiLSTM logits.\n", "\n", "\n", "[Source](https://www.aclweb.org/anthology/N16-1030.pdf)\n", "\n", "The model is then trained by maximizing the log-likelihood (i.e. minimizing the negative log-likelihood) of the entire sequence. For more in depth explanation of how this is performed, see the lectures from Hugo Larochelle [here](https://www.youtube.com/watch?v=PGBlyKtfB74&ab_channel=HugoLarochelle).\n", "\n", "\n", "Only a few lines of code to add a CRF using this third party library: [pytorch-crf](https://pytorch-crf.readthedocs.io/en/stable/). For a more advanced implementation, check [AllenNLP CRF module](https://github.com/allenai/allennlp/blob/master/allennlp/modules/conditional_random_field.py)\n", "\n", "The differences are:\n", "\n", "- Instead of taking a softmax/cross-entropy loss using the logits from the BiLSTM, we pass the logits to the pytorch-crf CRF module. The output of this model is the **log-likelihood of the entire sequence** (for each sequence in the batch). Since our objective is to minimize the loss, we take the **negative** of the log likelihood as our loss.\n", "- There is now a **decode** function, which passes logits through the CRF to get the most likely tag sequences.\n" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "id": "_X3lSEtTJ711" }, "outputs": [], "source": [ "# Define the model\n", "class BiLSTM_CRF(nn.Module):\n", " \"\"\"\n", " Basic BiLSTM-CRF network\n", " \"\"\"\n", " def __init__(\n", " self,\n", " pretrained_embeddings: torch.tensor,\n", " lstm_dim: int,\n", " dropout_prob: float = 0.1,\n", " n_classes: int = 2\n", " ):\n", " \"\"\"\n", " Initializer for basic BiLSTM network\n", " :param pretrained_embeddings: A tensor containing the pretrained BPE embeddings\n", " :param lstm_dim: The dimensionality of the BiLSTM network\n", " :param dropout_prob: Dropout probability\n", " :param n_classes: The number of output classes\n", " \"\"\"\n", "\n", " # First thing is to call the superclass initializer\n", " super(BiLSTM_CRF, self).__init__()\n", "\n", " # We'll define the network in a ModuleDict, which makes organizing the model a bit nicer\n", " # The components are an embedding layer, a 2 layer BiLSTM, and a feed-forward output layer\n", " self.model = nn.ModuleDict({\n", " 'embeddings': nn.Embedding.from_pretrained(pretrained_embeddings, padding_idx=pretrained_embeddings.shape[0] - 1),\n", " 'bilstm': nn.LSTM(\n", " pretrained_embeddings.shape[1],\n", " lstm_dim,\n", " 2,\n", " batch_first=True,\n", " dropout=dropout_prob,\n", " bidirectional=True),\n", " 'ff': nn.Linear(2*lstm_dim, n_classes),\n", " 'CRF': CRF(n_classes, batch_first=True)\n", " })\n", " self.n_classes = n_classes\n", "\n", " # Initialize the weights of the model\n", " self._init_weights()\n", "\n", " def _init_weights(self):\n", " all_params = list(self.model['bilstm'].named_parameters()) + \\\n", " list(self.model['ff'].named_parameters())\n", " for n,p in all_params:\n", " if 'weight' in n:\n", " nn.init.xavier_normal_(p)\n", " elif 'bias' in n:\n", " nn.init.zeros_(p)\n", "\n", " def forward(self, inputs, input_lens, labels = None):\n", " \"\"\"\n", " Defines how tensors flow through the model\n", " :param inputs: (b x sl) The IDs into the vocabulary of the input samples\n", " :param input_lens: (b) The length of each input sequence\n", " :param labels: (b) The label of each sample\n", " :return: (loss, logits) if `labels` is not None, otherwise just (logits,)\n", " \"\"\"\n", "\n", " # Get embeddings (b x sl x edim)\n", " embeds = self.model['embeddings'](inputs)\n", "\n", " # Pack padded: This is necessary for padded batches input to an RNN\n", " lstm_in = nn.utils.rnn.pack_padded_sequence(\n", " embeds,\n", " input_lens.cpu(),\n", " batch_first=True,\n", " enforce_sorted=False\n", " )\n", "\n", " # Pass the packed sequence through the BiLSTM\n", " lstm_out, hidden = self.model['bilstm'](lstm_in)\n", "\n", " # Unpack the packed sequence --> (b x sl x 2*lstm_dim)\n", " lstm_out,_ = nn.utils.rnn.pad_packed_sequence(lstm_out, batch_first=True)\n", "\n", " # Get emissions (b x seq_len x n_classes)\n", " emissions = self.model['ff'](lstm_out)\n", " outputs = (emissions,)\n", " if labels is not None:\n", " mask = (inputs != 0)\n", " # log-likelihood from the CRF\n", " log_likelihood = self.model['CRF'](emissions, labels, mask=mask, reduction='token_mean')\n", " outputs = (-log_likelihood,) + outputs\n", "\n", " return outputs\n", "\n", " def decode(self, emissions, mask):\n", " \"\"\"\n", " Given a set of emissions and a mask, decode the sequence\n", " \"\"\"\n", " return self.model['CRF'].decode(emissions, mask=mask)" ] }, { "cell_type": "markdown", "metadata": { "id": "zQVER0rN-31W" }, "source": [ "## Traning the model" ] }, { "cell_type": "markdown", "metadata": { "id": "4IRd6wlkhbc2" }, "source": [ "The evaluation function is also slightly different -- we evaluate perfomance based on the decoded sequence from the CRF as opposed to the output of the BiLSTM. We use macro-F1 score for this." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "id": "9lmOV4WxOSLw" }, "outputs": [], "source": [ "def train(\n", " model: nn.Module, \n", " train_dl: DataLoader, \n", " valid_dl: DataLoader, \n", " optimizer: torch.optim.Optimizer, \n", " n_epochs: int, \n", " device: torch.device,\n", " scheduler=None,\n", "):\n", " \"\"\"\n", " The main training loop which will optimize a given model on a given dataset\n", " :param model: The model being optimized\n", " :param train_dl: The training dataset\n", " :param valid_dl: A validation dataset\n", " :param optimizer: The optimizer used to update the model parameters\n", " :param n_epochs: Number of epochs to train for\n", " :param device: The device to train on\n", " :return: (model, losses) The best model and the losses per iteration\n", " \"\"\"\n", "\n", " # Keep track of the loss and best accuracy\n", " losses = []\n", " learning_rates = []\n", " best_f1 = 0.0\n", "\n", " # Iterate through epochs\n", " for ep in range(n_epochs):\n", "\n", " loss_epoch = []\n", "\n", " #Iterate through each batch in the dataloader\n", " for batch in tqdm(train_dl):\n", " # VERY IMPORTANT: Make sure the model is in training mode, which turns on \n", " # things like dropout and layer normalization\n", " model.train()\n", "\n", " # VERY IMPORTANT: zero out all of the gradients on each iteration -- PyTorch\n", " # keeps track of these dynamically in its computation graph so you need to explicitly\n", " # zero them out\n", " optimizer.zero_grad()\n", "\n", " # Place each tensor on the GPU\n", " batch = tuple(t.to(device) for t in batch)\n", " input_ids = batch[0]\n", " seq_lens = batch[1]\n", " labels = batch[2]\n", "\n", " # Pass the inputs through the model, get the current loss and logits\n", " loss, logits = model(input_ids, seq_lens, labels=labels)\n", " losses.append(loss.item())\n", " loss_epoch.append(loss.item())\n", "\n", " # Calculate all of the gradients and weight updates for the model\n", " loss.backward()\n", "\n", " # Optional: clip gradients\n", " #torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)\n", "\n", " # Finally, update the weights of the model\n", " optimizer.step()\n", " if scheduler != None:\n", " scheduler.step()\n", " learning_rates.append(scheduler.get_last_lr()[0])\n", "\n", " #gc.collect()\n", "\n", " # Perform inline evaluation at the end of the epoch\n", " f1 = evaluate(model, valid_dl)\n", " print(f'Validation F1: {f1}, train loss: {sum(loss_epoch) / len(loss_epoch)}')\n", "\n", " # Keep track of the best model based on the accuracy\n", " if f1 > best_f1:\n", " torch.save(model.state_dict(), 'best_model')\n", " best_f1 = f1\n", " #gc.collect()\n", "\n", " return losses, learning_rates" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "id": "cF45DpLPNmF4" }, "outputs": [], "source": [ "def evaluate(model: nn.Module, valid_dl: DataLoader):\n", " \"\"\"\n", " Evaluates the model on the given dataset\n", " :param model: The model under evaluation\n", " :param valid_dl: A `DataLoader` reading validation data\n", " :return: The accuracy of the model on the dataset\n", " \"\"\"\n", " # VERY IMPORTANT: Put your model in \"eval\" mode -- this disables things like \n", " # layer normalization and dropout\n", " model.eval()\n", " labels_all = []\n", " logits_all = []\n", " tags_all = []\n", "\n", " # ALSO IMPORTANT: Don't accumulate gradients during this process\n", " with torch.no_grad():\n", " for batch in tqdm(valid_dl, desc='Evaluation'):\n", " batch = tuple(t.to(device) for t in batch)\n", " input_ids = batch[0]\n", " seq_lens = batch[1]\n", " labels = batch[2]\n", "\n", " logits = model(input_ids, seq_lens, labels=labels)[-1]\n", " mask = (input_ids != 0)\n", " labels_all.extend([l for seq,samp in zip(list(labels.detach().cpu().numpy()), input_ids) for l,i in zip(seq,samp) if i != 0])\n", " logits_all.extend(list(logits.detach().cpu().numpy()))\n", "\n", " tags = model.decode(logits, mask)\n", " tags_all.extend([t for seq in tags for t in seq])\n", "\n", " P, R, F1, _ = precision_recall_fscore_support(labels_all, tags_all, average='macro')\n", " print(confusion_matrix(labels_all, tags_all))\n", " return F1" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "id": "h0Dx-Opjd9iW" }, "outputs": [], "source": [ "lstm_dim = 128\n", "dropout_prob = 0.1\n", "batch_size = 8\n", "lr = 1e-2\n", "n_epochs = 10\n", "n_workers = 0\n", "\n", "device = torch.device(\"cpu\")\n", "if torch.cuda.is_available():\n", " device = torch.device(\"cuda\")\n", "\n", "# Create the model\n", "model = BiLSTM_CRF(\n", " pretrained_embeddings=torch.FloatTensor(pretrained_embeddings), \n", " lstm_dim=lstm_dim, \n", " dropout_prob=dropout_prob, \n", " n_classes=len(datasets[\"train\"].features[f\"ner_tags\"].feature.names)\n", " ).to(device)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "c5c5c0104bef49fb86325a975bf70c98", "5101dd772d0a4b75a02afe70f566a9cd", "a427f1b146ff46dda0d16286d21403be", "3a79919c14c04f9285627d948c0c9a3d", "cc44b994a2bc48128bf3303b13ee0bae", "0ef76ee1a8a0448bb483fbfe6778e045", "4ddcd47934de4c56965aa1692cda96c6", "d5e5b67d543d481598e42d6c7564ad9e", "1d5e405913854d489da2d379a7b8e643", "498d92dca26a424d9219fcda3196509d", "9d3a24c131ea47c6ae2a28ed727f3b2c", "7b5d7c02247e438b824e28eda80505e0", "6cf6877fa9534d389b3e59357e8005d3", "33ea0aeffff044c5b21f1f1976656af3", "e033657b22df43a9812c52393516db1d", "8e12bab4d7aa4da5b8cfd177426bfe68", "5f7d736653984a3184103db511454a62", "42dc0175926b4720821ffc2740ca69e4", "39fd3489e53e40f69d1222f0cdf2cbc2", "ee2f4b3129084099ad4a59005e6759aa", "4481552939ad40b99648b42b87966201", "e13fcbd5797a47e09adfb344ca4f742c", "58363ec1a1eb4f22aaefc24d6df333c6", "4c57f5285ab24d09a86d334dbd60f456", "784c3ed4884a4446ac4278f419a8f22f", "283d04807326455b83c1f5f55174251c", "076b40a7b0744451a7524f3217ea76b0", "4bb91e60486741bd81318945cbc621c7", "42b8c6c4e1ac4918941f75b2941e6f4b", "0575d39f8c96456bb3536522a01098c8", "63ff9345ada14c30a4da5f425c911f70", "786041b9dad34b10b36486030970d19d", "9d6a873845954b0ea2ea7e3c20d99612", "2b00d5a3b27c43019e4a37f5e24d1f2b", "e8d801338b56453c94da08be4749c0be", "4e0d121ba1234e44a3448067e14b74de", "8043a5b572ed41b0a7a6f1160256e63f", "9842f90a1ae5430f8f85d135ab0811f0", "27684c86175141de989a015f909754ba", "35df170a986348af903069315c6bf113", "4b7716931b344f11a7e72938fa548dc4", "bf5801297c3346af932ed9896fec0645", "6524e7cf1bc24c4e9ef10e181c5bf35f", "f296ff4b96634493a0ded1358eee3ffd", "9df6dfc132c740c18d98c11a5f06038c", "6f20060eb6954f76b45ea747bf3a9907", "0138f661fb2e4bf6a88397f9873badc3", "ce613499edd2448ea65a222fece8adbe", "69de91f9f5d445d9801e8a7c8e434407", "eda67bb0e48448c2a81a6abbb299655c", "6c670492cafd4da48e5d5af837f4a766", "e1e27d12bbc3453481e771d268af6bbf", "5b7944330b724cf1943a7cc6fa9ac56f", "06413a173d0e430797a489b1ee38cd43", "402bfdd1222b47658c952b5c48489857", "6e5a690a933c4606960f40be558cc5ad", "ab8bb3d6d0c34222bd0eeed20e3f38c5", "b46deede17eb48a78661a8b65cf24a5f", "9c25145786934ae1a2fc9bdc762cebcd", "07f88cab60dc43f2801bfeadce6c13b0", "80504dc7b24c4c60a0886740de6ed75b", "077c9453603d424fb7a750e6c519e9bc", "7d6c032329ba41aba1221ed545831181", "faded243ba8f418cab3cbd203dcd1a69", "e98da261f882425398667b7de99be290", "9ff1a09ba29e4f03834980b845960ac8", "d859eb2c5cd94ffda355c0012d762b4a", "30a4910b396e4149afa487bfb99b45cc", "398b6dee969446fc976676ddb581b20c", "63b7c8e743be475a9d7cbc456728bd59", "1377d7c5faf4431dbb86a571d15f3fd6", "8a15b06012a94ca8a9981549d29751d6", "02ec7762a8a040b58015fbd5cbfd77b7", "167a0fe0e01a4ee68690c43692fddb3c", "8553cd6d520b45e58141964f5f62f164", "925d1a0960fa40bf954ce8f32ff1b02f", "0313aa8a41ba427bb913138d83ce21b6", "5deb6052e7654541b065775b0ce49d6e", "dfee51133f234894a0e5dddb496db820", "21f6f2b03cb84f8a8c5126d68d72f140", "85c38bf45f4b4b87aad067988a4822fd", "0e3e71f47b4245c9917be43ad3fe8bfb", "c7286887e5914b2981c8a00fc16ef70e", "1300fd4a0e1549348e5bb2334af8f778", "bb88da07e26b4758a31e4bffb69badfb", "3d1b324d978f4485af4bcabd331160fc", "8c7cdaa7a26645d1ac3412f9ee707470", "a7e7d6ec658649479411bde04e4c2aee", "20c0e811c05d466486b8e9e8ffa72ec1", "177271c8428c46889799d4a70bd9c192", "93476fbf743f422c8d3f89c47edf205f", "3a277b1ddab84f308a6df7d42a83b69d", "3f4d5b5cc11a4c439eb7670d4d315b02", "678c127ca70b48e3a1aff97362b2473f", "5a064bea38c7449a940da7a9ded30021", "a917ce8afb7e47ba822292dbf011f28c", "148ab57e86414260bcaf87f9cf696287", "a8f07e13917a4cceb8ff41e0855b87ba", "d84e69475a05482980582d683784c461", "d4d0d8dcb30a47f1ae0fd61b3836c77b", "b03142edb51f4f4c8b8a6a839595c3d8", "68c12407330c4c3c8d191d65e0441ebe", "d4223c713f884d8881f6091f91b631f6", "884664b805d2442eb5264971aeea4269", "3c1fd01d5ab74926b42891f9440feea5", "f1617348c3884618859c19808f723665", "2cb7b546af9b4b89b8b53a7c1cdc58f2", "1c0016a437e24504a156249788daf08e", "3ce435ba12d54cc1a122792670bbeaa0", "324da4c1ca9a49f9a764b211102c23a8", "7f0a274780f646959de6081c5c860ee9", "486c894c2b8146f881656748df926caa", "40d0194fcbe14576a435b486e43bb9de", "334cdddd33ee462a9dafa0b6e116f2e0", "e6b8bb8175ab488cab8bd85ee9144f62", "adadf8c4200a40019b26ff734d3adf08", "4ddc64060cc349609b6f370815ca4e2e", "4e5ba14720e24ff99367c2010dd632e3", "537462efbcaf43afad7508c182552a35", "b6b28043e67041368d2b131393d7cec1", "a9954aec3cf74d919ca31f6342fffe7f", "afd9cde9f185470c8f36f2a85e6374f8", "402fa0d35fb44392be1da0f9895053ab", "a371acd3cf45434da3c5a58ee847c32a", "33f81bc9680e4d70a9a24aa8b263124d", "1ff8e68e92c143ef86c82df57b7022b3", "c232c014240e4ea3a6b1423692fcdd13", "c483b9a369f14cc1a6cc5a8580faba18", "a06444c67ead477b8a127e1ea52ee18c", "027d62ef25e6429595edda611bbed0df", "1b5dadfebd0e40aeb6acb4b330809a5a", "0b37457dd10c4a9489461491889db959", "f65aabdb6524496bbbc4ba9639127359", "8924e7f0fd084219b23da0d00968803d", "65247ca3e7944632b52b26cf71b78769", "bfdf7ea44f8e461f82fbc4699e07ec0b", "2c4e4f9f341846d98e18c561391aab0b", "86badf4aa3d24698997027929bd4aa2d", "4a3f380d0c3f4f4e877558c7db2f9d03", "f8ff1f88e23a417c895a70e77781f1d1", "d134c281bb20460d8adf1cd04d9f1906", "0b4d70be8d204713b88407757e8a5d0a", "19292c9b50bf4573adef5eb6032f4f0c", "8d9d6033d99146be94ccc05d71fab90a", "b20131c4430b458aa7a5950bf19dfca4", "e9cfc286f4e84d4387a1e830a908b9f1", "cf78a093ae6a4aec84c8f5bfd20914e6", "944d938a381848ebaa8acb40e93c9578", "d7f11c0e7a814c8f8597ffbfca4b1b09", "60a8955bade7451996405d720bee06a7", "74cec50a781c40ad8b99289f38d7ac69", "bf22ef397bd04af0bb51def0a3b37d00", "d62e9d5a8497455888a5e4aebf03ebda", "f49e83f2ad6a4f1a8dd3f3b1b913b048", "042693cc0df944858e35833c108c2f1d", "4f01566e931a47a8b73f1c0620f170b8", "e15da43cd84348799f28b5569ff1ba91", "06fc23a15b0b402cb10de45cf98cb98e", "df47c6e6bf9f40d5a379d21038ba3080", "6e4353d2bed74e6485b5f3ec0916e84d", "7a243e47ffb54fd4ad4d58da181d03cd", "24a7f8f1a02c4dc98c004c5577912b52", "7e29174fdae9472a88288c326b65cd44", "769b02470769423f8e47ab3b5d3b6464", "e0be0a8d76c24613b60e22ccbd299e69", "5e37ef37a9794c9eadf0b8046048b446", "f19709b1237343f69dd1317741f6f5a4", "e7dc86fd2e00406e86c1933fb416dcfa", "c8c8d1346aea474fabd3dcdfd0526f8e", "c030bde8c80945ccbaa39481f1b7a331", "5f72097761f5422a8bc320090bed8a6d", "07866ecacbe34e65831862ca43cb1d38", "42a2d3a0171140cdbbbe7c2cd140acb2", "ec276edf6a7b4c70bbcdcdc698d75f0a", "50233fab3e2a4f6989c63a2335c75b6d", "a7828fae059544f6943528696ffd9175", "df8234f0c75f4af5943f5139532e6ace", "61e2ae3f0be54a6e966e174b1df2faa6", "f0a4ce576d1f48fdaf75a943e10246ba", "50fefb037c844da9811c20e3c42daa5c", "0bca1733c770416e86acf25c182e7d80", "d40c77c769bc4626a8293341fe87ce7d", "3de70fdc4df84198b6f5c751cf605b43", "d09c2e773eb749b798621369d8823fda", "b24602dba2ea44dd8abfabd4b6704010", "44baad765185462aaeb9095181ad0af7", "6b659814a0024ffaafda6cb4d57664f2", "5d2ce2c99b364ebcb75c222e56a58690", "567c973e39e547ea87c1838d89b88074", "f5c986bc185140e59c73c8c48ef99534", "d28ca53387d046a89f5bd05e2864ffff", "98456c5e51ee40b7aed29c220a2d1b43", "b6029eef675f455ebb21ad04184b106f", "688b588a9abf4cd19e51adae9c5ebb97", "a76b75433328451da825c4a8ba03dc65", "270d3ea25e9b483fb18bcc73aa43db58", "e3cd334928f14f2ea0367e9f431ba2c2", "c8ad835c37be4dc4ac1d2b80ddbf3176", "4da5667b33db4bbcadf247de6df42442", "cebb2b6ccda746588e2bc3fb8bfc3acd", "837dc8ed012f42d98e3c6efb29f12600", "01d2a1b3c57f41b7848c2c6299651e5e", "9866405fcafe454b93321b46139b3324", "f81d5b74f36c4b5fa49197825820f04f", "d2418f27550c4a1abc1d1faa5b276f45", "c56d92e7acf2494e85902d64ec20a542", "f5e3a24625dc4614b49e949e2440ec6f", "424a055fb98b40c69da752f34a54b2d7", "183c5aa5564f4388987d051140c01ce5", "e140fc80ad5649c8b47f501e39ac8306", "f0ce183181034604b62b3c9a2b882e98", "8923477611ca483abfb1fb917e7eb56f", "69d338f4d2ca44e8bb9473aaed9789ae", "f09111dd7aa04d80b50cc324c9461d0e", "d5703426c8914817b2777c5e65aa8447", "0e974b9ee4324bdb86788fe0e2a64efc", "29437da4eece429e92866049f31da392", "9c58458bcb4449d28316bf88a2533912", "b5043a6472894030bef0f09f8c98a920", "641f73da50aa4339984f6401b29bf080" ] }, "id": "unFGEN_2eIzo", "outputId": "5fb7ea49-ac9f-48a7-936d-8809d196c70b" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8954befff2524a36a5649a1382610875", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f75ae823307b4d0595528af32b3b4d51", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42598 