

&

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

 Open Source Software Projects
Needing Security Investments

David A. Wheeler, Project Leader
Samir Khakimov

19 June 2015

Approved for public
release; distribution is

unlimited.

IDA Document
D-5459 v.1.0

Log: H 15-000253
Copy

INSTITUTE FOR DEFENSE

ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

About This Publication
This work was conducted by the Institute for Defense Analyses (IDA) under contract
N66001-11-C-0001, subcontract D6384-S5, Task GT-5-3329, “Homeland Open Security
Technology (HOST),” for Georgia Tech Research Institute and under agreement with
The Linux Foundation. The views, opinions, and findings should not be construed as
representing the official position of either the Department of Defense or the
sponsoring organization.
Copyright Notice
© 2015 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

Acknowledgments
Clyde G. Roby

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

IDA Document D-5459, v. 1.0

Open Source Software Projects
Needing Security Investments

David A. Wheeler, Project Leader

Samir Khakimov

i

Executive Summary

The Heartbleed vulnerability in the open source software (OSS) program OpenSSL
was a serious vulnerability with widespread impact. It highlighted that some OSS
programs are widely used and depended on and that vulnerabilities in them can have
serious ramifications, and yet some OSS programs have not received the level of security
analysis appropriate to their importance. Some OSS projects have many participants,
perform in-depth security analyses, and produce software that is widely considered to be
of high quality and to have strong security. However, other OSS projects have small teams
that have limited time to do the tasks necessary for strong security.

The Linux Foundation (LF) Core Infrastructure Initiative (CII) is trying to identify
OSS projects that need special focus/help for security so that it can best identify OSS
projects needing investment. Similarly, the Department of Homeland Security Homeland
Open Security Technology (DHS HOST) program’s goal is to “help facilitate the continued
adoption of open technology solutions (including OSS)…to improve system security….”
They have asked the Institute for Defense Analyses to identify and collect metrics to help
identify OSS projects that may especially need investment for security.

We have focused on gathering metrics automatically, especially those that suggest
less active projects. We also estimated the program’s exposure to attack. We developed a
scoring system to heuristically combine these automatically gathered metrics with the
exposure estimate. This scoring system identified especially plausible candidates. We
took those candidates, examined their data further, and then identified a subset of
candidates that we believe are especially concerning. We did not specifically examine the
security of the projects themselves. The initial set of projects we examined was the set of
software packages installed by Debian base (which are very widely used) combined with
other packages that we or others identified as potentially concerning; we could easily add
more projects to consider in the future.

This document provides information captured as part of our process to help identify
open source software (OSS) projects that may need investment for security. It captures a
brief literature search of ways to try to measure this and then describes the results we have
captured so far.

This document is released under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. The supporting software (in Python) for capturing data is released
under the Massachusetts institute of Technology (MIT) license. Some supporting data was

ii

sourced from the Black Duck Open HUB (formerly Ohloh), a free online community
resource for discovering, evaluating, tracking, and comparing open source code and
projects.

iii

Contents

1. Introduction ... 1-1
2. Some Past and Current Efforts to Identify Relevant OSS Project Metrics 2-1

A. OSS Metrics Data Sources .. 2-1
1. Black Duck Open Hub .. 2-2
2. OSS Repository Statistics (GitHub, SourceForge, git, etc.) 2-3
3. Linux Distribution Repositories .. 2-3
4. FLOSSmole ... 2-4
5. FLOSSMetrics Project .. 2-4
6. FLOSS Community Metrics Meeting ... 2-4
7. Rodriguez Survey of Software Data Repositories 2-6
8. PROMISE .. 2-7

B. Methods for Evaluating OSS Projects ... 2-7
1. Stol and Babar ... 2-7
2. QualiPSo OpenSource Maturity Model (OMM) 2-8
3. QSOS ... 2-9
4. SQO-OSS / Spinellis, et al .. 2-9
5. Ghapanchi’s Taxonomy for Measuring OSS Project Success 2-12
6. Wheeler OSS Evaluation Model ... 2-14
7. Doomed to FAIL Index ... 2-15
8. Internet Success ... 2-16

C. Specific Potentially Useful Security Metrics .. 2-19
1. In-Depth Static Analysis Security Tools (e.g., Coverity Scan) 2-19
2. Lexically Scanning Static Analysis Security Tools (e.g., flawfinder and

RATS) ... 2-20
3. Wikipedia Article on OSS Security ... 2-20
4. Common Vulnerabilities and Exposures Count 2-21
5. Schryen and Kadura .. 2-21
6. “Look at the Numbers” – Wheeler .. 2-23
7. Presence of Security Test Suite ... 2-25
8. Presence/Absence of Past Security Reviews ... 2-25

D. Specific Potentially Useful General Metrics ... 2-25
1. Software Quality Metric Measurement Tools ... 2-26
2. Compiler Warning Flags and Style Checkers ... 2-26
3. Senior Defect Prediction Measures – McCabe (Cyclomatic complexity)

and Halstead .. 2-26
4. Test Coverage .. 2-27
5. Source Lines of Code .. 2-27
6. Lincke Survey .. 2-27
7. Estimating Commit Sizes Efficiently – Hoffmann and Riehle 2-28

iv

8. Choosing Software Metrics – Gao .. 2-29
9. Assessing Predictors of Software Defects – Menzies 2-29
10. How Many Software Metrics for Defect Prediction? – Wang 2-29
11. Software Defect Prediction – Punitha ... 2-30
12. COQUALMO .. 2-30
13. DoD/Industry 1994 Survey ... 2-31

E. Attack Surface Measurement .. 2-31
F. Kenn White Metrics Set .. 2-32
G. IDA Ideas .. 2-33

1. Exposure to Attack .. 2-33
2. Other Work .. 2-34

H. London January 2015 Meeting .. 2-35
I. Additional Areas for Review ... 2-37
J. Comments on Metrics ... 2-37

3. Important OSS Projects ... 3-1
A. Common in Distributions .. 3-1
B. Linux Foundation Original List ... 3-2
C. Kenn White List .. 3-3
D. Google Application Security Patch Reward Program 3-4
E. Recent Problem Reports .. 3-5
F. Augmented List of Programs .. 3-5

4. Selected Approach and Early Results .. 4-1
A. Overall Approach .. 4-1
B. Caveats .. 4-1
C. First Stage .. 4-2
D. Second Stage ... 4-4

5. Current Process .. 5-1
A. Current Simplified Approach .. 5-1
B. Risk Index .. 5-2

6. Current Process Results ... 6-1
A. Riskiest OSS Programs (straight from scores) .. 6-1
B. Riskiest OSS Programs (estimated by us) ... 6-2
C. Potential Improvements to Other Sites to Improve Data 6-8

7. Conclusions ... 7-1

References ..R-1
Acronyms ... AA-1

v

Figures and Tables

Figure 1. The SQO-OSS Quality Model .. 2-10

Figure 2. Analysis Process, Stage 2 ... 4-5

Figure 3. Analysis Process, Current Stage ... 5-1

Table 1. Metrics used by the SQO-OSS Quality Mode ... 2-10

Table 2. Practical List of OSS Metrics .. 2-13

Table 3. Riskiest OSS Programs (straight from scores) .. 6-1

Table 4. Riskiest OSS Programs (human-identified subset informed by risk measures) 6-3

1-1

1. Introduction

The Heartbleed vulnerability in the open source software (OSS) program OpenSSL
was a serious vulnerability with widespread impact. Yet there are many ways that
Heartbleed could have been detected before it was deployed [Wheeler2014h]. The
Heartbleed vulnerability highlighted that the vulnerabilities in some widely used and
depended-upon OSS programs can have serious ramifications, and yet they have not
received the level of security analysis appropriate to their importance. Some OSS projects
have many participants, perform in-depth security analyses, and produce software that is
widely considered to be of high quality and to have strong security. However, other OSS
projects have small teams that have limited time to do the tasks necessary for strong
security (e.g., the OpenSSL project before Heartbleed).

The Linux Foundation (LF) Core Infrastructure Initiative (CII) was established to
“fund open source projects that are in the critical path for core computing functions [and]
are experiencing under-investment.”1 The LF CII will make final decisions on what it will
invest in, but it has asked for help in identifying appropriate metrics and their values.