14 26 21 25 16 4 25 30]\n", " [ 61 1654 9 48 0 62 2 5 1]\n", " [ 25 7 1246 1 11 0 13 0 4]\n", " [ 65 13 1 1086 19 97 0 58 2]\n", " [ 76 1 8 4 531 9 54 2 66]\n", " [ 27 4 0 18 3 1763 6 16 0]\n", " [ 9 0 0 0 7 3 228 0 10]\n", " [ 72 12 0 26 3 17 0 775 17]\n", " [ 27 1 8 1 16 2 4 12 275]]\n", "Validation F1: 0.8698924809029651, train loss: 0.10063888397788287\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "becbad5442434092a01b8de091de2e96", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8a9107e214254013aaf25155d2333e16", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Traceback (most recent call last):\n", " File \"/Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/multiprocessing/queues.py\", line 241, in _feed\n", " close()\n", " File \"/Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/multiprocessing/connection.py\", line 182, in close\n", " self._close()\n", " File \"/Users/knf792/miniconda3/envs/nlp-course/lib/python3.10/multiprocessing/connection.py\", line 366, in _close\n", " _close(self._handle)\n", "OSError: [Errno 9] Bad file descriptor\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[[42589 78 9 19 18 10 12 14 10]\n", " [ 38 1746 5 24 2 25 1 1 0]\n", " [ 16 15 1256 1 9 0 10 0 0]\n", " [ 49 31 2 1145 21 67 2 22 2]\n", " [ 49 4 3 5 561 10 95 1 23]\n", " [ 24 12 1 26 2 1755 7 10 0]\n", " [ 7 0 0 0 3 1 240 1 5]\n", " [ 69 23 0 25 3 20 1 774 7]\n", " [ 41 0 8 1 13 1 15 17 250]]\n", "Validation F1: 0.8821901555472853, train loss: 0.04108418301545575\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2b03c04d3ed74fe88cfab853ac26d2f9", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5aa20fffcc724d259c39edb65ffb775e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42606 19 5 50 43 7 1 20 8]\n", " [ 34 1771 4 21 1 9 0 2 0]\n", " [ 20 15 1265 0 5 0 1 0 1]\n", " [ 40 36 0 1210 18 25 0 12 0]\n", " [ 28 1 15 7 673 6 8 1 12]\n", " [ 28 17 1 48 5 1724 3 11 0]\n", " [ 8 0 3 0 20 3 214 0 9]\n", " [ 59 17 0 29 4 6 0 801 6]\n", " [ 37 1 8 1 21 3 0 16 259]]\n", "Validation F1: 0.914173039925163, train loss: 0.02902200581049581\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9c108c57283a4cd8b00a69adaff398a4", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "dfb9c5777ef64df285307f51a2cdd61a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42509 29 15 41 53 17 1 69 25]\n", " [ 23 1766 6 6 2 31 1 5 2]\n", " [ 12 10 1270 0 2 0 10 0 3]\n", " [ 21 42 3 1172 20 39 0 42 2]\n", " [ 30 1 17 9 648 8 14 1 23]\n", " [ 20 7 1 27 4 1766 2 10 0]\n", " [ 3 0 2 0 10 1 229 1 11]\n", " [ 39 16 0 24 3 12 0 822 6]\n", " [ 31 1 6 1 10 3 1 17 276]]\n", "Validation F1: 0.9083839956112928, train loss: 0.020222995579045354\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ade483cd92e34dbea53c8cc54a70b358", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f6eb382099a1441fada487a0169a6475", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42601 32 20 32 17 17 2 24 14]\n", " [ 24 1777 8 5 1 25 1 1 0]\n", " [ 16 12 1275 0 0 0 4 0 0]\n", " [ 38 43 2 1191 17 33 0 16 1]\n", " [ 39 3 21 5 647 8 14 2 12]\n", " [ 13 11 1 27 3 1773 3 6 0]\n", " [ 10 0 5 0 8 4 229 0 1]\n", " [ 59 23 1 27 1 10 0 796 5]\n", " [ 36 1 10 2 17 3 4 21 252]]\n", "Validation F1: 0.9148528284016666, train loss: 0.01462964923238503\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c63b994518224d468c7fd81defbea906", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "98158f1bdeb04ffbbc4d2693ec55dc58", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42517 18 14 41 29 19 9 84 28]\n", " [ 21 1761 6 19 0 27 1 4 3]\n", " [ 11 10 1278 0 2 0 5 0 1]\n", " [ 26 23 1 1193 16 35 2 43 2]\n", " [ 34 0 6 12 630 6 18 1 44]\n", " [ 7 2 1 35 2 1771 2 17 0]\n", " [ 5 0 0 0 6 3 239 0 4]\n", " [ 40 13 1 28 1 12 0 818 9]\n", " [ 30 1 7 1 12 3 4 19 269]]\n", "Validation F1: 0.9063067911463691, train loss: 0.010622335318595709\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ea9c839513fd4d489d14b191c5e5ed89", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "67a55d16486b4a7d94210c219b04d059", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42633 20 5 35 22 18 2 16 8]\n", " [ 21 1775 5 17 1 19 1 3 0]\n", " [ 16 11 1268 1 7 0 2 0 2]\n", " [ 33 28 1 1211 20 25 0 23 0]\n", " [ 39 1 6 10 658 7 10 1 19]\n", " [ 8 10 1 39 1 1762 3 12 1]\n", " [ 8 0 2 1 11 0 229 0 6]\n", " [ 56 15 0 32 3 6 0 803 7]\n", " [ 38 1 7 2 22 4 1 11 260]]\n", "Validation F1: 0.9191857160523556, train loss: 0.006278519679645825\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "84df2663e7a04c0ea58d5173b8223cfe", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5910cace6cc0489b9f9059f81e97f137", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42611 18 4 40 36 13 2 20 15]\n", " [ 26 1774 4 11 2 21 1 3 0]\n", " [ 16 10 1271 1 3 0 4 0 2]\n", " [ 31 32 1 1212 24 23 0 18 0]\n", " [ 40 1 11 9 661 6 8 1 14]\n", " [ 11 7 1 36 5 1765 2 10 0]\n", " [ 5 0 0 0 16 1 234 0 1]\n", " [ 55 15 0 35 5 10 0 796 6]\n", " [ 36 1 8 2 21 3 0 14 261]]\n", "Validation F1: 0.9201889539029255, train loss: 0.00391304591619997\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d7640c9e9f7e4004b8c8d010d112d5a8", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a1fba4d6794c44c9a65761083dc5adae", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42614 20 3 35 29 16 3 23 16]\n", " [ 21 1785 5 8 2 17 0 4 0]\n", " [ 16 12 1274 0 2 0 1 0 2]\n", " [ 32 37 1 1208 16 29 1 17 0]\n", " [ 43 1 11 13 652 6 13 1 11]\n", " [ 10 7 1 30 2 1772 2 13 0]\n", " [ 5 0 0 0 13 3 235 0 1]\n", " [ 52 17 0 32 4 9 0 803 5]\n", " [ 34 1 8 1 20 4 1 15 262]]\n", "Validation F1: 0.9217032781476764, train loss: 0.0023582927215561266\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "97a4d09b57994b0ebb6126f42c6051b9", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1756 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ccb9f10432134ef39a1c5aa5c06f7730", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42622 18 4 32 29 14 3 25 12]\n", " [ 24 1780 4 11 2 18 0 3 0]\n", " [ 16 11 1273 0 3 0 2 0 2]\n", " [ 34 30 1 1220 16 27 1 12 0]\n", " [ 40 1 9 11 663 6 12 1 8]\n", " [ 11 5 1 33 3 1771 2 11 0]\n", " [ 5 0 0 0 14 3 234 0 1]\n", " [ 55 16 0 32 4 11 0 799 5]\n", " [ 34 1 8 1 20 4 1 15 262]]\n", "Validation F1: 0.9240073784348178, train loss: 0.0015345649171752004\n" ] }, { "data": { "text/plain": [ "<All keys matched successfully>" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_dl = DataLoader(datasets['train'], batch_size=batch_size, shuffle=True, collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "valid_dl = DataLoader(datasets['validation'], batch_size=len(datasets['validation']), collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "\n", "# Create the optimizer\n", "optimizer = Adam(model.parameters(), lr=lr)\n", "scheduler = CyclicLR(optimizer, base_lr=0., max_lr=lr, step_size_up=1, step_size_down=len(train_dl)*n_epochs, cycle_momentum=False)\n", "\n", "# Train\n", "losses, learning_rates = train(model, train_dl, valid_dl, optimizer, n_epochs, device, scheduler)\n", "model.load_state_dict(torch.load('best_model'))" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 311, "referenced_widgets": [ "b06088c71629497da10f438e7470e7c1", "18caeb9127d24c6dac9d43b587c80ae5", "0ea3ab35d4a24fc687463c804fb89b48", "3a518e10ed6446e09cd964712d59e889", "b59fa23d30f7415eaf8dca5d8ba134ee", "4ae5022a4ae2492792d189040efa0da2", "7b70fab4d9744354a602e7d5563f964f", "31211099ea134a3a93636ce9db54d125", "e556aeb7c8434c6aaddf6096ffb497d6", "bc8aaf6d5f7d4e13b65da793a91d1e22", "5bb1935e23e94c5b8ffa23f17d77f06e" ] }, "id": "9MdHdIaB_XV0", "outputId": "f6641f87-a0c9-4f08-e6e8-9871859e816c" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6ef39c9fac7b47609daccc7e8f38881f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/1 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[37831 61 11 156 78 49 14 67 56]\n", " [ 139 1356 22 71 4 16 2 5 2]\n", " [ 118 12 989 2 29 0 3 0 3]\n", " [ 111 38 2 1377 26 66 1 38 2]\n", " [ 56 1 8 12 702 5 36 0 15]\n", " [ 64 6 1 66 5 1498 3 25 0]\n", " [ 33 0 2 0 19 5 198 0 0]\n", " [ 82 12 1 39 4 16 0 537 11]\n", " [ 41 1 2 1 13 1 3 9 145]]\n" ] }, { "data": { "text/plain": [ "0.8312239435549633" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_dl = DataLoader(datasets['test'], batch_size=len(datasets['test']), collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "\n", "evaluate(model, test_dl)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "0pO3u3AwjVfj", "outputId": "413cb2a6-7a66-4b56-8006-90943b52da05" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[('SOCCER', 'O', 'O'), ('-', 'O', 'O'), ('JAPAN', 'B-LOC', 'B-LOC'), ('GET', 'O', 'O'), ('LUCKY', 'B-ORG', 'O'), ('WIN', 'O', 'O'), (',', 'O', 'O'), ('CHINA', 'B-LOC', 'B-PER'), ('IN', 'O', 'O'), ('SURPRISE', 'O', 'O'), ('DEFEAT', 'O', 'O'), ('.', 'O', 'O')]\n", "[('AL-AIN', 'B-LOC', 'B-LOC'), (',', 'O', 'O'), ('United', 'B-LOC', 'B-LOC'), ('Arab', 'I-LOC', 'I-LOC'), ('Emirates', 'I-LOC', 'I-LOC'), ('1996-12-06', 'O', 'O')]\n" ] } ], "source": [ "model.eval()\n", "examples = [0, 2]\n", "for ex in examples:\n", " samples = [b.to(device) for b in next(iter(test_dl))]\n", "\n", " # Get the emissions. These are basically p(y|x) for each token x,\n", " # which will be input to the CRF a decoded with the help of p(y_t|y_{t-1})\n", " (emissions,) = model(samples[0], samples[1])\n", " mask = (samples[0] != 0)\n", "\n", " tags = model.decode(emissions, mask)\n", "\n", " print([(tok, datasets[\"train\"].features[f\"ner_tags\"].feature.names[tag], datasets[\"train\"].features[f\"ner_tags\"].feature.names[gold_tag]) \n", " for tok,tag, gold_tag in zip(datasets['test'][ex]['tokens'], tags[ex], datasets['test'][ex]['ner_tags'])])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After training the model, we can inspect the CRF layer and check the learned transition matrix $V = p(y_t|y_{t-1})$. For example, we can see that the most probable transition from B-PER is I-PER, as expected." ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "O: 0.04908164590597153\n", "B-PER: 2.7868492907145992e-05\n", "I-PER: 0.9053760766983032\n", "B-ORG: 0.0009374959045089781\n", "I-ORG: 0.00010273537918692455\n", "B-LOC: 0.027795543894171715\n", "I-LOC: 0.00016327288176398724\n", "B-MISC: 0.016292331740260124\n", "I-MISC: 0.00022300780983641744\n" ] } ], "source": [ "b_per_id = datasets[\"train\"].features[f\"ner_tags\"].feature.names.index(\"B-PER\")\n", "transitions = model.model[\"CRF\"].transitions[b_per_id].detach().to(\"cpu\")\n", "transitions = torch.softmax(transitions, 0).numpy()\n", "for idx, tag in enumerate(datasets[\"train\"].features[f\"ner_tags\"].feature.names):\n", " print(f\"{tag}: {transitions[idx]}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question:** How would you implement a Transformer-CRF?" ] }, { "cell_type": "markdown", "metadata": { "id": "YATCbeeTDNQG" }, "source": [ "# Beam Search" ] }, { "cell_type": "markdown", "metadata": { "id": "sylZvVBm0lo_" }, "source": [ " [(source)](https://towardsdatascience.com/foundations-of-nlp-explained-visually-beam-search-how-it-works-1586b9849a24)\n" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "id": "oKUr7j_y1J4p" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[4, 0, 4, 0, 4, 0, 4, 0, 4, 0], 6.931471805599453]\n", "[[4, 0, 4, 0, 4, 0, 4, 0, 4, 1], 7.154615356913663]\n", "[[4, 0, 4, 0, 4, 0, 4, 0, 3, 0], 7.154615356913663]\n" ] } ], "source": [ "# source https://machinelearningmastery.com/beam-search-decoder-natural-language-processing/\n", "\n", "def beam_search_decoder(data, k):\n", " sequences = [[list(), 0.0]]\n", " # walk over each step in sequence\n", " for row in data:\n", " all_candidates = list()\n", " # expand each current candidate\n", " for i in range(len(sequences)):\n", " seq, score = sequences[i]\n", " for j in range(len(row)):\n", " candidate = [seq + [j], score - log(row[j])]\n", " all_candidates.append(candidate)\n", " # order all candidates by score\n", " ordered = sorted(all_candidates, key=lambda tup:tup[1])\n", " # select k best\n", " sequences = ordered[:k]\n", " return sequences\n", " \n", "# define a sequence of 10 words over a vocab of 5 words\n", "data = [[0.1, 0.2, 0.3, 0.4, 0.5],\n", " [0.5, 0.4, 0.3, 0.2, 0.1],\n", " [0.1, 0.2, 0.3, 0.4, 0.5],\n", " [0.5, 0.4, 0.3, 0.2, 0.1],\n", " [0.1, 0.2, 0.3, 0.4, 0.5],\n", " [0.5, 0.4, 0.3, 0.2, 0.1],\n", " [0.1, 0.2, 0.3, 0.4, 0.5],\n", " [0.5, 0.4, 0.3, 0.2, 0.1],\n", " [0.1, 0.2, 0.3, 0.4, 0.5],\n", " [0.5, 0.4, 0.3, 0.2, 0.1]]\n", "data = array(data)\n", "# decode sequence\n", "result = beam_search_decoder(data, 3)\n", "# print result\n", "for seq in result:\n", " print(seq)" ] }, { "cell_type": "markdown", "metadata": { "id": "lOTwIiaG1KPU" }, "source": [ "- **Question: Can you find what is the problem with the above?**\n", "\n", "\n", "- In the above, when generating text, the probability distribution for the next step does not depend on the previous step's choice.\n", "- Beam search is usually employed with encoder-decoder architectures:\n", "\n", "- At each step, the decoder receives as input the prediction of the previous step and the hidden state of the previous step.\n", "- During training : at each step provide either the prediction at the previous step with highest probability or the gold label for the next step (teacher forcing).\n", "- During testing: build a beam of top-k generated sequences and re-run the decoder with each of them.\n", "\n", "Resources:\n", "- Implementing an encoder-decoder model [example 1](https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html), [example 2](https://bastings.github.io/annotated_encoder_decoder/)\n", "- Implementing beam search [example](https://github.com/budzianowski/PyTorch-Beam-Search-Decoding/blob/master/decode_beam.py)\n" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "id": "aUlZdPe7v5KJ" }, "outputs": [], "source": [ "class EncoderRNN(nn.Module):\n", " \"\"\"\n", " RNN Encoder model.\n", " \"\"\"\n", " def __init__(self, \n", " pretrained_embeddings: torch.tensor, \n", " lstm_dim: int,\n", " dropout_prob: float = 0.1):\n", " \"\"\"\n", " Initializer for EncoderRNN network\n", " :param pretrained_embeddings: A tensor containing the pretrained embeddings\n", " :param lstm_dim: The dimensionality of the LSTM network\n", " :param dropout_prob: Dropout probability\n", " \"\"\"\n", " # First thing is to call the superclass initializer\n", " super(EncoderRNN, self).__init__()\n", "\n", " # We'll define the network in a ModuleDict, which makes organizing the model a bit nicer\n", " # The components are an embedding layer, and an LSTM layer.\n", " self.model = nn.ModuleDict({\n", " 'embeddings': nn.Embedding.from_pretrained(pretrained_embeddings, padding_idx=pretrained_embeddings.shape[0] - 1),\n", " 'lstm': nn.LSTM(pretrained_embeddings.shape[1], lstm_dim, 2, batch_first=True, bidirectional=True),\n", " })\n", " # Initialize the weights of the model\n", " self._init_weights()\n", "\n", " def _init_weights(self):\n", " all_params = list(self.model['lstm'].named_parameters())\n", " for n, p in all_params:\n", " if 'weight' in n:\n", " nn.init.xavier_normal_(p)\n", " elif 'bias' in n:\n", " nn.init.zeros_(p)\n", "\n", " def forward(self, inputs, input_lens):\n", " \"\"\"\n", " Defines how tensors flow through the model\n", " :param inputs: (b x sl) The IDs into the vocabulary of the input samples\n", " :param input_lens: (b) The length of each input sequence\n", " :return: (lstm output state, lstm hidden state) \n", " \"\"\"\n", " embeds = self.model['embeddings'](inputs)\n", " lstm_in = nn.utils.rnn.pack_padded_sequence(\n", " embeds,\n", " input_lens.cpu(),\n", " batch_first=True,\n", " enforce_sorted=False\n", " )\n", " lstm_out, hidden_states = self.model['lstm'](lstm_in)\n", " lstm_out, _ = nn.utils.rnn.pad_packed_sequence(lstm_out, batch_first=True)\n", " return lstm_out, hidden_states\n", "\n", "\n", "class DecoderRNN(nn.Module):\n", " \"\"\"\n", " RNN Decoder model.