The HOST program’s goal, as stated in the statement of work between the Institute
for Defense Analyses (IDA) and the Georgia Tech Research Institute (GTRI), is to “help
facilitate the continued adoption of open technology solutions (including OSS) within
federal, state, and municipal public sector [information technology] IT environments in
order to improve system security….” The program has asked IDA to “provide continued
subject matter expertise on in-depth research, studies, and analysis on the research domain”
for HOST. The HOST project is in turn funded by the Department of Homeland Security
(DHS). This is in support of securing the nation—Executive Order 13636 states that, “It
is the policy of the United States to enhance the security and resilience of the Nation’s
critical infrastructure and to maintain a cyber environment that encourages efficiency,
innovation, and economic prosperity while promoting safety, security, business
confidentiality, privacy, and civil liberties” [Obama2013]. Thus, identifying OSS projects
that need help is also in the interest of the HOST project.

1 http://www.linuxfoundation.org/programs/core-infrastructure-initiative

http://www.linuxfoundation.org/programs/core-infrastructure-initiative

1-2

Other organizations and projects might be interested in this work as well. For
example:

 The “Snowdrift coop” (at https://snowdrift.coop/) was established in late 2014 to
create “a matching patronage system funding freely-licensed works” and in the
future might be interested in funding work to improve the security of OSS
projects.

 The “European Parliament has approved funding for several projects related to
Free Software and privacy. In the EU budget for 2015, which the European
Parliament adopted on December 17, the Parliamentarians have allocated up to
one million Euro for a project to audit Free Software programs in use at the
Commission and the Parliament in order to identify and fix security
vulnerabilities,” https://fsfe.org/news/2014/news-20141219-01.en.html.

 The “Google Application Security Patch Reward Program” rewards proactive
security improvements in selected open-source projects. See
https://www.google.com/about/appsecurity/patch-rewards/.

The Linux Foundation and HOST have asked us to identify and collect metrics to help
identify OSS projects that may especially need investment for security.

The goal of this work was to perform a relatively quick reaction study to gather data
to help make reasonable decisions in a short time. Further work might identify significantly
improved measures and additional projects to be examined, but it was judged to be better
to do a quick study with limited time (and document it) than to simply guess or to spend a
long time on a more comprehensive study.

We began this work by surveying past and current efforts to identify relevant OSS
project metrics (summarized in this document). We also identified various ways to identify
which OSS projects might be considered especially important. We then selected an
automated approach for gathering relevant metrics for a candidate set of important OSS
projects, created a prototype, and then refined the prototype after examining its early
results. During this process we participated in a 2015 London conference, where we shared
our early results and received helpful feedback (including references to better data sources).

We have focused on metrics that we can gather automatically that suggest less active
projects. We also estimated the program’s exposure to attack. We have developed a
scoring system to heuristically combine these automatically gathered metrics with our
estimate of attack exposure. These heuristics identified especially plausible candidates.
We then examined those candidates further and identified a subset that we believe are
especially concerning. The initial set of projects we examined was the set of software

https://snowdrift.coop/
https://fsfe.org/news/2014/news-20141219-01.en.html
https://www.google.com/about/appsecurity/patch-rewards/

1-3

packages2 installed by Debian base, to which we added packages that we or others
identified as potentially concerning; we could easily add more projects to consider in the
future.

This document uses the term “open source software” (OSS) for software that can be
studied, used for any purpose, modified, and redistributed (modified or not). Other terms
for such software including “Free software” (note the capital letter) and “Free/libre/open
source software” (FLOSS). See the Open Source Definition [OSI] and the Free Software
Definition [FSF] for details. In some cases the users of these different terms emphasize
different motivations and purposes, but since we are simply focused on the software
resulting from these efforts (instead of the motivations for development), we will ignore
those distinctions in this paper. We use “proprietary software” and “closed software” as
antonyms for OSS. Note that “in almost all cases, OSS meets the definition of ‘commercial
computer software’” under U.S. law [DoD2009] and that many OSS programs are co-
developed and supported by commercial companies.

Per agreement by both GTRI and the Linux Foundation, this document is released
under the Creative Commons Attribution 4.0 International (CC BY 4.0) license; the
supporting software (in Python) for capturing data is released under the Massachusetts
Institute of Technology (MIT) license. Thus, they are both “Free Cultural Works” as
defined by freedomdefined.org.

Chapter 2 lists past work, identifying relevant ways to measure OSS projects. Chapter
3 is a list of especially promising metrics, based on Chapter 2, for measuring OSS projects’
need for security investment. Chapter 4 identifies important OSS projects that are widely
used yet might need investment. We are developing software to capture and combine this
data into a separate spreadsheet for developing recommendations based on this document.

2 A software package is a unit of software that can be easily installed, updated, and uninstalled using a tool

called a “package manager.” Packages include dependency information, making it possible to
automatically install other packages a given package depends on. Common package formats include the
.deb format (used by Debian and Ubuntu) and the .rpm format (used by Red Hat Enterprise Linux and
Fedora).

2-1

2. Some Past and Current Efforts to Identify
Relevant OSS Project Metrics

This chapter describes a brief survey (literature search) of some past efforts to identify
relevant metrics of OSS projects. Our goal was to help identify metrics that might help
identify projects needing investment.

Measuring the security of software is a notoriously difficult and an essentially
unsolved problem. Ideally we would identify metrics that directly determine whether or
not an OSS project is producing secure software. However, since perfect metrics are not
available, we are instead interested in metrics that provide some evidence that a project’s
product is more or less likely to be secure. Some product measures, for example, may
suggest that the software has fewer security defects, or at least fewer defects in general.
Other metrics examine the OSS project (including its processes) and may suggest that an
OSS project is in trouble (e.g., it is relatively inactive, has few active contributors, or that
much development was done long ago (when fewer developers knew how to develop
secure software)). For example, it is often noted that before Heartbleed, OpenSSL had
relatively few developers and that many bug reports languished without response for long
periods of time. These indicators may suggest that a project needs investment to make its
software adequately secure.

Sources include surveys of OSS, existing evaluation processes for evaluating OSS,
surveys of quality or security metrics (e.g., [Shaikh2009]), and organizations that track
OSS metrics.

There was not time to do a complete survey, but we believe it is better to do a brief
survey (and document it) than ignore the large set of materials available. These materials
are probably not equally useful or credible; the goal was simply to survey various options
to reduce the risk of overlooking especially useful sources of information. Some odd or
improbable approaches might suggest a new and useful approach.

A. OSS Metrics Data Sources
It is much easier to get data from organizations that measure and curate it than to try

to extract it for each program separately. There is also the hope that such organizations
will try to select useful measures. Black Duck Open Hub (formerly Ohloh), in particular,
provides relatively current data for many programs in an easily obtained form.

2-2

1. Black Duck Open Hub
Black Duck Open Hub, formerly Ohloh, maintains an active set of metrics data for a

variety of OSS projects at https://www.openhub.net, along with a nice user interface (UI)
for viewing them.

Looking at a sample project entry, such as Firefox, helps give a sense of what is
recorded for a project. The entry for Firefox (https://www.openhub.net/p/firefox) in
December 2014 reports:

“In a Nutshell, Mozilla Firefox...

 has had 223,200 commits made by 3,187 contributors representing 12,554,058
lines of code.

 is mostly written in C++ with a low number of source code comments [as a
percentage compared to other programs in the same programming language].

 has a well established, mature codebase maintained by a very large development
team with increasing year-over-year (Y-O-Y) commits.

 took an estimated 3,920 years of effort (COCOMO model) starting with its first
commit in April, 2002, and ending with its most recent commit 26 days ago.”

It reports, for both 30-day and 12-month periods, the number of commits and the
number of contributors (including a separate number for new contributors). For the 12-
month period it also reports the change from the previous 12-month period. It includes
user ratings.

It also provides “quick reference” information (such as the organization name), some
of which can also indicate the health of a project:

 Link(s) for Homepage, Documentation, Download, Forums, Issue Trackers, and
Code: Where present, these are signs of an active project.

 Licenses: OSI- and FSF-approved licenses, especially if they are common, are a
good sign because unusual licenses can inhibit contribution.

This is a well-maintained site with programmatic interfaces that make it easy to access
the data they collect. The programmatic interfaces in some cases have only general
statements (e.g., “mature codebase” or “very large development team”) instead of specific
numbers, but these general statements can still be valuable.

A (gratis) key must be acquired for programmatic queries, and the website states that
queries are limited to 1,000 queries/day for each key (although this might not be enforced).
We cached results to avoid creating a nuisance. However, they also impose other
conditions, so we arranged a special exception with Black Duck for use in this project.

https://www.openhub.net/
https://www.openhub.net/p/firefox

2-3

2. OSS Repository Statistics (GitHub, SourceForge, git, etc.)
Many OSS projects are hosted on a relatively few number of hosting sites that can

also report a variety of statistics. If the repository (also called a “repo”) directly provides
that data, then the data is especially easy to get for such projects.