\n", " \"\"\"\n", " def __init__(self, pretrained_embeddings: torch.tensor, \n", " lstm_dim: int,\n", " dropout_prob: float = 0.1,\n", " n_classes: int = 2):\n", " \"\"\"\n", " Initializer for DecoderRNN network\n", " :param pretrained_embeddings: A tensor containing the pretrained embeddings\n", " :param lstm_dim: The dimensionality of the LSTM network\n", " :param dropout_prob: Dropout probability\n", " :param n_classes: Number of prediction classes\n", " \"\"\"\n", " # First thing is to call the superclass initializer\n", " super(DecoderRNN, self).__init__()\n", " # We'll define the network in a ModuleDict, which makes organizing the model a bit nicer\n", " # The components are an embedding layer, a LSTM layer, and a feed-forward output layer\n", " self.model = nn.ModuleDict({\n", " 'embeddings': nn.Embedding.from_pretrained(pretrained_embeddings, padding_idx=pretrained_embeddings.shape[0] - 1),\n", " 'lstm': nn.LSTM(pretrained_embeddings.shape[1], lstm_dim, 2, bidirectional=True, batch_first=True),\n", " 'nn': nn.Linear(lstm_dim*2, n_classes),\n", " })\n", " # Initialize the weights of the model\n", " self._init_weights() \n", "\n", " def forward(self, inputs, hidden, input_lens):\n", " \"\"\"\n", " Defines how tensors flow through the model\n", " :param inputs: (b x sl) The IDs into the vocabulary of the input samples\n", " :param hidden: (b) The hidden state of the previous step\n", " :param input_lens: (b) The length of each input sequence\n", " :return: (output predictions, lstm hidden states) the hidden states will be used as input at the next step\n", " \"\"\"\n", " embeds = self.model['embeddings'](inputs)\n", "\n", " lstm_in = nn.utils.rnn.pack_padded_sequence(\n", " embeds,\n", " input_lens.cpu(),\n", " batch_first=True,\n", " enforce_sorted=False\n", " )\n", " lstm_out, hidden_states = self.model['lstm'](lstm_in, hidden)\n", " lstm_out, _ = nn.utils.rnn.pad_packed_sequence(lstm_out, batch_first=True)\n", " output = self.model['nn'](lstm_out)\n", " return output, hidden_states\n", "\n", " def _init_weights(self):\n", " all_params = list(self.model['lstm'].named_parameters()) + list(self.model['nn'].named_parameters())\n", " for n, p in all_params:\n", " if 'weight' in n:\n", " nn.init.xavier_normal_(p)\n", " elif 'bias' in n:\n", " nn.init.zeros_(p)\n", "\n", "# Define the model\n", "class Seq2Seq(nn.Module):\n", " \"\"\"\n", " Basic Seq2Seq network\n", " \"\"\"\n", " def __init__(\n", " self,\n", " pretrained_embeddings: torch.tensor,\n", " lstm_dim: int,\n", " dropout_prob: float = 0.1,\n", " n_classes: int = 2\n", " ):\n", " \"\"\"\n", " Initializer for basic Seq2Seq network\n", " :param pretrained_embeddings: A tensor containing the pretrained embeddings\n", " :param lstm_dim: The dimensionality of the LSTM network\n", " :param dropout_prob: Dropout probability\n", " :param n_classes: The number of output classes\n", " \"\"\"\n", "\n", " # First thing is to call the superclass initializer\n", " super(Seq2Seq, self).__init__()\n", "\n", " # We'll define the network in a ModuleDict, which consists of an encoder and a decoder\n", " self.model = nn.ModuleDict({\n", " 'encoder': EncoderRNN(pretrained_embeddings, lstm_dim, dropout_prob),\n", " 'decoder': DecoderRNN(pretrained_embeddings, lstm_dim, dropout_prob, n_classes),\n", " })\n", " self.loss = nn.CrossEntropyLoss(weight=torch.FloatTensor([0.5]+[1]*(len(datasets[\"train\"].features[f\"ner_tags\"].feature.names)-1)).to(device))\n", "\n", "\n", " def forward(self, inputs, input_lens, labels=None):\n", " \"\"\"\n", " Defines how tensors flow through the model. \n", " For the Seq2Seq model this includes 1) encoding the whole input text, \n", " and running *target_length* decoding steps to predict the tag of each token.\n", "\n", " :param inputs: (b x sl) The IDs into the vocabulary of the input samples\n", " :param input_lens: (b) The length of each input sequence\n", " :param labels: (b) The label of each sample\n", " :return: (loss, logits) if `labels` is not None, otherwise just (logits,)\n", " \"\"\"\n", "\n", " # Get embeddings (b x sl x embedding dim)\n", " encoder_output, encoder_hidden = self.model['encoder'](inputs, input_lens)\n", " decoder_hidden = encoder_hidden\n", " decoder_input = torch.tensor([tokenizer.encode(['[BOS]'])]*inputs.shape[0], device=device)\n", " target_length = labels.size(1)\n", "\n", " loss = None\n", " for di in range(target_length):\n", " decoder_output, decoder_hidden = self.model['decoder'](\n", " decoder_input, decoder_hidden, torch.tensor([1]*inputs.shape[0]))\n", "\n", " if loss == None: \n", " loss = self.loss(decoder_output.squeeze(1), labels[:, di])\n", " else:\n", " loss += self.loss(decoder_output.squeeze(1), labels[:, di])\n", " # Teacher forcing: Feed the target as the next input\n", " decoder_input = labels[:, di].unsqueeze(-1) \n", "\n", " return loss / target_length" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "id": "2OAd-kev7BcY" }, "outputs": [], "source": [ "def train(\n", " model: nn.Module, \n", " train_dl: DataLoader, \n", " valid_dl: DataLoader, \n", " optimizer: torch.optim.Optimizer, \n", " n_epochs: int, \n", " device: torch.device,\n", "):\n", " \"\"\"\n", " The main training loop which will optimize a given model on a given dataset\n", " :param model: The model being optimized\n", " :param train_dl: The training dataset\n", " :param valid_dl: A validation dataset\n", " :param optimizer: The optimizer used to update the model parameters\n", " :param n_epochs: Number of epochs to train for\n", " :param device: The device to train on\n", " :return: (model, losses) The best model and the losses per iteration\n", " \"\"\"\n", "\n", " # Keep track of the loss and best accuracy\n", " losses = []\n", " best_f1 = 0.0\n", "\n", " # Iterate through epochs\n", " for ep in range(n_epochs):\n", "\n", " loss_epoch = []\n", "\n", " #Iterate through each batch in the dataloader\n", " for batch in tqdm(train_dl):\n", " # VERY IMPORTANT: Make sure the model is in training mode, which turns on \n", " # things like dropout and layer normalization\n", " model.train()\n", "\n", " # VERY IMPORTANT: zero out all of the gradients on each iteration -- PyTorch\n", " # keeps track of these dynamically in its computation graph so you need to explicitly\n", " # zero them out\n", " optimizer.zero_grad()\n", "\n", " # Place each tensor on the GPU\n", " batch = tuple(t.to(device) for t in batch)\n", " input_ids = batch[0]\n", " labels = batch[2]\n", " input_lens = batch[1]\n", "\n", " # Pass the inputs through the model, get the current loss and logits\n", " loss = model(input_ids, labels=labels, input_lens=input_lens)\n", " losses.append(loss.item())\n", " loss_epoch.append(loss.item())\n", "\n", " # Calculate all of the gradients and weight updates for the model\n", " loss.backward()\n", "\n", " # Optional: clip gradients\n", " #torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)\n", "\n", " # Finally, update the weights of the model\n", " optimizer.step()\n", "\n", " # Perform inline evaluation at the end of the epoch\n", " f1 = evaluate(model, valid_dl)\n", " print(f'Validation F1: {f1}, train loss: {sum(loss_epoch) / len(loss_epoch)}')\n", "\n", " # Keep track of the best model based on the accuracy\n", " if f1 > best_f1:\n", " torch.save(model.state_dict(), 'best_model')\n", " best_f1 = f1\n", "\n", " return losses" ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "id": "OykuF5dURSd5" }, "outputs": [], "source": [ "softmax = nn.Softmax(dim=-1)\n", "\n", "def decode(model, inputs, input_lens, labels=None, beam_size=2):\n", " \"\"\"\n", " Decoding/predicting the labels for an input text by running beam search.\n", "\n", " :param inputs: (b x sl) The IDs into the vocabulary of the input samples\n", " :param input_lens: (b) The length of each input sequence\n", " :param labels: (b) The label of each sample\n", " :param beam_size: the size of the beam \n", " :return: predicted sequence of labels\n", " \"\"\"\n", "\n", " assert inputs.shape[0] == 1\n", " # first, encode the input text\n", " encoder_output, encoder_hidden = model.model['encoder'](inputs, input_lens)\n", " decoder_hidden = encoder_hidden\n", "\n", " # the decoder starts generating after the Begining of Sentence (BOS) token\n", " decoder_input = torch.tensor([tokenizer.encode(['[BOS]',]),], device=device)\n", " target_length = labels.shape[1]\n", " \n", " # we will use heapq to keep top best sequences so far sorted in heap_queue \n", " # these will be sorted by the first item in the tuple\n", " heap_queue = []\n", " heap_queue.append((torch.tensor(0), tokenizer.encode(['[BOS]']), decoder_input, decoder_hidden))\n", "\n", " # Beam Decoding\n", " for _ in range(target_length):\n", " # print(\"next len\")\n", " new_items = []\n", " # for each item on the beam\n", " for j in range(len(heap_queue)): \n", " # 1. remove from heap\n", " score, tokens, decoder_input, decoder_hidden = heapq.heappop(heap_queue)\n", " # 2. decode one more step\n", " decoder_output, decoder_hidden = model.model['decoder'](\n", " decoder_input, decoder_hidden, torch.tensor([1]))\n", " decoder_output = softmax(decoder_output)\n", " # 3. get top-k predictions\n", " best_idx = torch.argsort(decoder_output[0], descending=True)[0]\n", " # print(decoder_output)\n", " # print(best_idx)\n", " for i in range(beam_size):\n", " decoder_input = torch.tensor([[best_idx[i]]], device=device)\n", " \n", " new_items.append((score + decoder_output[0,0, best_idx[i]],\n", " tokens + [best_idx[i].item()], \n", " decoder_input, \n", " decoder_hidden))\n", " # add new sequences to the heap\n", " for item in new_items:\n", " # print(item)\n", " heapq.heappush(heap_queue, item)\n", " # remove sequences with lowest score (items are sorted in descending order)\n", " while len(heap_queue) > beam_size:\n", " heapq.heappop(heap_queue)\n", " \n", " final_sequence = heapq.nlargest(1, heap_queue)[0]\n", " assert labels.shape[1] == len(final_sequence[1][1:])\n", " return final_sequence" ] }, { "cell_type": "code", "execution_count": 85, "metadata": { "id": "9tV1Sdlze9eO" }, "outputs": [], "source": [ "def evaluate(model: nn.Module, valid_dl: DataLoader, beam_size:int = 1):\n", " \"\"\"\n", " Evaluates the model on the given dataset\n", " :param model: The model under evaluation\n", " :param valid_dl: A `DataLoader` reading validation data\n", " :return: The accuracy of the model on the dataset\n", " \"\"\"\n", " # VERY IMPORTANT: Put your model in \"eval\" mode -- this disables things like \n", " # layer normalization and dropout\n", " model.eval()\n", " labels_all = []\n", " logits_all = []\n", " tags_all = []\n", "\n", " # ALSO IMPORTANT: Don't accumulate gradients during this process\n", " with torch.no_grad():\n", " for batch in tqdm(valid_dl, desc='Evaluation'):\n", " batch = tuple(t.to(device) for t in batch)\n", " input_ids = batch[0]\n", " input_lens = batch[1]\n", " labels = batch[2]\n", "\n", " best_seq = decode(model, input_ids, input_lens, labels=labels, beam_size=beam_size)\n", " mask = (input_ids != 0)\n", " labels_all.extend([l for seq,samp in zip(list(labels.detach().cpu().numpy()), input_ids) for l,i in zip(seq,samp) if i != 0])\n", " tags_all += best_seq[1][1:]\n", " # print(best_seq[1][1:], labels)\n", " P, R, F1, _ = precision_recall_fscore_support(labels_all, tags_all, average='macro')\n", " print(confusion_matrix(labels_all, tags_all))\n", " return F1" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "id": "4KjDoQkl8Omy" }, "outputs": [], "source": [ "lstm_dim = 300\n", "dropout_prob = 0.1\n", "batch_size = 64\n", "lr = 1e-3\n", "n_epochs = 20\n", "n_workers = 0\n", "\n", "device = torch.device(\"cpu\")\n", "if torch.cuda.is_available():\n", " device = torch.device(\"cuda\")\n", "\n", "# Create the model\n", "model = Seq2Seq(\n", " pretrained_embeddings=torch.FloatTensor(pretrained_embeddings), \n", " lstm_dim=lstm_dim, \n", " dropout_prob=dropout_prob, \n", " n_classes=len(datasets[\"train\"].features[f\"ner_tags\"].feature.names)\n", " ).to(device)" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "e69a0f48b8104bd29adfab7a1409d1d4", "ce96995f8d93445a93d4cb357ec3c72c", "a86d9662ed444599a707f383ef9293ad", "7ec12acc502c4bafa871a289054204b2", "927b8def881c449abcfb01750074aaef", "79da7ceb7e17457aaea7dd19ec96c0a2", "8d6f82061cee47aca199947061c51514", "66098eb69aaf4486bb2eddf5de1be7f4", "f2944271cf214122a7cbea8952d9b6ba", "b09a25113e134475b06d53d60538dbd0", "24d8f5b9572049f9aa34c0a91142473b" ] }, "id": "iHvNb7nm6kLI", "outputId": "0436841f-d3a3-44aa-bc76-b9eda50f2fac" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "13dd97cb90cf43cfb2de15168cf9e933", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f0a9c8b452314326a030e7e8f5a32c11", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[40937 526 433 155 194 192 68 47 207]\n", " [ 515 1052 218 15 13 14 3 2 10]\n", " [ 379 146 758 3 9 3 3 1 5]\n", " [ 467 49 19 686 66 32 5 10 7]\n", " [ 285 12 25 65 323 10 13 5 13]\n", " [ 627 35 10 91 23 951 46 35 19]\n", " [ 92 4 5 12 26 22 79 1 16]\n", " [ 535 16 8 24 9 34 6 246 44]\n", " [ 154 5 5 22 24 18 12 14 92]]\n", "Validation F1: 0.5148684803742811, train loss: 0.1254397713663903\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d432903540744d39b4e7d2ef0ef9628e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "71c753c0072648c492a0c07f09d6e260", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[40938 372 251 212 345 316 34 181 110]\n", " [ 353 1221 148 35 26 28 2 20 9]\n", " [ 329 94 822 14 28 5 0 3 12]\n", " [ 275 39 10 820 114 43 2 32 6]\n", " [ 190 2 17 58 435 8 7 6 28]\n", " [ 404 21 3 66 24 1264 22 26 7]\n", " [ 84 3 5 3 32 23 97 0 10]\n", " [ 342 15 3 35 21 60 2 414 30]\n", " [ 141 4 3 9 30 12 15 13 119]]\n", "Validation F1: 0.5992961020420663, train loss: 0.08672628991983154\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fe22d796d2f54ecf91fb205bce63eab7", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "38cd9267f3b74ba3af01ff34e08fc615", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41156 413 324 116 301 233 76 99 41]\n", " [ 341 1254 170 13 19 29 4 7 5]\n", " [ 279 119 866 2 16 12 5 3 5]\n", " [ 249 59 8 851 109 38 5 18 4]\n", " [ 137 9 24 30 511 6 13 5 16]\n", " [ 345 27 9 59 25 1314 26 29 3]\n", " [ 51 3 8 8 22 27 126 1 11]\n", " [ 350 22 4 39 10 27 0 459 11]\n", " [ 132 3 5 11 30 8 12 28 117]]\n", "Validation F1: 0.6389387782477018, train loss: 0.06806593586436727\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "953b998954c4469b9d5b4b76a56f1e94", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "33f55519bc774106b430edd393955fd4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[40798 449 320 148 528 183 57 120 156]\n", " [ 225 1307 201 18 25 34 6 7 19]\n", " [ 237 98 914 5 22 10 9 0 12]\n", " [ 144 59 21 890 147 52 6 17 5]\n", " [ 98 4 23 22 578 1 9 0 16]\n", " [ 255 33 9 62 36 1372 25 21 24]\n", " [ 36 1 5 4 38 14 139 2 18]\n", " [ 266 33 8 66 27 30 1 450 41]\n", " [ 83 5 10 10 68 1 6 12 151]]\n", "Validation F1: 0.6429197452938862, train loss: 0.057959155670621175\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "19b33a42ee594495bc961ca822eeff6a", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e4e5c8e95d8c44b7acac7b1ca343ab8b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41519 298 217 66 69 183 18 135 254]\n", " [ 255 1427 105 1 5 23 0 7 19]\n", " [ 183 120 979 1 3 6 1 0 14]\n", " [ 234 79 7 853 32 60 1 52 23]\n", " [ 147 7 24 49 424 16 13 9 62]\n", " [ 229 29 10 35 1 1476 7 33 17]\n", " [ 41 1 6 1 18 24 153 0 13]\n", " [ 265 15 1 16 2 17 1 568 37]\n", " [ 76 5 8 9 13 8 5 32 190]]\n", "Validation F1: 0.7031936004879823, train loss: 0.04639621409164234\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d82c7d40de8b49ac9ebb039c9a7726cb", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a5f69901f1544a2faed4986c4370d85e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41100 261 184 172 518 160 125 102 137]\n", " [ 181 1429 119 22 27 34 5 4 21]\n", " [ 168 75 997 7 27 11 5 0 17]\n", " [ 84 29 12 985 160 43 4 19 5]\n", " [ 45 3 12 9 633 2 23 3 21]\n", " [ 146 14 2 57 25 1539 30 14 10]\n", " [ 19 0 3 2 27 8 192 0 6]\n", " [ 159 22 2 54 28 35 11 574 37]\n", " [ 52 2 10 7 48 2 14 9 202]]\n", "Validation F1: 0.7135904551805614, train loss: 0.03937693921510469\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "aac4212c66d349d2b25835f22a960d48", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fea1c973632640c19a76570b2650dd98", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41380 226 245 125 370 126 34 118 135]\n", " [ 188 1430 132 13 37 13 4 9 16]\n", " [ 163 58 1035 1 34 2 2 0 12]\n", " [ 103 60 10 978 129 28 3 22 8]\n", " [ 45 4 31 24 621 2 9 2 13]\n", " [ 162 29 5 94 23 1445 17 47 15]\n", " [ 18 1 