GitHub provides a variety of statistics and charts, particularly ones focused on project
activity. Selecting “pulse” on a project’s project site accesses reports for a selected time
period on the number of (direct) authors, commits, files, and number of additions and
deletions (counted by lines). You can also select “graphs” to see a variety of graphs. The
issue tracker can report the number of open and closed issues. More information is
available via https://developer.github.com/v3/repos/statistics/ for programs that need this
data.

SourceForge has switched to the OSS Allura software for repository management. Its
command “Tickets/View Stats” reports a variety of statistics, including number of tickets
(total, open, closed), number of new tickets over various periods (7 days, 14 days, 30 days),
number of comments on tickets, and number of new comments on tickets over a given
period. They also support a Representational State Transfer (REST) application
programming interface (API) for obtaining this information for programs (most of its
data is returned in JSON format); more information is at https://sourceforge.net/p/forge/d
ocumentation/Allura%20API/.

Distributed version control software, including git, includes a significant amount of
metadata about commits because the project history is downloaded. Tools such as gitstats
(http://gitstats.sourceforge.net/) can be used to quickly analyze this data and report
additional information. Gitstats, for example, will report:

 General statistics: total files, lines, commits, authors

 Activity: commits by hour of day, day of week, hour of week, month of year, year
and month, and year

 Authors: list of authors (name, commits (%), first commit date, last commit date,
age), author of month, author of year

 Files: file count by date, extensions

 Lines: Lines of Code by date.

3. Linux Distribution Repositories
Most Linux distributions (such as Debian, Ubuntu, Fedora, and Red Hat Enterprise

Linux) use package managers to install (and uninstall) packages. These packages include
metadata with important information, such as the software name, dependencies, and URL
of the originating project. Additionally, if a package is installed in a distribution’s base or
a widely used group/task, it is likely to be widely used. Some distributions (such as Fedora)

https://developer.github.com/v3/repos/statistics/
https://sourceforge.net/p/forge/documentation/Allura%20API/
https://sourceforge.net/p/forge/documentation/Allura%20API/
http://gitstats.sourceforge.net/

2-4

work to split up projects so that if software from another project is reused, the projects are
kept separate (so that security updates will properly update everything); this can help reveal
important projects that might otherwise be hidden inside larger projects.

4. FLOSSmole
FLOSSmole at http://flossmole.org/ performs “collaborative collection and analysis

of free/libre/open source project data” (per its front page). It is related to FLOSShub, a
“portal for free/libre and open source software (FLOSS) research resources and
discussion.”

It appears semi-active, with some datasets and various reports dated 2014. However,
some data is only available through 2013. One challenge for them is that repositories are
increasingly providing this information directly.

5. FLOSSMetrics Project
FLOSSMetrics stands for “Free/Libre Open Source Software Metrics” and is at

http://www.flossmetrics.org/.

The main objective of FLOSSMETRICS is, per its website, “to construct, publish and
analyse a large scale database with information and metrics about libre software
development coming from several thousands of software projects, using existing
methodologies, and tools already developed.”

It records various data for a variety of projects, for example:

 How many bugs are reported

 The average time it takes to fix a bug in a project’s lifetime.

There was a “final report” in 2010 for this European project, and no obvious activity
since then. Its database of projects at http://melquiades.flossmetrics.org/projects seems to
have had little activity since 2010. Thus, this is likely to be no longer active. Active similar
projects include FLOSSmole and Black Duck Open Hub.

6. FLOSS Community Metrics Meeting
The “FLOSS Community Metrics” meeting is a conference of those interested in

collecting and analyzing OSS metrics, sponsored by Bitergia. Its website is at
http://flosscommunitymetrics.org/; they had a conference in July 2014 and another is
expected in 2015. The 2014 conference had several presentations on measuring OSS
quality, which are summarized below (clicking on the “slides” link on its website provides
the slides described below).

Roberto Galoppini’s presentation, “You’re not entitled to your opinion about open
source software!” proposed the following simple-to-collect metrics:

http://flossmole.org/
http://www.flossmetrics.org/
http://melquiades.flossmetrics.org/projects
http://flosscommunitymetrics.org/

2-5

 Code Maturity [<1 year, 1-3 years, > 3 years]

 Code stability (unstable, stable but old, stable and maintained)

 Project popularity (unknown, small but growing, well known)

 Case study availability

 Books availability

 Community management style

 Team size [1-5 members, 5–10 members, > 10 members]—can be found by
analyzing commits

 Commercial support

 Training

 Documentation

 QA Process [n/a, existing but not supported by tools, supported by tools]

 QA tools [n/a, existing but not much used, very active use of tools]

 Bugs reactivity [poor, formalized but not reactive, formalized and reactive]

 Source [to be compiled, binaries available, virtual appliance available]

 Red Hat/Solaris/Windows

 Amount of comments [none, poorly commented, well commented]

 Computer language used [more than 3 languages used, 1 language primarily, 1
unique language]

 Code modularity [not modular, modular, available tools to create extensions]

 License

 Modifiability [no way to propose modification, tools to access and modify code
available but the process is not well defined, tools and procedures to propose
modifications available.]

 Roadmap [n/a, no detailed roadmap available, detailed roadmap available]

 Sponsor.

James Faulkner (Liferay community manager) presented “Metrics are fun, but which
ones really matter?”; this presentation lists various metrics and identified those he thought
were “more interesting”:

 Time of bug report to fix

 Time from forum question to answer

2-6

 Number of ignored contributions

 Time from contribution to insertion in codebase.

He also lists “basic” metrics such as number of contributions, number of
commits/lines, number of authors, number of bug reports, number of forum posts/answers,
number of downloads, number of ignored messages, and number of open tickets/code
reviews.

The conference proceedings also noted vizGrimoire, an OSS toolset and framework
to analyze and visualize data about software development, available at
http://vizgrimoire.bitergia.org/ promoted by Bitergia.

7. Rodriguez Survey of Software Data Repositories
Rodriguez et al’s “On Software Engineering Repositories and their Open Problems”

describes various sources of data about software [Rodriguez2012]. They identified the
following set:

 FLOSSMole: http://flossmole.org/

 FLOSSMetrics: http://flossmetrics.org/

 PROMISE (PRedictOr Models In Software Engineering): http://promisedata.org/

 Qualitas Corpus (QC): http://qualitascorpus.com/

 Sourcerer Project: http://sourcerer.ics.uci.edu/

 Ultimate Debian Database (UDD): http://udd.debian.org/

 Bug Prediction Dataset (BPD): http://bug.inf.usi.ch/

 International Software Benchmarking Standards Group (ISBSG):
http://www.isbsg.org/

 Eclipse Bug Data (EBD) http://www.st.cs.uni-saarland.de/softevo/bug-
data/eclipse/Software-artifact

 Infrastructure Repository (SIR): http://sir.unl.edu/

 Ohloh: http://www.ohloh.net/

 SourceForge Research Data Archive (SRDA): http://zerlot.cse.nd.edu/

 Helix Data Set: http://www.ict.swin.edu.au/research/projects/helix/

 Tukutuku: http://www.metriq.biz/tukutuku/.

http://vizgrimoire.bitergia.org/

2-7

8. PROMISE
PROMISE stands for “PRedictOr Models In Software Engineering”; its main

website is http://promisedata.org/ but its dataset is at http://openscience.us/repo/. This is a
collection of data “real world software engineering projects…whatever data is available.”
This is useful for tasks such as research into predictive metrics. However, it is a collection
of available real-world data, not primarily current real-world data, and by itself, it does not
identify metrics that are necessarily relevant (just what it can provide).

The PROMISE 2014 (“PROMISE ’14”) conference included various presentations,
including a keynote by Audris Mockus (at http://mockus.org/papers/promise1.pdf) on the
problems of acquiring data and prediction.

B. Methods for Evaluating OSS Projects
A number of complete processes are specifically for evaluating OSS (as software, a

project, or both)—typically for a particular purpose, and not their security per se, but some
of their approaches may also be useful for our purposes.

Wikipedia includes a comparison of a few of these processes for evaluating OSS.3

For our purposes, a key attribute is whether or not the OSS evaluation process
supports comparison between different OSS programs. Since there are limits to how much
can be invested, it is important to be able to determine which projects most need
investment; this means that there must be a way to compare the OSS projects. The Open
Source Maturity Model (OSMM) from Capgemini and Qualification and Selection of Open
Source software (QSOS), for example, do support comparison.