10 2 35 14 160 0 17]\n", " [ 207 22 5 43 19 13 0 580 33]\n", " [ 55 4 15 8 48 4 5 12 195]]\n", "Validation F1: 0.7209686415011278, train loss: 0.03529796007258648\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f167021136c94d229be4d81596dd9042", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e0e3a72de210442e91e5e964982be7cd", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41846 201 116 128 205 100 19 87 57]\n", " [ 165 1507 98 21 16 22 0 6 7]\n", " [ 154 66 1045 5 25 3 3 1 5]\n", " [ 92 22 10 1051 95 48 1 21 1]\n", " [ 72 3 3 21 619 3 17 3 10]\n", " [ 139 12 1 75 11 1557 15 20 7]\n", " [ 31 0 3 2 21 14 175 2 9]\n", " [ 176 16 0 48 11 30 2 610 29]\n", " [ 70 2 6 5 29 3 8 13 210]]\n", "Validation F1: 0.7763060675321695, train loss: 0.030404941890050063\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "710033482286413e8e7e6ea044048564", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d2a06a7b53f1489dba3f404895e980b0", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41926 220 107 83 116 119 8 128 52]\n", " [ 169 1527 93 7 4 26 1 9 6]\n", " [ 201 69 1021 1 5 5 1 0 4]\n", " [ 97 45 3 998 73 66 1 51 7]\n", " [ 80 3 17 22 546 6 14 5 58]\n", " [ 154 15 1 41 4 1566 11 39 6]\n", " [ 34 0 4 0 14 14 174 2 15]\n", " [ 156 15 0 30 3 24 1 673 20]\n", " [ 77 1 7 5 18 3 5 22 208]]\n", "Validation F1: 0.7765224797107156, train loss: 0.024601146790452978\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "adea3499b9284a8687334a8241b9b860", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "979fb8ccfe4f42bfaba154726b45e3b2", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41690 257 165 140 109 143 55 114 86]\n", " [ 152 1519 104 21 2 24 7 6 7]\n", " [ 144 80 1061 3 4 4 7 0 4]\n", " [ 104 34 9 1072 61 39 1 14 7]\n", " [ 90 6 12 26 578 5 15 3 16]\n", " [ 126 14 6 72 5 1560 19 21 14]\n", " [ 21 0 3 1 22 11 186 0 13]\n", " [ 152 19 3 51 9 27 1 635 25]\n", " [ 67 1 8 4 32 3 14 16 201]]\n", "Validation F1: 0.7671100558971141, train loss: 0.021562039246782662\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e7506367fde44beb90d76dea3299c2d4", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f1d39f20a6fe4269b0b6f4363fb96144", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41929 121 84 86 314 85 32 76 32]\n", " [ 149 1549 57 17 31 25 4 5 5]\n", " [ 159 40 1061 6 34 1 4 0 2]\n", " [ 66 25 4 1075 96 52 3 18 2]\n", " [ 41 1 7 21 635 3 24 1 18]\n", " [ 81 14 2 64 19 1622 16 17 2]\n", " [ 20 1 4 3 37 8 180 0 4]\n", " [ 132 16 2 47 18 22 1 665 19]\n", " [ 62 3 10 2 23 3 16 12 215]]\n", "Validation F1: 0.7923309583490342, train loss: 0.017838069995526562\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6df76dbe20244a48a208e804a9005d19", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cf3801f400224652865fe7cdf11c8807", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41880 187 148 114 141 112 9 102 66]\n", " [ 175 1561 61 11 5 16 1 8 4]\n", " [ 113 92 1079 4 6 4 4 0 5]\n", " [ 91 31 5 1093 66 25 2 20 8]\n", " [ 59 3 7 23 618 2 11 4 24]\n", " [ 111 23 3 84 5 1562 8 30 11]\n", " [ 15 0 5 5 32 9 180 1 10]\n", " [ 131 17 2 47 11 16 2 672 24]\n", " [ 51 1 9 10 25 1 3 17 229]]\n", "Validation F1: 0.7990632659575675, train loss: 0.01514953335757706\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cf654d8b73dd418c987e7854857f56fd", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c447d327234449a49315a3ccfbd7a860", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41927 225 153 97 89 94 21 88 65]\n", " [ 157 1546 86 17 3 23 1 5 4]\n", " [ 140 74 1072 7 6 4 0 1 3]\n", " [ 86 43 4 1091 37 44 1 29 6]\n", " [ 72 1 6 20 578 5 23 2 44]\n", " [ 109 18 3 60 4 1606 7 25 5]\n", " [ 18 0 3 4 21 7 192 1 11]\n", " [ 146 17 2 39 3 18 1 676 20]\n", " [ 52 2 4 7 19 2 4 26 230]]\n", "Validation F1: 0.8022651715326824, train loss: 0.015754620486404747\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "51e5c42780204659ab0eaf9a5d6a47be", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "57f3e11cb93e46e3bc741592040add79", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41978 195 158 90 87 129 13 67 42]\n", " [ 149 1556 72 23 5 21 1 12 3]\n", " [ 123 73 1088 4 12 0 2 1 4]\n", " [ 107 30 5 1098 35 44 1 15 6]\n", " [ 70 2 6 27 604 4 17 2 19]\n", " [ 110 17 4 68 4 1599 11 18 6]\n", " [ 22 0 1 1 22 14 185 1 11]\n", " [ 157 24 3 46 5 23 3 643 18]\n", " [ 58 2 8 12 27 6 9 23 201]]\n", "Validation F1: 0.8001482986272885, train loss: 0.013831334230913357\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ed37a92f4c1747dc80ae059c944eca99", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e6011160d4f5481a9c9c3f5f61891331", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42161 163 113 72 47 80 12 71 40]\n", " [ 164 1550 81 8 2 29 0 6 2]\n", " [ 139 74 1078 2 4 3 4 0 3]\n", " [ 103 29 1 1084 35 59 1 26 3]\n", " [ 70 2 7 26 590 6 25 3 22]\n", " [ 108 14 3 45 1 1636 9 20 1]\n", " [ 23 0 2 2 9 15 197 1 8]\n", " [ 162 15 0 27 2 21 1 682 12]\n", " [ 56 2 8 3 13 3 7 22 232]]\n", "Validation F1: 0.8245979034012647, train loss: 0.011220586808948692\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ac67918f890e484aa71fa55efcbf7f98", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "926c67f91166414492168ee5debca915", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41968 188 124 98 86 96 27 106 66]\n", " [ 167 1528 84 18 8 29 3 3 2]\n", " [ 173 64 1048 0 4 3 8 5 2]\n", " [ 81 34 6 1051 66 76 1 24 2]\n", " [ 55 3 14 24 599 4 31 3 18]\n", " [ 89 7 7 58 4 1632 11 26 3]\n", " [ 18 1 2 2 19 6 199 1 9]\n", " [ 139 10 2 32 5 16 3 698 17]\n", " [ 59 1 5 3 17 2 8 20 231]]\n", "Validation F1: 0.8035197642799284, train loss: 0.013202182106165724\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "824d22a71c55450aacfbcc060dade879", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cf71805e1100468e98c41ceaddced65e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42038 168 125 68 86 94 43 84 53]\n", " [ 163 1554 77 18 3 18 2 4 3]\n", " [ 149 67 1082 1 2 3 1 0 2]\n", " [ 84 39 8 1064 51 63 4 26 2]\n", " [ 55 3 9 22 606 8 36 0 12]\n", " [ 91 15 3 43 2 1643 19 18 3]\n", " [ 11 0 6 0 16 9 209 0 6]\n", " [ 140 20 0 30 4 13 1 693 21]\n", " [ 49 4 8 4 25 2 5 12 237]]\n", "Validation F1: 0.8160772657119046, train loss: 0.009503976078386503\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "337938da8c154bae9d300c26c4ae7217", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "199d539df6d24ced989c2a5b7092cdf6", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42097 164 114 80 66 105 6 91 36]\n", " [ 148 1556 67 23 2 27 0 13 6]\n", " [ 152 63 1063 1 10 8 1 0 9]\n", " [ 87 28 4 1084 44 60 2 29 3]\n", " [ 68 3 5 26 582 6 27 4 30]\n", " [ 83 18 2 40 3 1657 10 23 1]\n", " [ 21 0 2 0 15 6 204 0 9]\n", " [ 132 16 0 24 2 22 3 709 14]\n", " [ 61 0 5 4 11 2 8 13 242]]\n", "Validation F1: 0.8246442255568004, train loss: 0.008092457134096714\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ebbd0b56207d46a7973c4b617b3f929f", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "40834b84df014611a0cbd4a2dc0139ab", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[42137 129 89 100 91 70 12 73 58]\n", " [ 139 1578 62 17 9 24 0 10 3]\n", " [ 127 51 1103 5 12 4 0 1 4]\n", " [ 78 26 3 1105 53 41 0 31 4]\n", " [ 53 1 8 20 627 4 16 3 19]\n", " [ 80 19 2 51 2 1653 9 17 4]\n", " [ 18 0 2 0 23 11 195 0 8]\n", " [ 120 15 0 33 6 13 0 711 24]\n", " [ 50 2 8 6 21 3 5 17 234]]\n", "Validation F1: 0.8295417224894234, train loss: 0.013141678918724541\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "553bb14b1ee34f87818e208540d2e28f", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/220 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "077f7816085b4e92bcd1a50f876059c5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3250 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[41750 220 126 184 113 160 28 100 78]\n", " [ 156 1528 93 27 11 16 3 8 0]\n", " [ 185 44 1052 2 15 4 2 1 2]\n", " [ 113 31 3 1047 86 39 4 14 4]\n", " [ 72 1 8 27 601 5 19 1 17]\n", " [ 150 26 3 58 2 1567 16 13 2]\n", " [ 23 0 9 1 20 7 196 0 1]\n", " [ 129 16 0 42 8 25 2 670 30]\n", " [ 52 2 8 4 28 4 6 13 229]]\n", "Validation F1: 0.7906017625430706, train loss: 0.0177222935853272\n" ] }, { "data": { "text/plain": [ "<All keys matched successfully>" ] }, "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_dl = DataLoader(datasets['train'], batch_size=batch_size, shuffle=True, collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "valid_dl = DataLoader(datasets['validation'], batch_size=1, collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "\n", "# Create the optimizer\n", "optimizer = Adam(model.parameters(), lr=lr)\n", "\n", "# Train\n", "losses = train(model, train_dl, valid_dl, optimizer, n_epochs, device)\n", "model.load_state_dict(torch.load('best_model'))" ] }, { "cell_type": "markdown", "metadata": { "id": "R80wA-upBHDD" }, "source": [ "**Question: Do you have ideas how to improve the model?**\n", "How about adding attention mechanism for the decoder to attend to the separate hidden states of the separate token steps in the encoder? (see the resources)\n" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 311 }, "id": "o1yYPFe5wKC5", "outputId": "95db2ec2-2fdf-444b-9dad-42c2d7615094" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:481: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.\n", " cpuset_checked))\n", "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:17: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0\n", "Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a8d16dfe21b74ea98e7853171b8c66a1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3453 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[[37092 237 111 313 218 97 32 133 90]\n", " [ 188 1254 51 73 19 20 0 9 3]\n", " [ 177 55 868 3 38 4 4 3 4]\n", " [ 133 58 4 1264 77 69 2 53 1]\n", " [ 93 4 12 33 639 7 30 2 15]\n", " [ 140 42 5 107 24 1304 11 32 3]\n", " [ 26 0 10 4 33 9 165 1 9]\n", " [ 94 23 6 57 10 16 1 479 16]\n", " [ 45 3 8 1 23 1 2 11 122]]\n" ] }, { "data": { "text/plain": [ "0.727843916681434" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_dl = DataLoader(datasets['test'], batch_size=1, collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "evaluate(model, test_dl, beam_size=1)" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 311, "referenced_widgets": [ "a3e56bc011584c638aba5ebb200cc409", "2c62f6825ac549668b5adb970201f9ee", "311130cce54541aeb64ed9ee04338e85", "e194b1b75f4c40b88e7ecf6b7ce308f4", "6ffb7f64d4924c73b468a160a730d785", "6d84ccb32486488db4eb66ca7401b3c2", "6aa949d213804e3ba5bfdfb1b8c89794", "02dd4f78a3e74dbe8c6a3012fe1225d5", "7926b0ae95a643ad90c0341340cf2b43", "eff6ea1ca2d1415683784d3ce95a9f07", "a8d985e224b64b6baa282f4d00a00a74" ] }, "id": "5jBpWDyExq1q", "outputId": "068ef3dc-d1db-4fec-8135-726334a8dca4" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:17: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0\n", "Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "a3e56bc011584c638aba5ebb200cc409", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Evaluation: 0%| | 0/3453 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:481: UserWarning: This DataLoader will create 8 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.\n", " cpuset_checked))\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "[[37128 232 121 311 209 93 32 128 69]\n", " [ 185 1270 49 68 14 18 0 10 3]\n", " [ 163 60 887 4 32 2 1 3 4]\n", " [ 135 64 5 1275 66 70 2 43 1]\n", " [ 86 6 15 30 645 8 30 2 13]\n", " [ 126 41 7 105 26 1314 16 31 2]\n", " [ 28 0 10 4 36 7 167 0 5]\n", " [ 92 26 6 61 10 16 2 476 13]\n", " [ 48 2 8 1 22 1 2 12 120]]\n" ] }, { "data": { "text/plain": [ "0.7355817928230471" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evaluate(model, test_dl, beam_size=2)" ] }, { "cell_type": "markdown", "metadata": { "id": "qT6slqcmhu-4" }, "source": [ "# Learning rate schedules" ] }, { "cell_type": "markdown", "metadata": { "id": "ndey9-pwhCqW" }, "source": [ "Motivation: \n", "- speed up training\n", "- to train a better model\n", "\n", "With Pytorch:\n", "- choose a learning rate schedulers form `torch.optim.lr_schedule`\n", "- add a line in your training loop which calls the `step()` function of your scheduler\n", "- this will automatically change your learning rate! \n", "- **Note**: be aware of when to call `step()`; some schedulers change the learning rate after every epoch, and some change after every training step (batch). The one we will use here changes the learning rate after every training step. We'll define the scheduler in the cell that calls the `train()` function. " ] }, { "cell_type": "markdown", "metadata": { "id": "3Kqpap96inI7" }, "source": [ "Set up hyperparameters and create the model. Note the high learning rate -- this is partially due to the learning rate scheduler we will use." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "k7GltqL0NYsK" }, "outputs": [], "source": [ "lstm_dim = 128\n", "dropout_prob = 0.1\n", "batch_size = 8\n", "lr = 1e-2\n", "n_epochs = 10\n", "n_workers = 0\n", "\n", "device = torch.device(\"cpu\")\n", "if torch.cuda.is_available():\n", " device = torch.device(\"cuda\")\n", "\n", "# Create the model\n", "model = BiLSTM_CRF(\n", " pretrained_embeddings=torch.FloatTensor(pretrained_embeddings), \n", " lstm_dim=lstm_dim, \n", " dropout_prob=dropout_prob, \n", " n_classes=len(label_map)\n", " ).to(device)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_dl = DataLoader(datasets['train'], batch_size=batch_size, shuffle=True, collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "valid_dl = DataLoader(datasets['validation'], batch_size=len(datasets['validation']), collate_fn=collate_batch_bilstm, num_workers=n_workers)\n", "\n", "# Create the optimizer\n", "optimizer = Adam(model.parameters(), lr=lr)\n", "scheduler = CyclicLR(optimizer, base_lr=0., max_lr=lr, step_size_up=1, step_size_down=len(train_dl)*n_epochs, cycle_momentum=False)\n", "\n", "# Train\n", "losses, learning_rates = train(model, train_dl, valid_dl, optimizer, n_epochs, device, scheduler)\n", "model.load_state_dict(torch.load('best_model'))" ] }, { "cell_type": "markdown", "metadata": { "id": "JclJEGDxiw0S" }, "source": [ "Above we have used the `CyclicLR` scheduler. The cyclic learning rate schedule in general looks like this:\n", "\n", " [Source](https://arxiv.org/pdf/1506.01186.pdf)\n", "\n", "We are using it here to linearly decay the learning rate from a starting max learning rate (here 1e-2) down to 0 over the entire course of training (essentially one cycle that starts at the max and ends at 0). \n", "\n", "\" Allowing the learning rate to rise and fall is beneficial overall\n", "even though it might temporarily harm the network’s performance\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 282 }, "id": "le4bSXr6O4w1", "outputId": "339c5893-2ac0-44c2-d1b0-173a91714386" }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x7f75e401cd50>]" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAe8ElEQVR4nO3deZwU9Z3/8deHQzDxFjYSPFAX9aHrESSK2ejPJB6IBzGJ12a9kl03UX+rcXNgvIjJqokbk3giiTcqeKDgiiKeiOEahuEWGK5hLhhmYJhhGOb67h9d3dPdU33MTPdMV/t+Ph7zsLuqpvrTNfLu6k99q8qcc4iISPD16e0CREQkMxToIiJ5QoEuIpInFOgiInlCgS4ikif69dYLDxo0yA0bNqy3Xl5EJJAWLVq0zTk32G9erwX6sGHDKCgo6K2XFxEJJDPblGieWi4iInlCgS4ikicU6CIieUKBLiKSJxToIiJ5QoEuIpInFOgiInkicIG+urKO/5m5mppdTb1diohITglcoK+rqufRj4rZsrOxt0sREckpgQv0PmYA6L4cIiKxAhfoIiLiT4EuIpInAhvoDvVcRESiBS7QvRa6iIjECVygi4iIPwW6iEieCGyga9iiiEiswAW6WugiIv4CF+giIuJPgS4ikidSBrqZHWZmH5nZSjNbYWa3+CxjZvawmRWb2VIzG5GdckVEJJF+aSzTAvyXc67QzPYFFpnZLOfcyqhlLgCGez+nA094/80400B0ERFfKffQnXMVzrlC73EdsAoYGrfYWOB5FzIPOMDMhmS8WhERSahTPXQzGwZ8DZgfN2sosDnqeSkdQx8zu8HMCsysoKqqqnOViohIUmkHupntA7wO3Oqc29mVF3POTXTOjXTOjRw8eHBXVhG1rm79uohI3kkr0M2sP6Ewf9E5N9VnkTLgsKjnh3rTMk4ddBERf+mMcjHgKWCVc+6hBItNB67xRruMAmqdcxUZrFNERFJIZ5TLPwNXA8vMrMib9mvgcADn3ARgBjAGKAYagOszX6qIiCSTMtCdc3NI0elwzjngpkwVlQ5dD11EJFbgzhTVMHQREX+BC3QREfGnQBcRyROBDXSNQxcRiRXYQBcRkViBC3QdFBUR8Re4QBcREX8KdBGRPBHYQNcxURGRWIELdNPluUREfAUu0EVExJ8CXUQkTwQ20J3OLBIRiRG8QFcLXUTEV/ACXUREfCnQRUTyRGADXR10EZFYgQt0tdBFRPwFLtBFRMSfAl1EJE8ENtA1DF1EJFbgAt10QXQREV+BC3QREfGnQBcRyRMBDnQ10UVEogUu0NVBFxHxF7hAFxERfwp0EZE8EdhA1zh0EZFYgQt0DUMXEfEXuEAXERF/CnQRkTwR2EBXC11EJFbgAt00El1ExFfgAl1ERPwp0EVE8kRgA13j0EVEYqUMdDN72sy2mtnyBPPPNrNaMyvyfu7OfJnRr5fNtYuIBFe/NJZ5FngUeD7JMp865y7KSEUiItIlKffQnXOzgZoeqEVERLohUz30M8xsiZm9Y2YnJFrIzG4wswIzK6iqqurWCzo10UVEYmQi0AuBI5xzJwOPAG8mWtA5N9E5N9I5N3Lw4MFdejG10EVE/HU70J1zO51z9d7jGUB/MxvU7cpERKRTuh3oZnaIWWjsiZmd5q2zurvrFRGRzkk5ysXMXgbOBgaZWSlwD9AfwDk3AfgB8FMzawF2A1e6Hmhwq4MuIhIrZaA7565KMf9RQsMae4aa6CIivgJ7pqiIiMRSoIuI5InABrqGoYuIxApcoOt66CIi/gIX6CIi4k+BLiKSJxToIiJ5IrCB7nRqkYhIjMAFum5wISLiL3CBLiIi/hToIiJ5IriBrha6iEiMwAW6WugiIv4CF+giIuJPgS4ikicCG+hqoYuIxApcoHt3u2Nb/Z5erkREJLcELtBrdzcDcMvkol6uREQktwQu0Fvb2nq7BBGRnBS4QBcREX8BDHSNRBcR8RPAQNf4FhERPwEMdBER8RPAQFfLRUTET+ACvX5PS2+XICKSkwIX6IUl23u7BBGRnBS4QBcREX+BC3R10EVE/AUu0PvopqIiIr4CF+giIuJPgS4ikicCF+jquIiI+AtcoKuHLiLiL3CBLiIi/hToIiJ5QoEuIpInUga6mT1tZlvNbHmC+WZmD5tZsZktNbMRmS+z3Yefb83m6kVEAiudPfRngdFJ5l8ADPd+bgCe6H5ZidXsasrm6kVEAitloDvnZgM1SRYZCzzvQuYBB5jZkEwVGE9jXERE/GWihz4U2Bz1vNSblh1KdBERXz16UNTMbjCzAjMrqKqq6smXFhHJe5kI9DLgsKjnh3rTOnDOTXTOjXTOjRw8eHAGXlpERMIyEejTgWu80S6jgFrnXEUG1utLHRcREX/9Ui1gZi8DZwODzKwUuAfoD+CcmwDMAMYAxUADcH22igXYb+/+7GzUbehEROKlDHTn3FUp5jvgpoxVlML3vjaUhz8s7qmXExEJjMCdKdqnj5ouIiJ+AhfoIiLiL3CBrsvnioj4C1ygK85FRPwFLtBFRMRf4AJdHRcREX8BDHQluoiIn8AF+r4DUw6dFxH5QgpcoA/eZ0BvlyAikpMCF+giIuIvcIGuFrqIiL/ABbqIiPgLYKBrF11ExE8AA11ERPwELtDVQxcR8Re4QBcREX8KdBGRPBG4QNflc0VE/AUu0BXnIiL+Ahfo0VrbXG+XICKSMwId6NX1e3q7BBGRnBG4QFcLXUTEnwJdRCRPBC7QRUTEnwJdRCRPBC7QTQMXRUR8BS7QYyjbRUQigh3oGoYuIhIR7EAXEZGI4AW62iwiIr6CF+giIuJLgS4ikieCHehqv4iIRAQu0KMz/LT//oAdDU29VouISC4JXKDH27BtV2+XICKSEwIX6Karc4mI+ApeoMc/V8CLiABpBrqZjTaz1WZWbGbjfOZfZ2ZVZlbk/fxb5kv1d+OkRdTubu6plxMRyVkpA93M+gKPARcAxwNXmdnxPotOcc6d4v38LcN1JlRe28hL80t66uVERHJWOnvopwHFzrn1zrkmYDIwNrtliYhIZ6UT6EOBzVHPS71p8b5vZkvN7DUzO8xvRWZ2g5kVmFlBVVVVF8rVHYtERBLJ1EHRt4BhzrmTgFnAc34LOecmOudGOudGDh48OEMvnV2zVm5h+y6NdReR3JdOoJcB0Xvch3rTIpxz1c65Pd7TvwGnZqa8rpu/vpqfTSnCua5fY3f7rib+/fkC/v35ggxWJiKSHekE+kJguJkdaWZ7AVcC06MXMLMhUU8vAVZlrsSuufqpBbyxuIym1rYur6PZ+91NNQ2ZKktEJGv6pVrAOddiZjcDM4G+wNPOuRVmdi9Q4JybDvynmV0CtAA1wHXZKli3oBMR8Zcy0AGcczOAGXHT7o56fDtwe2ZLyx3d6NqIiPSYwJ0p6sd18150y0praWvzWYe+DIhIgAQu0DM9bLFgYw0XPzqHJ2evz+yKRUR6WOACvbNeml/Cwo01CeeX7dgNwKqKnUnWop6LiOS+vAj0P7y7OuG837y1kssmzE04P1l/XAdgRSRI8iLQ/aTbVw8v59fK6W5vXkSkJwUu0DO9zxzeQ0++Xu2pi0juC1ygZ1ok0JMebdWeuojkvrwM9G31e1IvFMcvztVDF5EgSevEolwy/Cv7+k53zmFmLNq0ne8/8fe016d9bxHJF4HbQx+87wDf6a8UhK7wuzLp8MOOXBpN9J2NLcxbX92p9SbS1uaYVlRGq9+JTCIi3RC4QE/krjdXJJ1/0viZkdCPFo5Vv/ZKuK3e1NLGlRPnUdvgf6u7I29/m9teKUqrztcKS7llchHPfLYhreVFRNKVN4Ge6qqKOxtbGD+9PfT3tLQyc0UlE70zRH2HLcbtRCd6DedgamGZ77x41fWha6tX1XW+zy8ikkzgeuippHMYc8GGGi5/MvZko546/LmjIRTo1bpphohkWN7soQMp+9J9vN1wv3643x56V64b09zaRkuSbwvha8a8tqiUleWd6/eLiCSTV4H+j3fMYG6Sg5fJ8jmdIYrpBPzxd7/LNx74MPWCQHFVfVrLiYikI68C3Tl4e2lFwvl1e1pYXVlHY3Nrl1+jaPMO/vz+moTzm1sdWzPYH3/kg7VMK2rvz3+6toqmlq7fhSmZ5WW1TJq3KSvrFpHsy7seeirn/3m27/Q+Ph9t8TvkTS1tfPexzwC49ZxjMlyZvz/OCn14jD1lKIUl27n6qQX82zeP5M6Ljs/Ya/zh3c95f9UW1mwJfWP411FHZGzdItJz8moPvXtS91OiL8N7eZIrOIa1tLYxad4mWtscK8preWl+SbcqrPFGyGzYtivy31PufY/S7d275+njH6+LhLmIBNcXbg89ke27mphWVMaJQ/fnqMH7+C5zy+T2seYLfK6xvmtPS8zzZz7byH/PWMVri0op2ryj0zXNXlOVdP7kBSXsaGjmrSUV/PTsozu9fhHJLwp0z7srKnl3RSUAj/9wBGcOH8Tf5nTu5J8/vhfbW9+xO7RHnSjMXZKLsVfU7uaapxf4ztvuDX2MnBTVjTGXd765rOu/nAXXPbOAbxx9MDecpQ8okc5SoPu48cXCLv3e7riDralGztwyuYjR/3QIA/r17TCvoanjgdtwgBeWhD4gwh8I3RlDP2le99pAmfbx6io+Xl2lQBfpAvXQMyh+TzmdPeeGPa0Ub61nccn2Tr9e+6V/O/2rGbejocn3RturK+s47q53KPdu9Sci2aNA74ZfvLqEUfd9EHleENdXTzdnz3noEy59PPYKkTt3+183xk+ybwIrymt9LzMwtbCUT9cm79Gna1v9Hk65d5bvcM4X5m2ksbmN91dtSbqOBRtq+Lzyi3ui1eaahsjBbpGuUsulG15dVBrzPHqkSHNrG9u6cXp/fD8eYOLsdTHPU/X4a3Y1ceHDc9h/7/4suee8mHm3vbKky7XFC19/fuaKLdx23rEx89K7IxQdLsXwRXPmHz4CYOMDF/ZyJdlVv6eFfn2Mgf07thml+7SHniW3T13W6WGKK8t3ctNLhUycvY6WttiTh4q31rFwY3tbJrq94ddyKdhYw4jfzgKgNm5vP509wU3Vuzp9ApbfPVjbD9yGipw0b1O39kQXl2xPejBZcs/WukYWbQr9v/tP98zk2//zce8WlMcU6FnyzrLEZ6wmMubhT3l7aQX3zficeetj2zfb6mP39udv6Dhs8hevLuGv3rVilpfVJnydVAd9W1rb+H8PfsxNaRwcnr++moU+tYRF9/mdc9z55nLGPjon5Xr9zFxRyaWP/50pC9svg7y5poFHP1wbE/Iry3eydktdl15DMu+ih+fE3HSmvLaxF6vJb4FsuRxx8JfYVN29k2myLfk9StstL08cvNEammLHuF/113kxr3XC3e+yyxsZc/4Jh1CwqfMHWcPC0fhJknHwy8tqOeLgL3HFxHkJl4ldW3u418WN109XeM9+fdQe/nXPLGBd1S4uHXEoe/fvy4Ff6s+Yhz8FOte+2L6rifLa3bxaUMrN3/5HBu3jfyMV6bxMXgpDkgtkoE/68emRnmOuqk8ztK5+yn+sebwfPVuQcJ5BJMwBznqw47apa2xm34H9WbuljtUpDj5OLyoHoC1Ba6OtzXHRI3P4+rADE65j7ZY6zv3TbI71bhloWGR9faI+7NZuqWPq4o7Xkm9qaWOvfrFfIP1+Pzy8s3zHbi6bMJdfnB/bww8r3lpHwcbtXHjSEPYd2D9mXl1jMxc9MocybyTOtvo9PPovIxK+N5FcFciWy35790+90BfIA+98nnKZu95czsZtuzj3T7NJdfe7/3o1dMA0erl3l1cyZWGJNz00I7qnD7E3BHmtMHTAeLXX+jBrX18fC4VmwcYarpg4jyc+jj3YC3DMne8wY1lFzHDH8HGDPlFffsKvWel9jf8gajRNRW3od99bUck5D81m3NRl3PzSYgCufXoBJ42fyZuLyzhx/HuRMIfUl2EWyVWBDPSB/QNZdtakulsTwJtF5ZzdjYNRP5m0iF+9Hjqr9OTfvJdwuVUVO1ldWceTn6yPmW60fxCYGRc9PIcfTJhLTZKRQDe+WMglXr+9qaWNusbQt56+UYkeXucK79ry0Vl8xv2hyxg/NKt9xNDS0h2s2VLHJ2uq2NnY4ttWiv5genH+prRvL5gJbW2Oos07OrTYwvOmLCxJ+2qbM5ZVUNeYePjr9CXlPKtbIWbEQ7PWMGzc277nYvQkJaN02i6fs1gB1m6t54K/fOp7RctxU5dx9oMfA6FwrtyZ3oGx8MHgUfd/ELk5SHTLJfzPZ8Inob38+DbR/e+sinm+vaGZkqjjL763Hozq+9/xxnKmFpbFjPhpbXM889kG9rR07TLM89dXc8vkxbS0tjFlYQn3TFsembekdAfffewzbp3c8UNk2pIyfvX6Mh7/uDhm+u6mVlbF3Ry9eGs9N75YyM9fTTw89T9fXsz4t1Z26T1IrMc+Cv1NWnt5BFYgA12j1nrOKwWbk15jvjPSDXE/0Xvy4UDfXNPQ4aSp+HbJk5+s7zDtraXlkcd9fRK9tc2xvqo+5ho8x931buTx64Wl/OatlTz2UcdWEcAbi0s7nGQW7YqJ85hWVM5v3lrJr15fxnNz269Bv9v7sHxv5RbueGMZjc2t7PT2ssPfUMLj/sNunbKYC/7yaWRvfGdjM1u8bV26vWfP0J04ex3Dxr2d9K5d+SgTl+HIhEAeFJWe88vXlvZ2Cfz/lxfHPO9j8MTH6/j9ux2PHfh94w0HYVh0m6WPT6C/v2or76/a6ltLSXVDZJs89el6zhw+iK8POyhmmZ9NCe0VR4+y+WRNFTsamhh7ytDItBd8biYSXf6L80t40TuXYeMDF0ZGTsW/x/AQ1pZWx56WVk4a394Sy8bOz+uLSrlvxioW3HEOffsYK8t3MmVhCeMvOSHS3mpqbaNf30DuL3ZJruxjfnG2uGTEz6b0XD857K0l5THP/zhrjW+YAx1aD9Dxm8GOhva+8pSCzfGLJ/Xz19pbGLuaWrlswtyEfer566sj9Vz79AJumVzEsHFvJ11/sgAOHzp4aX5JZD2tbS7yfpaW1XLC3TNjfmdlxU6mFZVR29DMtKIyRt33AS2tbWkdSI+3rX4PCzbUcOeby6ne1RRpOf3rU/N5bu6mmBuf1zW28OnaKrYm+Vb23N83Rk446q4nP1nHcXe9k5F1dUWudA0CuYfer09vf7H54nrDZ4jhF8Wna6t8d8X+5a/z+eXoY5mxrJLzjv9KZHrqMfod+Z1tG+bXHloQdVLXtQkut3xLXD++YNP2yDGHeMPGvc33Rgzl4pO+CsC3jvuHyLzLJsxlw7Zd7B132n64KuegsTnUahn959lsb2hmyP4DI8vVNsR+8N0zfQWQ+HyBppY2+vUx+iT4916/p4XirfWcctgB3J/kA6pmVxP7DezXI98Y4v96La1t1O5u5uAeOq8hkHvo/fr24YSv7tfbZcgXzNVPLfC9scmyslqufmoBLy8o4fpnF3b7Nfy8s6yCSfNjWzSXPzk3cm38znh+7sak86cWlnH9sws7vJfwiV2N3p75Kws38+7yisie+ZaovfHtXnhXRJ0VevK9/qOjlpfVxtwcprXN8d6KSo658x1ueKGAsh27cc5x1cR5zFxRGXMZge8+9lnMiKD4y0KUVDcw4rezGP/Wisi0Rz5Ym/SbUmVtI9X1e1hZ3rWLxUXXc/vUZZz6u/ezdh/geIHcQwd48AcnR84IFMl3P/W5DMOCDTUxe+jpmrGsMub5b/93JXdddHzSG4RvrmkfGRTOzPFvrWTfge0RclfUaJ3OuOiR0NDUST8+nW8OH8Qzn23gd2+HRieFjmd8yJrfXcDc9dXMXV8NwLSb/jny+4tL2g9et7Y5mlpbuXvaCm479xj+Y9Ki0LrnlXDyoQcw9pShkfv0Oud8z+gedX/7FVSfvm4kjc1tVNY2ctVph7O4ZDulO3Zz4YlD+PKA0HsPj3CB0M1sLpswlx+efnjk+AeELtYXf6JcNlg6Fzoys9HAX4C+wN+ccw/EzR8APA+cClQDVzjnNiZb58iRI11BQeKzH1Mp37GbbzzwYZd/X0TanXHUwZGw7E3r7xvDUb+e0WH6IfsNTGuU1MFf3iuml5/K/nv3p+jucznq1zM49fADufjkr0ZaQfFGHH5A5OYyAPddeiKLNm3n9cL2q64O2mdAh1FIAHv168PXhx3I0AP2ZuO2Bl75yRlp1xjPzBY550b6zksV6GbWF1gDnAuUAguBq5xzK6OWuRE4yTn3EzO7ErjUOXdFsvV2N9CBlAeYRERy0ayfncVw77IYnZUs0NP5DnAaUOycW++cawImA2PjlhkLPOc9fg34jqV7dapu2PjAhay7bwy/Gn0cf7riZL4adQBGRCRXnfunjiffZUI6PfShQPTYrlLg9ETLOOdazKwWOBjYFr2Qmd0A3ABw+OGHd7HkWH37WOSO92NOHEJdYwv7792fvuZ/dLyxuZXFJTso37Gbg/bZi211e9hU3cCN3zqaOWu3sd/e/Snx+oW/fG0p3znuH6hrbGHYoC/xwaqtHb7O7d2/b4d7iWbat44dzEerM3N3IRHpffdcfHxW1tujB0WdcxOBiRBquWR6/QP69WXAPsnvhDKwf1/OOPpg33nnnXAIAKOOCs2/fORhmS1QRCSL0mm5lAHRyXaoN813GTPrB+xP6OCoiIj0kHQCfSEw3MyONLO9gCuB6XHLTAeu9R7/APjQ6T5hIiI9KmXLxeuJ3wzMJDRs8Wnn3AozuxcocM5NB54CXjCzYqCGUOiLiEgPSquH7pybAcyIm3Z31ONG4LLMliYiIp0RyFP/RUSkIwW6iEieUKCLiOQJBbqISJ5I6+JcWXlhsyog8eXdkhtE3FmoOS5I9arW7AlSvao1e7pb7xHOucF+M3ot0LvDzAoSXZwmFwWpXtWaPUGqV7VmTzbrVctFRCRPKNBFRPJEUAN9Ym8X0ElBqle1Zk+Q6lWt2ZO1egPZQxcRkY6CuocuIiJxFOgiInkicIFuZqPNbLWZFZvZuF6q4TAz+8jMVprZCjO7xZs+3szKzKzI+xkT9Tu3ezWvNrPze/L9mNlGM1vm1VTgTTvIzGaZ2Vrvvwd6083MHvbqWWpmI6LWc623/FozuzbR63Wz1mOjtl+Rme00s1tzZdua2dNmttXMlkdNy9i2NLNTvb9Vsfe7Xb6VY4JaHzSzz7163jCzA7zpw8xsd9T2nZCqpkTvO8P1ZuzvbqFLgM/3pk+x0OXAM1nrlKg6N5pZkTe957atcy4wP4Qu37sOOArYC1gCHN8LdQwBRniP9yV0E+3jgfHAz32WP96rdQBwpPce+vbU+wE2AoPipv0BGOc9Hgf83ns8BngHMGAUMN+bfhCw3vvvgd7jA3vg710JHJEr2xY4CxgBLM/GtgQWeMua97sXZLjW84B+3uPfR9U6LHq5uPX41pTofWe43oz93YFXgCu9xxOAn2ay1rj5fwTu7ultG7Q99HRuWJ11zrkK51yh97gOWEXovqqJjAUmO+f2OOc2AMWE3ktvvp/oG3s/B3w3avrzLmQecICZDQHOB2Y552qcc9uBWcDoLNf4HWCdcy7ZGcU9um2dc7MJXfM/voZub0tv3n7OuXku9C/5+ah1ZaRW59x7zrkW7+k8QncgSyhFTYned8bqTaJTf3dvz/fbhG5i3+16k9XqvdblwMvJ1pGNbRu0QPe7YXWyIM06MxsGfA2Y70262fs6+3TU16REdffU+3HAe2a2yEI36gb4inOuwntcCXwlR2qNdiWx/yhycdtC5rblUO9x/PRs+RGhvcKwI81ssZl9YmZnetOS1ZTofWdaJv7uBwM7oj7MsrltzwS2OOfWRk3rkW0btEDPKWa2D/A6cKtzbifwBHA0cApQQehrVy74pnNuBHABcJOZnRU909s7yKnxq15/8xLgVW9Srm7bGLm4Lf2Y2R1AC/CiN6kCONw59zXgNuAlM9sv3fVl8X0H4u8e5ypid0R6bNsGLdDTuWF1jzCz/oTC/EXn3FQA59wW51yrc64N+Cuhr3+QuO4eeT/OuTLvv1uBN7y6tnhf+cJf/bbmQq1RLgAKnXNbvNpzctt6MrUty4htgWSlZjO7DrgI+KEXFniti2rv8SJCfehjUtSU6H1nTAb/7tWEWl794qZnlLf+7wFTot5Dj23boAV6OjeszjqvR/YUsMo591DU9CFRi10KhI+ATweuNLMBZnYkMJzQwZCsvx8z+7KZ7Rt+TOig2HJib+x9LTAtqtZrLGQUUOt99ZsJnGdmB3pfe8/zpmVLzF5OLm7bKBnZlt68nWY2yvt/7JqodWWEmY0Gfglc4pxriJo+2Mz6eo+PIrQd16eoKdH7zmS9Gfm7ex9cHxG6iX3W6gXOAT53zkVaKT26bdM9qpsrP4RGDqwh9Cl3Ry/V8E1CX4GWAkXezxjgBWCZN306MCTqd+7wal5N1MiFbL8fQkf7l3g/K8KvQain+AGwFngfOMibbsBjXj3LgJFR6/oRoYNPxcD1Wdy+Xya0R7V/1LSc2LaEPmQqgGZCPc8fZ3JbAiMJhdY64FG8s7kzWGsxoR5z+P/bCd6y3/f+/ygCCoGLU9WU6H1nuN6M/d29fwsLvG3wKjAgk7V6058FfhK3bI9tW536LyKSJ4LWchERkQQU6CIieUKBLiKSJxToIiJ5QoEuIpInFOgiInlCgS4ikif+D1RPiPE6XsNjAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(losses)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 282 }, "id": "52VPU3yWDLh9", "outputId": "18366141-3468-428d-9f67-22c4270cd737" }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x7f75e54d1790>]" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3hUdfr+8feTSg8tItJCVYOAYChSklU6Kiiigl0RLCAl6+7KusWvu6vruhuagIKoWAERNTaaugkgLTTpEooUKaFIr/L5/THH/WWzAQJMMpPM/bquXJz5nDLPOQlz55wzecacc4iISOgJC3QBIiISGAoAEZEQpQAQEQlRCgARkRClABARCVERgS7gQlSsWNHFxcUFugwRkUJj8eLFe5xzsbnNK1QBEBcXR0ZGRqDLEBEpNMzsh7PN0yUgEZEQpQAQEQlRCgARkRClABARCVEKABGREJWnADCzTma2zswyzezpXOZHm9kkb/4CM4vzxiuY2TdmdtjMXs6xznVmtsJbZ4SZmT92SERE8ua8AWBm4cAooDMQD/Qys/gci/UG9jvn6gBDgRe98ePAH4Gnctn0GKAPUNf76nQxOyAiIhcnL2cAzYBM59xG59xJYCLQLccy3YAJ3vQUoK2ZmXPuiHNuDr4g+A8zqwyUcc7Nd75+1G8Bt17KjpzLiK/Ws3zrT/m1eRGRQikvAVAF2Jrt8TZvLNdlnHOngQNAhfNsc9t5tgmAmfU1swwzy8jKyspDuf/tp6MneW/BFm4bPZfnv1jDsZM/X/A2RESKoqC/CeycG+ucS3DOJcTG5vrXzOdUtkQUM5ITuatpdcamb6Tz8HTmbdibD5WKiBQueQmA7UC1bI+remO5LmNmEUAMcK5X2e3eds61Tb8pUyySF7o34L0+zXFAr3Hz+f1HKzh4/FR+PaWISNDLSwAsAuqaWU0ziwJ6Aqk5lkkFHvCmewBfu3N81qRzbgdw0MxaeO/+uR/45IKrv0Ata1dk2sBE+rSpycSFW+iQks5Xa3bl99OKiASl8waAd02/PzAdWANMds6tMrPnzKyrt9h4oIKZZQLJwH/eKmpmm4EU4EEz25btHURPAK8BmcAG4Ev/7NK5FY8K55mb4pn6RCtiikfSe0IGA95fyt7DJwri6UVEgoYVpg+FT0hIcP7sBnry9BlG/zuTUd9kUrpYJH++JZ6uja5Af5IgIkWFmS12ziXkNi/obwLnp6iIMAa1q8dnT7ahWvkSDJy4jEcmZLDjwLFAlyYiku9COgB+ceXlpZn6eEv+cNPVzN2whw4p6by3YAtnzhSesyMRkQulAPCEhxmPtKnF9EGJXFMlht9/tIK7X5vP5j1HAl2aiEi+UADkUKNCSd7r05y/d2/Aqu0H6TgsnbHpGzj985lAlyYi4lcKgFyYGT2bVWdmchJt6lbk+S/WcvuYb1m782CgSxMR8RsFwDlcHlOMcfcnMLJXY7btP8bNI+aQMvN7TpxWOwkRKfwUAOdhZtzS6ApmJidxc8PKjPhqPbeMnMPSLfsDXZqIyCVRAORR+ZJRDOvZmNcfTODQ8dN0H/Mtf/lsNUdPng50aSIiF0UBcIFuvKoSMwYnck/z6oyfs4mOw9KZm7kn0GWJiFwwBcBFKF0skr/e2oCJfVsQbsY9ry3g6Q+/48AxNZcTkcJDAXAJWtSqwLRBiTyaVIvJGVtpn5LGjFU7A12WiEieKAAuUbHIcIZ0vpqP+7WifMko+r69mP7vLWGPmsuJSJBTAPhJw6plSe3fml+3r8eMVbtol5LGR0u3UZia7YlIaFEA+FFURBhPtq3L5wNaU7NiSQZPWs7Dby7ix5/UXE5Ego8CIB/UrVSaKY+15E83xzN/4z7ap6Tx9vwf1FxORIKKAiCfhIcZD7euyYzBiTSuXo4/frySnmPnszHrcKBLExEBFAD5rlr5Erzduxn/uL0ha3YepPPw2bySpuZyIhJ4CoACYGbc2bQas5KTSKoXy9+/XMuto+ey+kc1lxORwFEAFKBKZYrx6n3XMfqeJuw8cJyuL8/hXzPWqbmciASEAqCAmRldGlRm5uAkul57BSO/zuSmEXNY/MO+QJcmIiFGARAg5UpGkXLntbz5UFOOnfyZHq/M49nUVRw5oeZyIlIwFAAB9qsrL2P64ETua1GDN7/dTMdh6cxenxXoskQkBCgAgkCp6Aie63YNkx+9nqjwMO4bv5DffLCcA0fVXE5E8o8CIIg0q1meLwa24Ylf1Wbq0u20G5rGtJVqLici+UMBEGSKRYbz205X8Um/VsSWiuaxdxbzxLuL2X3oeKBLE5EiRgEQpK6pEsMn/Vvxm45XMmvNbtqnpDNlsZrLiYj/KACCWGR4GP1uqMMXA9pQ57JSPPXBch54YxHb9h8NdGkiUgQoAAqBOpeV4oNHr+f/utYnY/M+OgxNZ8K3m9VcTkQuiQKgkAgLMx5oGceMwYkkxJXnz6mruPPVeWxQczkRuUgKgEKmarkSTHioKf+8oxHrdx+m8/DZjPomk1NqLiciF0gBUAiZGT2uq8rM5ETaXX0ZL01fR7eX57Jy+4FAlyYihUieAsDMOpnZOjPLNLOnc5kfbWaTvPkLzCwu27wh3vg6M+uYbXywma0ys5Vm9r6ZFfPHDoWSy0oXY/Q91/HKvU3YfegE3UbN5cVpazl+Ss3lROT8zhsAZhYOjAI6A/FALzOLz7FYb2C/c64OMBR40Vs3HugJ1Ac6AaPNLNzMqgADgATn3DVAuLecXIRO11Tmq+Qkujeuwph/b6DL8Nks2qzmciJybnk5A2gGZDrnNjrnTgITgW45lukGTPCmpwBtzcy88YnOuRPOuU1Aprc9gAiguJlFACWAHy9tV0JbTIlIXrqjEW893IwTp89wxyvz+NMnKzms5nIichZ5CYAqwNZsj7d5Y7ku45w7DRwAKpxtXefcduCfwBZgB3DAOTcjtyc3s75mlmFmGVlZapJ2Pon1YpkxOJEHW8bx9vwf6Dg0nbTvddxE5H8F5CawmZXDd3ZQE7gCKGlm9+a2rHNurHMuwTmXEBsbW5BlFloloyN4tmt9pjx2PcUiw3jg9YUkT17GT0dPBro0EQkieQmA7UC1bI+remO5LuNd0okB9p5j3XbAJudclnPuFDAVaHkxOyBnd12N8nw+oA39b6hD6rIfaZeSxhcrdqidhIgAeQuARUBdM6tpZlH4btam5lgmFXjAm+4BfO18rzKpQE/vXUI1gbrAQnyXflqYWQnvXkFbYM2l747kVCwynKc6Xskn/VtxeUwxnnh3CY+9s5jdB9VcTiTUnTcAvGv6/YHp+F6kJzvnVpnZc2bW1VtsPFDBzDKBZOBpb91VwGRgNTAN6Oec+9k5twDfzeIlwAqvjrF+3TP5L/WviOHjJ1rxu05X8c26LNqlpDE5Y6vOBkRCmBWmF4CEhASXkZER6DIKvY1Zh3n6wxUs3LyP1nUq8kL3BlQrXyLQZYlIPjCzxc65hNzm6S+BQ1Ct2FJM7NuCv9x6DUu37KfD0HTemLuJn9VcTiSkKABCVFiYcV+LGsxITqJ5rfL836erueOVb8ncfSjQpYlIAVEAhLgqZYvzxoNNGXpXIzbuOUKX4XMY+dV6NZcTCQEKAMHMuK1xVWYlJ9G+fiX+NfN7bhk5hxXb1FxOpChTAMh/VCwVzai7m/Dqfdex78hJuo2awwtfrlFzOZEiSgEg/6Nj/cuZmZzEnQnVeDVtI52Hz2bBxr2BLktE/EwBILmKKR7J329vyLuPNOf0mTPcNXY+f/h4BYeOnwp0aSLiJwoAOadWdSoyfVAivVvX5N0FW+g4NJ1v1u4OdFki4gcKADmvElER/PHmeD58vCUloyN46M1FDJ60jH1H1FxOpDBTAEieNalejs8GtGZA27p8uvxH2qek8enyH9VOQqSQUgDIBYmOCCe5fT0+fbI1VcoV58n3l9LnrcXsUnM5kUJHASAX5erKZZj6eEt+3+UqZq/3NZebuHCLzgZEChEFgFy0iPAw+ibWZvqgROIrl+HpqSu457UFbNl7NNCliUgeKADkksVVLMn7fVrw/G0N+G7bAToMS+O12RvVXE4kyCkAxC/Cwoy7m1dnZnIiLWtX5K+fr6H7mG9Zt1PN5USClQJA/KpyTHHGP5DA8J7XsnXfUW4eOZths77n5Gk1lxMJNgoA8Tszo9u1VZg5OJEuDSozbNZ6bhk5h+Vbfwp0aSKSjQJA8k2FUtEM79mY1+5P4MCxU9w2ei5/+3w1x06quZxIMFAASL5rF1+JGcmJ9GxWnXGzN9FpeDrzNqi5nEigKQCkQJQpFsnztzXgvT7NAeg1bj5Dpq7goJrLiQSMAkAKVMvaFZk2MJG+ibWYtGgL7VPSmLV6V6DLEglJCgApcMWjwvl9l6uZ+kQryhaP4pG3Mhjw/lL2Hj4R6NJEQooCQALm2mpl+fTJ1gxuV48vV+6gXUoanyzbrnYSIgVEASABFRURxsB2dfl8QBtqVCjJwInLeGRCBjsOHAt0aSJFngJAgkK9SqX58PGW/OGmq5m7YQ/tU9J5d8EPnFE7CZF8owCQoBEeZjzSphYzBiXRsGoMz3y0krtfm8/mPUcCXZpIkaQAkKBTvUIJ3n2kOX/v3oBV2w/ScVg6Y9M3cPpntZMQ8ScFgAQlM6Nns+rMTE6iTd1Ynv9iLd3HfMuaHQcDXZpIkaEAkKB2eUwxxt1/HS/f3Zjt+49xy8g5pMz8nhOn1U5C5FIpACTomRk3N7yCWclJ3NLoCkZ8tZ6bR8xhyZb9gS5NpFDLUwCYWSczW2dmmWb2dC7zo81skjd/gZnFZZs3xBtfZ2Yds42XNbMpZrbWzNaY2fX+2CEpusqVjGLoXdfyxoNNOXziNLeP+Za/fLaaoydPB7o0kULpvAFgZuHAKKAzEA/0MrP4HIv1BvY75+oAQ4EXvXXjgZ5AfaATMNrbHsBwYJpz7iqgEbDm0ndHQsENV13GjMGJ3NO8OuPnbKLjsHTmZu4JdFkihU5ezgCaAZnOuY3OuZPARKBbjmW6ARO86SlAWzMzb3yic+6Ec24TkAk0M7MYIBEYD+CcO+mcU7N4ybPSxSL5660NmNS3BRFhYdzz2gJ+N+U7DhxTczmRvMpLAFQBtmZ7vM0by3UZ59xp4ABQ4Rzr1gSygDfMbKmZvWZmJXN7cjPra2YZZpaRlZWVh3IllDSvVYEvB7bhsaTaTFmyjfYpacxYtTPQZYkUCoG6CRwBNAHGOOcaA0eA/7m3AOCcG+ucS3DOJcTGxhZkjVJIFIsM5+nOV/HxE62oUCqavm8vpt97S8g6pOZyIueSlwDYDlTL9riqN5brMmYWAcQAe8+x7jZgm3NugTc+BV8giFy0BlVjSO3fiqc61GPmql20H5rGR0u3qbmcyFnkJQAWAXXNrKaZReG7qZuaY5lU4AFvugfwtfP9r0sFenrvEqoJ1AUWOud2AlvN7EpvnbbA6kvcFxEiw8Pof2NdvhjYmloVSzJ40nIeenMR239SczmRnM4bAN41/f7AdHzv1JnsnFtlZs+ZWVdvsfFABTPLBJLxLuc451YBk/G9uE8D+jnnfvkLnieBd83sO+Ba4Hn/7ZaEujqXleaDx1ry51viWbBxHx1S0nh73mY1lxPJxgrT6XFCQoLLyMgIdBlSyGzdd5Tff7SC2ev30CyuPH+/vQG1YksFuiyRAmFmi51zCbnN018CS5FXrXwJ3nq4GS/1aMjanQfpNHw2Y/6t5nIiCgAJCWbGHQnVmJWcxA1XxvLitLXcOnouq39UczkJXQoACSmXlSnGq/clMOaeJuw8cIKuL8/hn9PXcfyUmstJ6FEASEjq3KAys5IT6XZtFV7+JpObRsxm8Q/7Al2WSIFSAEjIKlsiin/d2YgJDzfj+Kkz9HhlHs+mruLICTWXk9CgAJCQl1QvlumDE7m/RQ0mzNtMh6HppH+vtiNS9CkARIBS0RH8X7drmPzo9URHhnH/6wt56oPlHDiq5nJSdCkARLJpGleeLwa04Ylf1eajpdtpNzSNaSt3BLoskXyhABDJoVhkOL/tdBWf9GtFbKloHntnCY+/s5jdh44HujQRv1IAiJzFNVVi+KR/K37T8Uq+Wrub9inpTFms5nJSdCgARM4hMjyMfjfU4YsBbah7WSme+mA597++kK37jga6NJFLpgAQyYM6l5Vi8qPX81y3+iz5YT8dh6Xz5txNai4nhZoCQCSPwsKM+6+PY/rgRBLiyvPsp6u589V5ZO4+HOjSRC6KAkDkAlUtV4IJDzXlX3c0Yv3uw3QZPptR32RySs3lpJBRAIhcBDPj9uuqMis5iXbxl/HS9HV0e3kuK7cfCHRpInmmABC5BLGloxl9z3W8cm8Tsg6foNuoubw4ba2ay0mhoAAQ8YNO11Rm1uAkbm9ShTH/3kCX4bNZtFnN5SS4KQBE/CSmRCT/6NGId3o35+TPZ7jjlXn86ZOVHFZzOQlSCgARP2tdtyLTByXyUKs43p7/Ax2HpvPvdbsDXZbI/1AAiOSDktER/PmW+kx5rCXFo8J58I1FJE9exv4jJwNdmsh/KABE8tF1Ncrx+YDWPHljHVKX/Uj7oWl8/t0OtZOQoKAAEMln0RHh/LrDlaT2b03lmOL0e28Jj769mN0H1VxOAksBIFJA4q8ow0dPtGRI56tI+z6LtilpTF60VWcDEjAKAJECFBEexqNJtflyYBuurlyG3374HfeNV3M5CQwFgEgA1IotxcQ+LfjrrdewbOtPdBiazutzNvGzmstJAVIAiARIWJhxb4sazBicSPNa5Xnus9Xc8cq3rN91KNClSYhQAIgE2BVli/PGg00Zdte1bNpzhJtGzGHkV+s5eVrN5SR/KQBEgoCZcWvjKsxMTqLjNZfzr5nf0/XlOXy37adAlyZFmAJAJIhULBXNyF6NGXd/AvuPnuTWUXN54Ys1ai4n+UIBIBKE2sdXYsbgJO5qWo1X0zfSaVg68zfuDXRZUsQoAESCVEzxSF7o3pD3HmnOGQc9x87nmY9WcOj4qUCXJkVEngLAzDqZ2TozyzSzp3OZH21mk7z5C8wsLtu8Id74OjPrmGO9cDNbamafXeqOiBRVLetUZNqgNjzSuibvL9xCh6HpfLNWzeXk0p03AMwsHBgFdAbigV5mFp9jsd7AfudcHWAo8KK3bjzQE6gPdAJGe9v7xUBgzaXuhEhRVyIqgj/cHM+Hj7ekVHQED725iEETl7JPzeXkEuTlDKAZkOmc2+icOwlMBLrlWKYbMMGbngK0NTPzxic650445zYBmd72MLOqwE3Aa5e+GyKhoXH1cnw2oDUD29bl8xU7aJeSRuryH9VOQi5KXgKgCrA12+Nt3liuyzjnTgMHgArnWXcY8FvgnG92NrO+ZpZhZhlZWVl5KFekaIuOCGdw+3p8+mRrqpUrzoD3l9LnrcXsPKDmcnJhAnIT2MxuBnY75xafb1nn3FjnXIJzLiE2NrYAqhMpHK66vAxTn2jFM12uZk5mFu1T0nh/4RadDUie5SUAtgPVsj2u6o3luoyZRQAxwN5zrNsK6Gpmm/FdUrrRzN65iPpFQlp4mNEnsRbTBiZSv0oZhkxdwd3jFvDD3iOBLk0KgbwEwCKgrpnVNLMofDd1U3Mskwo84E33AL52vl9DUoGe3ruEagJ1gYXOuSHOuarOuThve1875+71w/6IhKS4iiV575EWPH9bA1ZuP0DHYem8NnujmsvJOZ03ALxr+v2B6fjesTPZObfKzJ4zs67eYuOBCmaWCSQDT3vrrgImA6uBaUA/55z+pFEkH4SFGXc3r86M5ERa1a7IXz9fQ/cx37Jup5rLSe6sMF0vTEhIcBkZGYEuQyToOef49LsdPJu6ikPHT9Hvhjo88as6REXobz9DjZktds4l5DZPPw0iRZCZ0bXRFcxKTqJLg8oMm7WeW0bOYdlWNZeT/08BIFKElS8ZxfCejRn/QAIHjp2i++i5/O3z1Rw7qSuxogAQCQltr67EjOREejarzrjZm+g4LJ1vN+wJdFkSYAoAkRBRplgkz9/WgPf7tMAM7h63gCFTV3BQzeVClgJAJMRcX7sC0wYm8mhiLSYt2kL7lDRmrd4V6LIkABQAIiGoeFQ4Q7pczcf9WlGuRBSPvJXBk+8vZe/hE4EuTQqQAkAkhDWsWpbU/q1Jbl+PaSt9zeU+WbZd7SRChAJAJMRFRYQxoG1dPh/QhhoVSjJw4jJ6T8jgx5+OBbo0yWcKABEBoF6l0nz4eEv+eHM88zbspcPQdN5d8ANn1E6iyFIAiMh/hIcZvVvXZPqgRBpVi+GZj1bSa9x8Nu1Rc7miSAEgIv+jeoUSvNO7OS/e3oDVOw7SaVg6r6Zt4PTP5/z4DilkFAAikisz466m1ZmVnERivVhe+HIt3cd8y5odBwNdmviJAkBEzqlSmWKMve86Rt3dhB9/OsYtI+eQMmMdJ06rnURhpwAQkfMyM25qWJmZg5Po2ugKRnydyc0j5rBky/5AlyaXQAEgInlWrmQUKXddyxsPNeXIidPcPuZbnvt0NUdPng50aXIRFAAicsFuuPIypg9O5N7mNXh9rq+53Jz1ai5X2CgAROSilC4WyV9uvYbJj15PRFgY945fwG+nLOfAMTWXKywUACJySZrVLM+XA9vw+K9q8+GS7bRPSWP6qp2BLkvyQAEgIpesWGQ4v+t0FR8/0YoKpaJ59O3F9Ht3CVmH1FwumCkARMRvGlSNIbV/K37T8Upmrt5F+6FpTF2yTc3lgpQCQET8KjI8jH431OGLga2pVbEkyZOX8+Abi9iu5nJBRwEgIvmizmWl+eCxljx7SzyLNu+jQ0oab83brOZyQUQBICL5JjzMeLCVr7lckxrl+NMnq7hr7Dw2ZB0OdGmCAkBECkC18iV46+FmvNSjIet2HqLz8NmM/nemmssFmAJARAqEmXFHQjVm/TqJG6+8jH9MW8eto+ey6scDgS4tZCkARKRAXVa6GK/cdx1j7mnCzgMn6PryXF6avpbjp9RcrqApAEQkIDo3qMys5ERua1yFUd9s4KYRs8nYvC/QZYUUBYCIBEzZElH8845GvPVwM46fOsMdr87j2dRVHDmh5nIFQQEgIgGXWC+WGYMTeeD6OCbM20yHoemkf58V6LKKPAWAiASFktERPNu1Ph88ej3RkWHc//pCnvpgOT8dPRno0oqsPAWAmXUys3VmlmlmT+cyP9rMJnnzF5hZXLZ5Q7zxdWbW0RurZmbfmNlqM1tlZgP9tUMiUrglxJXniwFt6HdDbT5aup12Kel8uWJHoMsqks4bAGYWDowCOgPxQC8zi8+xWG9gv3OuDjAUeNFbNx7oCdQHOgGjve2dBn7tnIsHWgD9ctmmiISoYpHh/KbjVaT2b0WlMtE8/u4SHn9nMbsPHQ90aUVKXs4AmgGZzrmNzrmTwESgW45lugETvOkpQFszM298onPuhHNuE5AJNHPO7XDOLQFwzh0C1gBVLn13RKQoqX9FDB/3a8XvOl3FV2t30z4lnQ8ytqq5nJ/kJQCqAFuzPd7G/75Y/2cZ59xp4ABQIS/repeLGgMLcntyM+trZhlmlpGVpZtCIqEmMjyMx39Vmy8HtqFepVL8Zsp33P/6QrbuOxro0gq9gN4ENrNSwIfAIOfcwdyWcc6Ndc4lOOcSYmNjC7ZAEQkatWNLManv9fylW32W/LCfjsPSeXPuJjWXuwR5CYDtQLVsj6t6Y7kuY2YRQAyw91zrmlkkvhf/d51zUy+meBEJLWFhxn3XxzF9cCJN48rz7KeruePVeWTuPhTo0gqlvATAIqCumdU0syh8N3VTcyyTCjzgTfcAvna+i3SpQE/vXUI1gbrAQu/+wHhgjXMuxR87IiKho2q5Erz5UFNS7mzEhqzDdBk+h1HfZHJKzeUuyHkDwLum3x+Yju9m7WTn3Coze87MunqLjQcqmFkmkAw87a27CpgMrAamAf2ccz8DrYD7gBvNbJn31cXP+yYiRZiZ0b1JVWYOTqJ9/Uq8NH0d3V6ey8rtai6XV1aY7qYnJCS4jIyMQJchIkFo+qqd/OHjlew7cpK+ibUY2LYuxSLDA11WwJnZYudcQm7z9JfAIlIkdKx/ObMGJ9GjSVXG/HsDXYbPZuEmNZc7FwWAiBQZMSUiebFHQ97p3ZyTP5/hzlfn8cePV3JYzeVypQAQkSKndd2KzBicyMOtavLOgh/okJLGN+t2B7qsoKMAEJEiqURUBH+6JZ4pj7WkRHQED72xiORJy9h/RM3lfqEAEJEi7boa5fh8QGsG3FiH1OU/0n5oGp9/t0PtJFAAiEgIiI4IJ7nDlXz6ZGsqxxSn33tLePTtxew6GNrN5RQAIhIyrq5cho+eaMmQzleR9n0W7VLSmLRoS8ieDSgARCSkRISH8WhSbaYNSuTqymX43YcruHf8ArbsDb3mcgoAEQlJNSuWZGKfFvz11mtYvvUAHYelM37OJn4OoeZyCgARCVlhYca9LWowY3AiLWqV5y+frabHK9+yfldoNJdTAIhIyLuibHFef7Apw3tey+Y9R7hpxBxGfLWek6eLdnM5BYCICL7mct2urcKs5CQ6XnM5KTO/p+vLc1i+9adAl5ZvFAAiItlUKBXNyF6NGXd/AvuPnuS20XN54Ys1HDv5c6BL8zsFgIhILtrHV2JmchJ3Na3Gq+kb6Tw8nfkb9wa6LL9SAIiInEWZYpG80L0h7z3SnDMOeo6dzzMfreDQ8VOBLs0vFAAiIufRsk5Fpg9KpE+bmry/cAsdhqbz9dpdgS7rkikARETyoHhUOM/cFM/UJ1pRplgkD7+ZwcCJS9l7+ESgS7toCgARkQtwbbWyfPpkawa1q8sXK3bQfmg6qct/LJTtJBQAIiIXKCoijEHt6vHZk22oVr4EA95fSp+3Mth5oHA1l1MAiIhcpCsvL83Ux1vyh5uuZk7mHtqnpPH+wsLTXE4BICJyCcLDjEfa1GL6oESuqRLDkKkruHvcAn7YeyTQpZ2XAkBExA9qVCjJe32a80L3Bqzc7msuNy59Y1A3l1MAiIj4iZnRq1l1ZiYn0bpORf72xRq6j57Lup3B2VxOASAi4meXxxRj3P0JjOzVmG37j1M1W90AAAhBSURBVHHzyNkMnfl90DWXUwCIiOQDM+OWRlcwMzmJmxpUZvhX67l55GyWBVFzOQWAiEg+Kl8yimE9G/P6gwkcOn6a7qPn8tfPVgdFczkFgIhIAbjxqkrMGJxIr2bVeW3OJjoOS+fbDXsCWpMCQESkgJQuFsnfbmvAxL4tCDO4e9wChkz9jgPHAtNcTgEgIlLAWtSqwLRBiTyaVItJi7bSYWgaM1cXfHM5BYCISAAUiwxnSOer+bhfK8qViKLPWxn0f28JewqwuZwCQEQkgBpWLUtq/9b8un09ZqzaRfuUND5eur1A2knkKQDMrJOZrTOzTDN7Opf50WY2yZu/wMziss0b4o2vM7OOed2miEioiIoI48m2dfl8QGviKpZk0KRl9J6QwY8/HcvX5z1vAJhZODAK6AzEA73MLD7HYr2B/c65OsBQ4EVv3XigJ1Af6ASMNrPwPG5TRCSk1K1UmimPteRPN8czb8NeOgxN5535P3Amn9pJ5OUMoBmQ6Zzb6Jw7CUwEuuVYphswwZueArQ1M/PGJzrnTjjnNgGZ3vbysk0RkZATHmY83LomMwYncm21svzh45X0HDefoydP+/258hIAVYCt2R5v88ZyXcY5dxo4AFQ4x7p52SYAZtbXzDLMLCMrKysP5YqIFH7Vypfg7d7N+MftDalZoSQloiL8/hxBfxPYOTfWOZfgnEuIjY0NdDkiIgXGzLizaTVe7NEwX7aflwDYDlTL9riqN5brMmYWAcQAe8+xbl62KSIi+SgvAbAIqGtmNc0sCt9N3dQcy6QCD3jTPYCvne89TKlAT+9dQjWBusDCPG5TRETy0XkvKjnnTptZf2A6EA687pxbZWbPARnOuVRgPPC2mWUC+/C9oOMtNxlYDZwG+jnnfgbIbZv+3z0RETkbKyyfXQmQkJDgMjIyAl2GiEihYWaLnXMJuc0L+pvAIiKSPxQAIiIhSgEgIhKiFAAiIiGqUN0ENrMs4IeLXL0iENiP38k71Zp/ClO9qjX/FKZ6L7XWGs65XP+KtlAFwKUws4yz3QkPNqo1/xSmelVr/ilM9eZnrboEJCISohQAIiIhKpQCYGygC7gAqjX/FKZ6VWv+KUz15lutIXMPQERE/lsonQGIiEg2CgARkRBV5AMgGD583syqmdk3ZrbazFaZ2UBv/Fkz225my7yvLtnWGeLVvM7MOhb0/pjZZjNb4dWV4Y2VN7OZZrbe+7ecN25mNsKr6Tsza5JtOw94y683swfO9nyXUOeV2Y7fMjM7aGaDgunYmtnrZrbbzFZmG/PbsTSz67zvVaa3rvm51pfMbK1Xz0dmVtYbjzOzY9mO8Svnq+ls++3HWv32fTdfu/oF3vgk87Wu92etk7LVudnMlnnjBXdcnXNF9gtfq+kNQC0gClgOxAegjspAE2+6NPA9EA88CzyVy/LxXq3RQE1vH8ILcn+AzUDFHGP/AJ72pp8GXvSmuwBfAga0ABZ44+WBjd6/5bzpcvn8/d4J1AimYwskAk2AlflxLPF9xkYLb50vgc5+rrUDEOFNv5it1rjsy+XYTq41nW2//Vir377vwGSgpzf9CvC4P2vNMf9fwJ8K+rgW9TOAoPjweefcDufcEm/6ELCGs3wGsqcbMNE5d8I5twnIxLcvgd6fbsAEb3oCcGu28becz3ygrJlVBjoCM51z+5xz+4GZQKd8rK8tsME5d66/Fi/wY+ucS8f3ORk567jkY+nNK+Ocm+98//vfyrYtv9TqnJvhfJ/1DTAf3yf4ndV5ajrbfvul1nO4oO+795v1jcCU/K7Ve647gffPtY38OK5FPQDy/OHzBcXM4oDGwAJvqL93av16ttO2s9VdkPvjgBlmttjM+npjlZxzO7zpnUClIKoXfB9ElP0/UbAeW/DfsaziTecczy8P4/vN8xc1zWypmaWZWRtv7Fw1nW2//ckf3/cKwE/Zgi8/j2sbYJdzbn22sQI5rkU9AIKKmZUCPgQGOecOAmOA2sC1wA58p4HBorVzrgnQGehnZonZZ3q/gQTNe4i967NdgQ+8oWA+tv8l2I7l2ZjZM/g+2e9db2gHUN051xhIBt4zszJ53V4+7Xeh+b5n04v//sWlwI5rUQ+AoPnweTOLxPfi/65zbiqAc26Xc+5n59wZYBy+01E4e90Ftj/Oue3ev7uBj7zadnmnob+cju4OlnrxBdUS59wur+6gPbYefx3L7fz3JZl8qdvMHgRuBu7xXmDwLqfs9aYX47uWXu88NZ1tv/3Cj9/3vfguv0XkGPcrb/vdgUnZ9qHAjmtRD4Cg+PB57xrfeGCNcy4l23jlbIvdBvzyDoFUoKeZRZtZTaAuvps/BbI/ZlbSzEr/Mo3vJuBK77l+effJA8An2eq933xaAAe809HpQAczK+edinfwxvLDf/0WFazHNhu/HEtv3kEza+H9nN2fbVt+YWadgN8CXZ1zR7ONx5pZuDddC9+x3Hiems623/6q1S/fdy/kvgF65FetnnbAWufcfy7tFOhxzetd7ML6he9dFd/jS9FnAlRDa3ynZN8By7yvLsDbwApvPBWonG2dZ7ya15HtXR0FsT/43hGx3Pta9cvz4Lsu+hWwHpgFlPfGDRjl1bQCSMi2rYfx3XDLBB7Kp3pL4vuNLSbbWNAcW3zBtAM4he+6bW9/HksgAd8L3QbgZby/8PdjrZn4rpP/8rP7irfs7d7PxzJgCXDL+Wo62377sVa/fd+9/wcLvf3/AIj2Z63e+JvAYzmWLbDjqlYQIiIhqqhfAhIRkbNQAIiIhCgFgIhIiFIAiIiEKAWAiEiIUgCIiIQoBYCISIj6f3x0Oxh6UrCwAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(learning_rates)" ] }, { "cell_type": "markdown", "metadata": { "id": "mDcsAYEKFJB3" }, "source": [ "# Transformers for sequence classification\n", "\n", "- have to adjust the vocabulary where a word is split into multiple word piesces\n", "- [Tutorial on NER](https://github.com/huggingface/notebooks/blob/master/examples/token_classification.ipynb)\n", "- Some generative transformers now perform the same as token classification transformers [e.g. T5 can extract the span of a tweet that contains a sentiment](https://github.com/enzoampil/t5-intro/blob/master/t5_qa_training_pytorch_span_extraction.ipynb)" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "lab_5", "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "00fdcbd96cb94d3eb4ebce2dd65453df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ed85ba97e4db4aa4870c97fb5dae9320", "placeholder": "", "style": "IPY_MODEL_04e7a1a51fc843a28998e9c233eb6b53", "value": "100%" } }, "0138f661fb2e4bf6a88397f9873badc3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6c670492cafd4da48e5d5af837f4a766", "placeholder": "", "style": "IPY_MODEL_eda67bb0e48448c2a81a6abbb299655c", "value": "100%" } }, "01d2a1b3c57f41b7848c2c6299651e5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f5e3a24625dc4614b49e949e2440ec6f", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_c56d92e7acf2494e85902d64ec20a542", "value": 1756 } }, "027d62ef25e6429595edda611bbed0df": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "02dd4f78a3e74dbe8c6a3012fe1225d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "02ec7762a8a040b58015fbd5cbfd77b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0313aa8a41ba427bb913138d83ce21b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "032c119a998a43efa68e584df3832d19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "042693cc0df944858e35833c108c2f1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_e15da43cd84348799f28b5569ff1ba91", "IPY_MODEL_06fc23a15b0b402cb10de45cf98cb98e", "IPY_MODEL_df47c6e6bf9f40d5a379d21038ba3080" ], "layout": "IPY_MODEL_4f01566e931a47a8b73f1c0620f170b8" } }, "04e7a1a51fc843a28998e9c233eb6b53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "054c24038d3e46559503463d23ddc389": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0575d39f8c96456bb3536522a01098c8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "06413a173d0e430797a489b1ee38cd43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "06fc23a15b0b402cb10de45cf98cb98e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7e29174fdae9472a88288c326b65cd44", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_24a7f8f1a02c4dc98c004c5577912b52", "value": 1756 } }, "076b40a7b0744451a7524f3217ea76b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9d6a873845954b0ea2ea7e3c20d99612", "placeholder": "", "style": "IPY_MODEL_786041b9dad34b10b36486030970d19d", "value": " 1756/1756 [02:17<00:00, 11.99it/s]" } }, "077c9453603d424fb7a750e6c519e9bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "07866ecacbe34e65831862ca43cb1d38": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "07f88cab60dc43f2801bfeadce6c13b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9ff1a09ba29e4f03834980b845960ac8", "placeholder": "", "style": "IPY_MODEL_e98da261f882425398667b7de99be290", "value": " 1/1 [00:19<00:00, 19.51s/it]" } }, "0b37457dd10c4a9489461491889db959": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0b4d70be8d204713b88407757e8a5d0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "0bca1733c770416e86acf25c182e7d80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6b659814a0024ffaafda6cb4d57664f2", "placeholder": "", "style": "IPY_MODEL_44baad765185462aaeb9095181ad0af7", "value": " 1756/1756 [02:17<00:00, 13.00it/s]" } }, "0e3e71f47b4245c9917be43ad3fe8bfb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a7e7d6ec658649479411bde04e4c2aee", "placeholder": "", "style": "IPY_MODEL_8c7cdaa7a26645d1ac3412f9ee707470", "value": " 1/1 [00:19<00:00, 19.63s/it]" } }, "0e974b9ee4324bdb86788fe0e2a64efc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0ea3ab35d4a24fc687463c804fb89b48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7b70fab4d9744354a602e7d5563f964f", "placeholder": "", "style": "IPY_MODEL_4ae5022a4ae2492792d189040efa0da2", "value": "Evaluation: 100%" } }, "0ef76ee1a8a0448bb483fbfe6778e045": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "100fee07db9a428ca681de6261a83220": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c537cce1751b48d482cfbcfc6611e64e", "max": 2603, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_85b3a26f64e74fb299bea1ff292ec8c3", "value": 2603 } }, "1300fd4a0e1549348e5bb2334af8f778": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1377d7c5faf4431dbb86a571d15f3fd6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0313aa8a41ba427bb913138d83ce21b6", "placeholder": "", "style": "IPY_MODEL_925d1a0960fa40bf954ce8f32ff1b02f", "value": " 1756/1756 [02:17<00:00, 14.59it/s]" } }, "148ab57e86414260bcaf87f9cf696287": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "167a0fe0e01a4ee68690c43692fddb3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "177271c8428c46889799d4a70bd9c192": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "183c5aa5564f4388987d051140c01ce5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "18caeb9127d24c6dac9d43b587c80ae5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "19292c9b50bf4573adef5eb6032f4f0c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1b5dadfebd0e40aeb6acb4b330809a5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1c0016a437e24504a156249788daf08e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1c5b754a90354f739cb3e5660e1eeadf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1d5e405913854d489da2d379a7b8e643": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1ff8e68e92c143ef86c82df57b7022b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0b37457dd10c4a9489461491889db959", "placeholder": "", "style": "IPY_MODEL_1b5dadfebd0e40aeb6acb4b330809a5a", "value": " 1/1 [00:20<00:00, 19.82s/it]" } }, "20c0e811c05d466486b8e9e8ffa72ec1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_93476fbf743f422c8d3f89c47edf205f", "IPY_MODEL_3a277b1ddab84f308a6df7d42a83b69d", "IPY_MODEL_3f4d5b5cc11a4c439eb7670d4d315b02" ], "layout": "IPY_MODEL_177271c8428c46889799d4a70bd9c192" } }, "21f6f2b03cb84f8a8c5126d68d72f140": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1300fd4a0e1549348e5bb2334af8f778", "placeholder": "", "style": "IPY_MODEL_c7286887e5914b2981c8a00fc16ef70e", "value": "Evaluation: 100%" } }, "24a7f8f1a02c4dc98c004c5577912b52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "24d8f5b9572049f9aa34c0a91142473b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2614645b079b49bea5d51d1f8d99a38f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "270d3ea25e9b483fb18bcc73aa43db58": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "272da6e0838841a4a7107392d6e29f41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "27684c86175141de989a015f909754ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "283d04807326455b83c1f5f55174251c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_63ff9345ada14c30a4da5f425c911f70", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_0575d39f8c96456bb3536522a01098c8", "value": 1756 } }, "29437da4eece429e92866049f31da392": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "2b00d5a3b27c43019e4a37f5e24d1f2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_4e0d121ba1234e44a3448067e14b74de", "IPY_MODEL_8043a5b572ed41b0a7a6f1160256e63f", "IPY_MODEL_9842f90a1ae5430f8f85d135ab0811f0" ], "layout": "IPY_MODEL_e8d801338b56453c94da08be4749c0be" } }, "2b5d33ab96a746edbefa19cbbd3f28d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "2c4e4f9f341846d98e18c561391aab0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_19292c9b50bf4573adef5eb6032f4f0c", "placeholder": "", "style": "IPY_MODEL_0b4d70be8d204713b88407757e8a5d0a", "value": " 1756/1756 [02:18<00:00, 13.81it/s]" } }, "2c62f6825ac549668b5adb970201f9ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2cb7b546af9b4b89b8b53a7c1cdc58f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "30a4910b396e4149afa487bfb99b45cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "311130cce54541aeb64ed9ee04338e85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6aa949d213804e3ba5bfdfb1b8c89794", "placeholder": "", "style": "IPY_MODEL_6d84ccb32486488db4eb66ca7401b3c2", "value": "Evaluation: 100%" } }, "31211099ea134a3a93636ce9db54d125": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "324da4c1ca9a49f9a764b211102c23a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "334cdddd33ee462a9dafa0b6e116f2e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_537462efbcaf43afad7508c182552a35", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_4e5ba14720e24ff99367c2010dd632e3", "value": 1756 } }, "33640913b31b41a2a3e705cdee4e3324": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "33ea0aeffff044c5b21f1f1976656af3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_42dc0175926b4720821ffc2740ca69e4", "placeholder": "", "style": "IPY_MODEL_5f7d736653984a3184103db511454a62", "value": "Evaluation: 100%" } }, "33f81bc9680e4d70a9a24aa8b263124d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_027d62ef25e6429595edda611bbed0df", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_a06444c67ead477b8a127e1ea52ee18c", "value": 1 } }, "35df170a986348af903069315c6bf113": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "378fa5d2ca2d4005a0824d512c74bab9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d835d9ae913b4b8aa79195bbb65c67a2", "IPY_MODEL_100fee07db9a428ca681de6261a83220", "IPY_MODEL_878b7dbe92304f56be3f6cd519318522" ], "layout": "IPY_MODEL_054c24038d3e46559503463d23ddc389" } }, "398b6dee969446fc976676ddb581b20c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_02ec7762a8a040b58015fbd5cbfd77b7", "placeholder": "", "style": "IPY_MODEL_8a15b06012a94ca8a9981549d29751d6", "value": "100%" } }, "39fd3489e53e40f69d1222f0cdf2cbc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "3a277b1ddab84f308a6df7d42a83b69d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_148ab57e86414260bcaf87f9cf696287", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_a917ce8afb7e47ba822292dbf011f28c", "value": 1756 } }, "3a518e10ed6446e09cd964712d59e889": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e556aeb7c8434c6aaddf6096ffb497d6", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_31211099ea134a3a93636ce9db54d125", "value": 1 } }, "3a79919c14c04f9285627d948c0c9a3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1d5e405913854d489da2d379a7b8e643", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_d5e5b67d543d481598e42d6c7564ad9e", "value": 1756 } }, "3c1fd01d5ab74926b42891f9440feea5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "3ce435ba12d54cc1a122792670bbeaa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "3d1b324d978f4485af4bcabd331160fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3de70fdc4df84198b6f5c751cf605b43": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3f4d5b5cc11a4c439eb7670d4d315b02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d84e69475a05482980582d683784c461", "placeholder": "", "style": "IPY_MODEL_a8f07e13917a4cceb8ff41e0855b87ba", "value": " 1756/1756 [02:16<00:00, 13.66it/s]" } }, "402bfdd1222b47658c952b5c48489857": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "402fa0d35fb44392be1da0f9895053ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "40d0194fcbe14576a435b486e43bb9de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4ddc64060cc349609b6f370815ca4e2e", "placeholder": "", "style": "IPY_MODEL_adadf8c4200a40019b26ff734d3adf08", "value": "100%" } }, "424a055fb98b40c69da752f34a54b2d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "42a2d3a0171140cdbbbe7c2cd140acb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "42b8c6c4e1ac4918941f75b2941e6f4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "42dc0175926b4720821ffc2740ca69e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4373ceede55c499c9203d3fde6b31082": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f90f4b96b9c34ee79bf9db54d9376086", "placeholder": "", "style": "IPY_MODEL_e781457369704f12b9808104bcd8821f", "value": "Downloading: " } }, "4481552939ad40b99648b42b87966201": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "44baad765185462aaeb9095181ad0af7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "486c894c2b8146f881656748df926caa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "498d92dca26a424d9219fcda3196509d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4a3f380d0c3f4f4e877558c7db2f9d03": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4aa399acdf824ddc8f98d49ea633821e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4ae5022a4ae2492792d189040efa0da2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4b7716931b344f11a7e72938fa548dc4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "4bb91e60486741bd81318945cbc621c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4c57f5285ab24d09a86d334dbd60f456": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4da5667b33db4bbcadf247de6df42442": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_837dc8ed012f42d98e3c6efb29f12600", "IPY_MODEL_01d2a1b3c57f41b7848c2c6299651e5e", "IPY_MODEL_9866405fcafe454b93321b46139b3324" ], "layout": "IPY_MODEL_cebb2b6ccda746588e2bc3fb8bfc3acd" } }, "4ddc64060cc349609b6f370815ca4e2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4ddcd47934de4c56965aa1692cda96c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4e0d121ba1234e44a3448067e14b74de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_35df170a986348af903069315c6bf113", "placeholder": "", "style": "IPY_MODEL_27684c86175141de989a015f909754ba", "value": "Evaluation: 100%" } }, "4e5ba14720e24ff99367c2010dd632e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "4f01566e931a47a8b73f1c0620f170b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "50233fab3e2a4f6989c63a2335c75b6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "50fefb037c844da9811c20e3c42daa5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b24602dba2ea44dd8abfabd4b6704010", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_d09c2e773eb749b798621369d8823fda", "value": 1756 } }, "5101dd772d0a4b75a02afe70f566a9cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "520d60e185c7447f93e23c9accc27258": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "5230116d8f9d40fbb22be74eb6bddba8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2614645b079b49bea5d51d1f8d99a38f", "placeholder": "", "style": "IPY_MODEL_bba4178aa4d44e9d91190d821d05b7ee", "value": " 1756/1756 [00:55<00:00, 32.99it/s]" } }, "537462efbcaf43afad7508c182552a35": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "567c973e39e547ea87c1838d89b88074": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "58363ec1a1eb4f22aaefc24d6df333c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_784c3ed4884a4446ac4278f419a8f22f", "IPY_MODEL_283d04807326455b83c1f5f55174251c", "IPY_MODEL_076b40a7b0744451a7524f3217ea76b0" ], "layout": "IPY_MODEL_4c57f5285ab24d09a86d334dbd60f456" } }, "58ee651ead9a408aae427ff74958ea4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "5a064bea38c7449a940da7a9ded30021": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5b7944330b724cf1943a7cc6fa9ac56f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5bb1935e23e94c5b8ffa23f17d77f06e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5d2ce2c99b364ebcb75c222e56a58690": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_f5c986bc185140e59c73c8c48ef99534", "IPY_MODEL_d28ca53387d046a89f5bd05e2864ffff", "IPY_MODEL_98456c5e51ee40b7aed29c220a2d1b43" ], "layout": "IPY_MODEL_567c973e39e547ea87c1838d89b88074" } }, "5deb6052e7654541b065775b0ce49d6e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_21f6f2b03cb84f8a8c5126d68d72f140", "IPY_MODEL_85c38bf45f4b4b87aad067988a4822fd", "IPY_MODEL_0e3e71f47b4245c9917be43ad3fe8bfb" ], "layout": "IPY_MODEL_dfee51133f234894a0e5dddb496db820" } }, "5e37ef37a9794c9eadf0b8046048b446": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_e7dc86fd2e00406e86c1933fb416dcfa", "IPY_MODEL_c8c8d1346aea474fabd3dcdfd0526f8e", "IPY_MODEL_c030bde8c80945ccbaa39481f1b7a331" ], "layout": "IPY_MODEL_f19709b1237343f69dd1317741f6f5a4" } }, "5f72097761f5422a8bc320090bed8a6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "5f7d736653984a3184103db511454a62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "60a8955bade7451996405d720bee06a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "61e2ae3f0be54a6e966e174b1df2faa6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "63b7c8e743be475a9d7cbc456728bd59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8553cd6d520b45e58141964f5f62f164", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_167a0fe0e01a4ee68690c43692fddb3c", "value": 1756 } }, "63ff9345ada14c30a4da5f425c911f70": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "641f73da50aa4339984f6401b29bf080": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "65247ca3e7944632b52b26cf71b78769": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4a3f380d0c3f4f4e877558c7db2f9d03", "placeholder": "", "style": "IPY_MODEL_86badf4aa3d24698997027929bd4aa2d", "value": "100%" } }, "6524e7cf1bc24c4e9ef10e181c5bf35f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "66098eb69aaf4486bb2eddf5de1be7f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "66fdff54c9fb4054b20461f69befb50a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6ea12b0213b34770b91671d3ff7c90c9", "placeholder": "", "style": "IPY_MODEL_f692ec41d40240508e620cc561355166", "value": " 4.18k/? [00:00<00:00, 97.7kB/s]" } }, "678c127ca70b48e3a1aff97362b2473f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "688b588a9abf4cd19e51adae9c5ebb97": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "68c12407330c4c3c8d191d65e0441ebe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f1617348c3884618859c19808f723665", "placeholder": "", "style": "IPY_MODEL_3c1fd01d5ab74926b42891f9440feea5", "value": "Evaluation: 100%" } }, "69d338f4d2ca44e8bb9473aaed9789ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9c58458bcb4449d28316bf88a2533912", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_29437da4eece429e92866049f31da392", "value": 1 } }, "69dac05df03a4505bf57ddee27c052c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7afee097ce0d4179a71382e1a770347d", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_032c119a998a43efa68e584df3832d19", "value": 1756 } }, "69de91f9f5d445d9801e8a7c8e434407": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_402bfdd1222b47658c952b5c48489857", "placeholder": "", "style": "IPY_MODEL_06413a173d0e430797a489b1ee38cd43", "value": " 1756/1756 [02:18<00:00, 13.15it/s]" } }, "6aa949d213804e3ba5bfdfb1b8c89794": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6b659814a0024ffaafda6cb4d57664f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6b70e5760c6243248cb3c6d81723416c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6c670492cafd4da48e5d5af837f4a766": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6cf6877fa9534d389b3e59357e8005d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6d84ccb32486488db4eb66ca7401b3c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6e4353d2bed74e6485b5f3ec0916e84d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6e5a690a933c4606960f40be558cc5ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b46deede17eb48a78661a8b65cf24a5f", "IPY_MODEL_9c25145786934ae1a2fc9bdc762cebcd", "IPY_MODEL_07f88cab60dc43f2801bfeadce6c13b0" ], "layout": "IPY_MODEL_ab8bb3d6d0c34222bd0eeed20e3f38c5" } }, "6ea12b0213b34770b91671d3ff7c90c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6f20060eb6954f76b45ea747bf3a9907": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6ffb7f64d4924c73b468a160a730d785": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a8d985e224b64b6baa282f4d00a00a74", "placeholder": "", "style": "IPY_MODEL_eff6ea1ca2d1415683784d3ce95a9f07", "value": " 3453/3453 [03:21<00:00, 10.90it/s]" } }, "704acba671124ede9f4bcedfaa2217ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "74cec50a781c40ad8b99289f38d7ac69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "757d72ff8d77442687874f18efd8a31d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "769b02470769423f8e47ab3b5d3b6464": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "76ce4bf8d41a4b51af901000791dbb76": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "784c3ed4884a4446ac4278f419a8f22f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_42b8c6c4e1ac4918941f75b2941e6f4b", "placeholder": "", "style": "IPY_MODEL_4bb91e60486741bd81318945cbc621c7", "value": "100%" } }, "786041b9dad34b10b36486030970d19d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "7926b0ae95a643ad90c0341340cf2b43": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "79da7ceb7e17457aaea7dd19ec96c0a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "7a243e47ffb54fd4ad4d58da181d03cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7afee097ce0d4179a71382e1a770347d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7b5d7c02247e438b824e28eda80505e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_33ea0aeffff044c5b21f1f1976656af3", "IPY_MODEL_e033657b22df43a9812c52393516db1d", "IPY_MODEL_8e12bab4d7aa4da5b8cfd177426bfe68" ], "layout": "IPY_MODEL_6cf6877fa9534d389b3e59357e8005d3" } }, "7b70fab4d9744354a602e7d5563f964f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7d6c032329ba41aba1221ed545831181": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "7db97d142d2844fdb9b785cc7d9648f7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7e29174fdae9472a88288c326b65cd44": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7ec12acc502c4bafa871a289054204b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f2944271cf214122a7cbea8952d9b6ba", "max": 220, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_66098eb69aaf4486bb2eddf5de1be7f4", "value": 220 } }, "7f0a274780f646959de6081c5c860ee9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_40d0194fcbe14576a435b486e43bb9de", "IPY_MODEL_334cdddd33ee462a9dafa0b6e116f2e0", "IPY_MODEL_e6b8bb8175ab488cab8bd85ee9144f62" ], "layout": "IPY_MODEL_486c894c2b8146f881656748df926caa" } }, "8014b553c7214e85a760bdfdb56d20d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ee98e3dec8e74ccda89c58ba82ad4f87", "IPY_MODEL_f01e0f0622a8403698d736e175cabd0f", "IPY_MODEL_a99fb612b1564315903fc6cac33259fb" ], "layout": "IPY_MODEL_bd909e355e85410683c23061f9e07518" } }, "8043a5b572ed41b0a7a6f1160256e63f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bf5801297c3346af932ed9896fec0645", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_4b7716931b344f11a7e72938fa548dc4", "value": 1 } }, "80504dc7b24c4c60a0886740de6ed75b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "837dc8ed012f42d98e3c6efb29f12600": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d2418f27550c4a1abc1d1faa5b276f45", "placeholder": "", "style": "IPY_MODEL_f81d5b74f36c4b5fa49197825820f04f", "value": "100%" } }, "8553cd6d520b45e58141964f5f62f164": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "85b3a26f64e74fb299bea1ff292ec8c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "85c38bf45f4b4b87aad067988a4822fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3d1b324d978f4485af4bcabd331160fc", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_bb88da07e26b4758a31e4bffb69badfb", "value": 1 } }, "86badf4aa3d24698997027929bd4aa2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "878b7dbe92304f56be3f6cd519318522": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7db97d142d2844fdb9b785cc7d9648f7", "placeholder": "", "style": "IPY_MODEL_2b5d33ab96a746edbefa19cbbd3f28d8", "value": " 9.52k/? [00:00<00:00, 205kB/s]" } }, "884664b805d2442eb5264971aeea4269": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_324da4c1ca9a49f9a764b211102c23a8", "placeholder": "", "style": "IPY_MODEL_3ce435ba12d54cc1a122792670bbeaa0", "value": " 1/1 [00:20<00:00, 19.85s/it]" } }, "8923477611ca483abfb1fb917e7eb56f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0e974b9ee4324bdb86788fe0e2a64efc", "placeholder": "", "style": "IPY_MODEL_d5703426c8914817b2777c5e65aa8447", "value": "Evaluation: 100%" } }, "8924e7f0fd084219b23da0d00968803d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8a15b06012a94ca8a9981549d29751d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "8c7cdaa7a26645d1ac3412f9ee707470": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "8d6f82061cee47aca199947061c51514": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8d9d6033d99146be94ccc05d71fab90a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_e9cfc286f4e84d4387a1e830a908b9f1", "IPY_MODEL_cf78a093ae6a4aec84c8f5bfd20914e6", "IPY_MODEL_944d938a381848ebaa8acb40e93c9578" ], "layout": "IPY_MODEL_b20131c4430b458aa7a5950bf19dfca4" } }, "8e12bab4d7aa4da5b8cfd177426bfe68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e13fcbd5797a47e09adfb344ca4f742c", "placeholder": "", "style": "IPY_MODEL_4481552939ad40b99648b42b87966201", "value": " 1/1 [00:19<00:00, 19.71s/it]" } }, "8f1fcc4069d34ac39fa705730cc62a3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4aa399acdf824ddc8f98d49ea633821e", "max": 649539, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_d4052b6974ac4068a470650ce3863f94", "value": 649539 } }, "8f4c1790ec104d208484a5e0b300d7bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "925d1a0960fa40bf954ce8f32ff1b02f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "927b8def881c449abcfb01750074aaef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_24d8f5b9572049f9aa34c0a91142473b", "placeholder": "", "style": "IPY_MODEL_b09a25113e134475b06d53d60538dbd0", "value": " 220/220 [01:03<00:00, 3.78it/s]" } }, "93476fbf743f422c8d3f89c47edf205f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5a064bea38c7449a940da7a9ded30021", "placeholder": "", "style": "IPY_MODEL_678c127ca70b48e3a1aff97362b2473f", "value": "100%" } }, "944d938a381848ebaa8acb40e93c9578": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f49e83f2ad6a4f1a8dd3f3b1b913b048", "placeholder": "", "style": "IPY_MODEL_d62e9d5a8497455888a5e4aebf03ebda", "value": " 1/1 [00:19<00:00, 19.77s/it]" } }, "95164b73146c4484873e302a514db3cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9842f90a1ae5430f8f85d135ab0811f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f296ff4b96634493a0ded1358eee3ffd", "placeholder": "", "style": "IPY_MODEL_6524e7cf1bc24c4e9ef10e181c5bf35f", "value": " 1/1 [00:20<00:00, 19.94s/it]" } }, "98456c5e51ee40b7aed29c220a2d1b43": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c8ad835c37be4dc4ac1d2b80ddbf3176", "placeholder": "", "style": "IPY_MODEL_e3cd334928f14f2ea0367e9f431ba2c2", "value": " 1/1 [00:20<00:00, 19.94s/it]" } }, "9866405fcafe454b93321b46139b3324": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_183c5aa5564f4388987d051140c01ce5", "placeholder": "", "style": "IPY_MODEL_424a055fb98b40c69da752f34a54b2d7", "value": " 1756/1756 [02:18<00:00, 11.34it/s]" } }, "99f713f428d24c89a309b447bdc2cdf1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_76ce4bf8d41a4b51af901000791dbb76", "placeholder": "", "style": "IPY_MODEL_d373c5ded26447bfb1a3ad0e86bb3720", "value": " 3.28M/? [00:00<00:00, 22.9MB/s]" } }, "9b55e7f888934a8cbb94e15946fd6653": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9c25145786934ae1a2fc9bdc762cebcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_faded243ba8f418cab3cbd203dcd1a69", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_7d6c032329ba41aba1221ed545831181", "value": 1 } }, "9c58458bcb4449d28316bf88a2533912": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9d3a24c131ea47c6ae2a28ed727f3b2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9d6a873845954b0ea2ea7e3c20d99612": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9df6dfc132c740c18d98c11a5f06038c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_0138f661fb2e4bf6a88397f9873badc3", "IPY_MODEL_ce613499edd2448ea65a222fece8adbe", "IPY_MODEL_69de91f9f5d445d9801e8a7c8e434407" ], "layout": "IPY_MODEL_6f20060eb6954f76b45ea747bf3a9907" } }, "9ff1a09ba29e4f03834980b845960ac8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a06444c67ead477b8a127e1ea52ee18c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "a371acd3cf45434da3c5a58ee847c32a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c483b9a369f14cc1a6cc5a8580faba18", "placeholder": "", "style": "IPY_MODEL_c232c014240e4ea3a6b1423692fcdd13", "value": "Evaluation: 100%" } }, "a3e56bc011584c638aba5ebb200cc409": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_311130cce54541aeb64ed9ee04338e85", "IPY_MODEL_e194b1b75f4c40b88e7ecf6b7ce308f4", "IPY_MODEL_6ffb7f64d4924c73b468a160a730d785" ], "layout": "IPY_MODEL_2c62f6825ac549668b5adb970201f9ee" } }, "a427f1b146ff46dda0d16286d21403be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4ddcd47934de4c56965aa1692cda96c6", "placeholder": "", "style": "IPY_MODEL_0ef76ee1a8a0448bb483fbfe6778e045", "value": "100%" } }, "a76b75433328451da825c4a8ba03dc65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "a7828fae059544f6943528696ffd9175": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a7e7d6ec658649479411bde04e4c2aee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a86d9662ed444599a707f383ef9293ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8d6f82061cee47aca199947061c51514", "placeholder": "", "style": "IPY_MODEL_79da7ceb7e17457aaea7dd19ec96c0a2", "value": "100%" } }, "a8d985e224b64b6baa282f4d00a00a74": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a8f07e13917a4cceb8ff41e0855b87ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a917ce8afb7e47ba822292dbf011f28c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "a9954aec3cf74d919ca31f6342fffe7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a99fb612b1564315903fc6cac33259fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1c5b754a90354f739cb3e5660e1eeadf", "placeholder": "", "style": "IPY_MODEL_f3b08eaf8c754d5683a6442c29084d36", "value": " 3/3 [00:03<00:00, 1.13s/it]" } }, "ab7ed4ca77bf4370820cdd932267885d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ab8bb3d6d0c34222bd0eeed20e3f38c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "adadf8c4200a40019b26ff734d3adf08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "aedc1a90c62f4385af8827f7203aaeba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "afc43fa359df4352ba07ba5e5d00054d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_00fdcbd96cb94d3eb4ebce2dd65453df", "IPY_MODEL_69dac05df03a4505bf57ddee27c052c7", "IPY_MODEL_5230116d8f9d40fbb22be74eb6bddba8" ], "layout": "IPY_MODEL_95164b73146c4484873e302a514db3cb" } }, "afd9cde9f185470c8f36f2a85e6374f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_a371acd3cf45434da3c5a58ee847c32a", "IPY_MODEL_33f81bc9680e4d70a9a24aa8b263124d", "IPY_MODEL_1ff8e68e92c143ef86c82df57b7022b3" ], "layout": "IPY_MODEL_402fa0d35fb44392be1da0f9895053ab" } }, "b03142edb51f4f4c8b8a6a839595c3d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b06088c71629497da10f438e7470e7c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_0ea3ab35d4a24fc687463c804fb89b48", "IPY_MODEL_3a518e10ed6446e09cd964712d59e889", "IPY_MODEL_b59fa23d30f7415eaf8dca5d8ba134ee" ], "layout": "IPY_MODEL_18caeb9127d24c6dac9d43b587c80ae5" } }, "b09a25113e134475b06d53d60538dbd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b20131c4430b458aa7a5950bf19dfca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b24602dba2ea44dd8abfabd4b6704010": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b46deede17eb48a78661a8b65cf24a5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_077c9453603d424fb7a750e6c519e9bc", "placeholder": "", "style": "IPY_MODEL_80504dc7b24c4c60a0886740de6ed75b", "value": "Evaluation: 100%" } }, "b5043a6472894030bef0f09f8c98a920": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b59fa23d30f7415eaf8dca5d8ba134ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5bb1935e23e94c5b8ffa23f17d77f06e", "placeholder": "", "style": "IPY_MODEL_bc8aaf6d5f7d4e13b65da793a91d1e22", "value": " 1/1 [00:23<00:00, 23.44s/it]" } }, "b6029eef675f455ebb21ad04184b106f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b6b28043e67041368d2b131393d7cec1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "bb88da07e26b4758a31e4bffb69badfb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "bba4178aa4d44e9d91190d821d05b7ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "bc8aaf6d5f7d4e13b65da793a91d1e22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "bd909e355e85410683c23061f9e07518": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "be289fccdfa64228839b0b60774b29d9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_eca645bca6f54b0580ad1d6fc3c02780", "IPY_MODEL_8f1fcc4069d34ac39fa705730cc62a3a", "IPY_MODEL_99f713f428d24c89a309b447bdc2cdf1" ], "layout": "IPY_MODEL_aedc1a90c62f4385af8827f7203aaeba" } }, "bf22ef397bd04af0bb51def0a3b37d00": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bf5801297c3346af932ed9896fec0645": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bfdf7ea44f8e461f82fbc4699e07ec0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d134c281bb20460d8adf1cd04d9f1906", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_f8ff1f88e23a417c895a70e77781f1d1", "value": 1756 } }, "c030bde8c80945ccbaa39481f1b7a331": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a7828fae059544f6943528696ffd9175", "placeholder": "", "style": "IPY_MODEL_50233fab3e2a4f6989c63a2335c75b6d", "value": " 1/1 [00:20<00:00, 20.07s/it]" } }, "c232c014240e4ea3a6b1423692fcdd13": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c483b9a369f14cc1a6cc5a8580faba18": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c537cce1751b48d482cfbcfc6611e64e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c56d92e7acf2494e85902d64ec20a542": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "c5c5c0104bef49fb86325a975bf70c98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_a427f1b146ff46dda0d16286d21403be", "IPY_MODEL_3a79919c14c04f9285627d948c0c9a3d", "IPY_MODEL_cc44b994a2bc48128bf3303b13ee0bae" ], "layout": "IPY_MODEL_5101dd772d0a4b75a02afe70f566a9cd" } }, "c7286887e5914b2981c8a00fc16ef70e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c7c6f6a5c86543f898e9598387d61437": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_4373ceede55c499c9203d3fde6b31082", "IPY_MODEL_d12355d50fdc46f691212830c5510648", "IPY_MODEL_66fdff54c9fb4054b20461f69befb50a" ], "layout": "IPY_MODEL_8f4c1790ec104d208484a5e0b300d7bd" } }, "c8ad835c37be4dc4ac1d2b80ddbf3176": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c8c8d1346aea474fabd3dcdfd0526f8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ec276edf6a7b4c70bbcdcdc698d75f0a", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_42a2d3a0171140cdbbbe7c2cd140acb2", "value": 1 } }, "cc44b994a2bc48128bf3303b13ee0bae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9d3a24c131ea47c6ae2a28ed727f3b2c", "placeholder": "", "style": "IPY_MODEL_498d92dca26a424d9219fcda3196509d", "value": " 1756/1756 [02:19<00:00, 13.61it/s]" } }, "ce613499edd2448ea65a222fece8adbe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5b7944330b724cf1943a7cc6fa9ac56f", "max": 1756, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_e1e27d12bbc3453481e771d268af6bbf", "value": 1756 } }, "ce96995f8d93445a93d4cb357ec3c72c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cebb2b6ccda746588e2bc3fb8bfc3acd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cf78a093ae6a4aec84c8f5bfd20914e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bf22ef397bd04af0bb51def0a3b37d00", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_74cec50a781c40ad8b99289f38d7ac69", "value": 1 } }, "d09c2e773eb749b798621369d8823fda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "d12355d50fdc46f691212830c5510648": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_33640913b31b41a2a3e705cdee4e3324", "max": 1781, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_272da6e0838841a4a7107392d6e29f41", "value": 1781 } }, "d134c281bb20460d8adf1cd04d9f1906": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d2418f27550c4a1abc1d1faa5b276f45": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d28ca53387d046a89f5bd05e2864ffff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_270d3ea25e9b483fb18bcc73aa43db58", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_a76b75433328451da825c4a8ba03dc65", "value": 1 } }, "d373c5ded26447bfb1a3ad0e86bb3720": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d4052b6974ac4068a470650ce3863f94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "d40c77c769bc4626a8293341fe87ce7d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d4223c713f884d8881f6091f91b631f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1c0016a437e24504a156249788daf08e", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_2cb7b546af9b4b89b8b53a7c1cdc58f2", "value": 1 } }, "d4d0d8dcb30a47f1ae0fd61b3836c77b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_68c12407330c4c3c8d191d65e0441ebe", "IPY_MODEL_d4223c713f884d8881f6091f91b631f6", "IPY_MODEL_884664b805d2442eb5264971aeea4269" ], "layout": "IPY_MODEL_b03142edb51f4f4c8b8a6a839595c3d8" } }, "d5703426c8914817b2777c5e65aa8447": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d5e5b67d543d481598e42d6c7564ad9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "d62e9d5a8497455888a5e4aebf03ebda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d7f11c0e7a814c8f8597ffbfca4b1b09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d7fdc539d31c456498d6db7558c984fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d835d9ae913b4b8aa79195bbb65c67a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ab7ed4ca77bf4370820cdd932267885d", "placeholder": "", "style": "IPY_MODEL_d7fdc539d31c456498d6db7558c984fb", "value": "Downloading: " } }, "d84e69475a05482980582d683784c461": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d859eb2c5cd94ffda355c0012d762b4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_398b6dee969446fc976676ddb581b20c", "IPY_MODEL_63b7c8e743be475a9d7cbc456728bd59", "IPY_MODEL_1377d7c5faf4431dbb86a571d15f3fd6" ], "layout": "IPY_MODEL_30a4910b396e4149afa487bfb99b45cc" } }, "df47c6e6bf9f40d5a379d21038ba3080": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e0be0a8d76c24613b60e22ccbd299e69", "placeholder": "", "style": "IPY_MODEL_769b02470769423f8e47ab3b5d3b6464", "value": " 1756/1756 [02:20<00:00, 11.93it/s]" } }, "df8234f0c75f4af5943f5139532e6ace": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_f0a4ce576d1f48fdaf75a943e10246ba", "IPY_MODEL_50fefb037c844da9811c20e3c42daa5c", "IPY_MODEL_0bca1733c770416e86acf25c182e7d80" ], "layout": "IPY_MODEL_61e2ae3f0be54a6e966e174b1df2faa6" } }, "dfee51133f234894a0e5dddb496db820": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e033657b22df43a9812c52393516db1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ee2f4b3129084099ad4a59005e6759aa", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_39fd3489e53e40f69d1222f0cdf2cbc2", "value": 1 } }, "e0be0a8d76c24613b60e22ccbd299e69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e13fcbd5797a47e09adfb344ca4f742c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e140fc80ad5649c8b47f501e39ac8306": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_8923477611ca483abfb1fb917e7eb56f", "IPY_MODEL_69d338f4d2ca44e8bb9473aaed9789ae", "IPY_MODEL_f09111dd7aa04d80b50cc324c9461d0e" ], "layout": "IPY_MODEL_f0ce183181034604b62b3c9a2b882e98" } }, "e15da43cd84348799f28b5569ff1ba91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7a243e47ffb54fd4ad4d58da181d03cd", "placeholder": "", "style": "IPY_MODEL_6e4353d2bed74e6485b5f3ec0916e84d", "value": "100%" } }, "e194b1b75f4c40b88e7ecf6b7ce308f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7926b0ae95a643ad90c0341340cf2b43", "max": 3453, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_02dd4f78a3e74dbe8c6a3012fe1225d5", "value": 3453 } }, "e1e27d12bbc3453481e771d268af6bbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "e3cd334928f14f2ea0367e9f431ba2c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e556aeb7c8434c6aaddf6096ffb497d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e69a0f48b8104bd29adfab7a1409d1d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_a86d9662ed444599a707f383ef9293ad", "IPY_MODEL_7ec12acc502c4bafa871a289054204b2", "IPY_MODEL_927b8def881c449abcfb01750074aaef" ], "layout": "IPY_MODEL_ce96995f8d93445a93d4cb357ec3c72c" } }, "e6b8bb8175ab488cab8bd85ee9144f62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a9954aec3cf74d919ca31f6342fffe7f", "placeholder": "", "style": "IPY_MODEL_b6b28043e67041368d2b131393d7cec1", "value": " 1756/1756 [02:18<00:00, 12.43it/s]" } }, "e781457369704f12b9808104bcd8821f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e7dc86fd2e00406e86c1933fb416dcfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_07866ecacbe34e65831862ca43cb1d38", "placeholder": "", "style": "IPY_MODEL_5f72097761f5422a8bc320090bed8a6d", "value": "Evaluation: 100%" } }, "e8d801338b56453c94da08be4749c0be": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e98da261f882425398667b7de99be290": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e9cfc286f4e84d4387a1e830a908b9f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_60a8955bade7451996405d720bee06a7", "placeholder": "", "style": "IPY_MODEL_d7f11c0e7a814c8f8597ffbfca4b1b09", "value": "Evaluation: 100%" } }, "ec276edf6a7b4c70bbcdcdc698d75f0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "eca645bca6f54b0580ad1d6fc3c02780": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9b55e7f888934a8cbb94e15946fd6653", "placeholder": "", "style": "IPY_MODEL_704acba671124ede9f4bcedfaa2217ed", "value": "Downloading: " } }, "ed85ba97e4db4aa4870c97fb5dae9320": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "eda67bb0e48448c2a81a6abbb299655c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "ee2f4b3129084099ad4a59005e6759aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ee98e3dec8e74ccda89c58ba82ad4f87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6b70e5760c6243248cb3c6d81723416c", "placeholder": "", "style": "IPY_MODEL_520d60e185c7447f93e23c9accc27258", "value": "100%" } }, "eff6ea1ca2d1415683784d3ce95a9f07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f01e0f0622a8403698d736e175cabd0f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_757d72ff8d77442687874f18efd8a31d", "max": 3, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_58ee651ead9a408aae427ff74958ea4d", "value": 3 } }, "f09111dd7aa04d80b50cc324c9461d0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_641f73da50aa4339984f6401b29bf080", "placeholder": "", "style": "IPY_MODEL_b5043a6472894030bef0f09f8c98a920", "value": " 1/1 [00:20<00:00, 20.01s/it]" } }, "f0a4ce576d1f48fdaf75a943e10246ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3de70fdc4df84198b6f5c751cf605b43", "placeholder": "", "style": "IPY_MODEL_d40c77c769bc4626a8293341fe87ce7d", "value": "100%" } }, "f0ce183181034604b62b3c9a2b882e98": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f1617348c3884618859c19808f723665": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f19709b1237343f69dd1317741f6f5a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f2944271cf214122a7cbea8952d9b6ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f296ff4b96634493a0ded1358eee3ffd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f3b08eaf8c754d5683a6442c29084d36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f49e83f2ad6a4f1a8dd3f3b1b913b048": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f5c986bc185140e59c73c8c48ef99534": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_688b588a9abf4cd19e51adae9c5ebb97", "placeholder": "", "style": "IPY_MODEL_b6029eef675f455ebb21ad04184b106f", "value": "Evaluation: 100%" } }, "f5e3a24625dc4614b49e949e2440ec6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f65aabdb6524496bbbc4ba9639127359": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_65247ca3e7944632b52b26cf71b78769", "IPY_MODEL_bfdf7ea44f8e461f82fbc4699e07ec0b", "IPY_MODEL_2c4e4f9f341846d98e18c561391aab0b" ], "layout": "IPY_MODEL_8924e7f0fd084219b23da0d00968803d" } }, "f692ec41d40240508e620cc561355166": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f81d5b74f36c4b5fa49197825820f04f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f8ff1f88e23a417c895a70e77781f1d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "f90f4b96b9c34ee79bf9db54d9376086": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "faded243ba8f418cab3cbd203dcd1a69": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } } } }, "nbformat": 4, "nbformat_minor": 4 }