The Open Business Readiness Rating (OpenBRR) project, announced in 2005, did
not create a community. Its website http://www.openbrr.org/ claims to be preparing an
update; since that has not yet occurred, we do not consider it here.

Some documents and books, such as [Fogel2013], provide guidance on how to
develop open source software. These could be used to evaluate OSS projects by
determining how well the guidance is followed. We did not pursue this due to lack of time.

1. Stol and Babar
There are so many processes for evaluating OSS that Stol and Babar have published

a framework comparing them. http://staff.lero.ie/stol/files/2011/12/OSS2010.pdf. One
complication is that several methods are all named “Open Source Maturity Model.”

3 http://en.wikipedia.org/w/index.php?title=Open-

source_software_assessment_methodologies&oldid=579922098

http://promisedata.org/
http://openscience.us/repo/
http://mockus.org/papers/promise1.pdf
http://www.openbrr.org/
http://staff.lero.ie/stol/files/2011/12/OSS2010.pdf
http://en.wikipedia.org/w/index.php?title=Open-source_software_assessment_methodologies&oldid=579922098
http://en.wikipedia.org/w/index.php?title=Open-source_software_assessment_methodologies&oldid=579922098

2-8

2. QualiPSo OpenSource Maturity Model (OMM)
The QualiPSo OpenSource Maturity Model (OMM) is a methodology for assessing

Free/Libre Open Source Software (FLOSS) and more specifically the FLOSS development
process. This methodology was released in 2008 and is released under the Creative
Commons license.

The summary, at http://en.wikipedia.org/wiki/OpenSource_Maturity_Model, defines
three maturity levels: basic, intermediate, and advanced.

The basic-level requirements are:

 PDOC – Product Documentation

 STD – Use of Established and Widespread Standards

 QTP – Quality of Test Plan

 LCS – Licenses

 ENV – Technical Environment

 DFCT – Number of Commits and Bug Reports

 MST – Maintainability and Stability

 CM – Configuration Management

 PP1 – Project Planning Part 1

 REQM – Requirements Management

 RDMP1 – Availability and Use of a (product) roadmap.

The intermediate-level requirements are:

 RDMP2 – Availability and Use of a (product) roadmap

 STK – Relationship between Stakeholders

 PP2 – Project Planning Part 2

 PMC – Project Monitoring and Control

 TST1 – Test Part 1

 DSN1 – Design Part 1

 PPQA – Process and Product Quality Assurance.

The advanced-level requirements are:

 PI – Product Integration

 RSKM – Risk Management

 TST2 – Test Part 2

http://en.wikipedia.org/wiki/OpenSource_Maturity_Model

2-9

 DSN2 – Design 2

 RASM – Results of third party assessment

 REP – Reputation

 CONT – Contribution to FLOSS Product from SW Companies.

Unfortunately, we have had trouble accessing http://www.qualipso.org/ for more
information.

3. QSOS
Qualification and Selection of Open Source Software (QSOS) dates from 2004;

QSOS 2.0 was released June 2013. It is a “free project aiming to mutualize and capitalize
technological watch on open source components and projects”; its main page is
http://www.qsos.org. The method is distributed under the GNU Free Documentation
License. Its goal is to provide a “formal process to evaluate, compare and select open
source solutions.”

QSOS is a Drakkr project (http://www.drakkr.org); others include FLOSC
(Free/Libre Open Source Complexity), a project providing method and tools to evaluate
the intrinsic complexity of open source components. Some information is available on
GitHub https://github.com/drakkr/drakkr.

Unfortunately the site http://master.o3s.qsos.org/ was down when we started this
work, and when it finally resurfaced it was in French, so we have not delved into it further
at this time.

4. SQO-OSS / Spinellis, et al
“Evaluating the Quality of Open Source Software” [Spinellis2009] presents

“motivating examples, tools, and techniques that can be used to evaluate the quality of open
source… software.” It includes a “technical and research overview of [Software Quality
Observatory for Open Source Software (SQO-OSS)], a cooperative research effort aiming
to establish a software quality observatory for open source software.”

The paper notes the following metrics:

 Use of various scanning tools including PMD (Java scanner), FindBugs (for
Java), Checkstyle (Java style checker), Sonar, ESX (for C++), and Scan by
Coverity

 Use of metric suites such as Ohloh and Sourcekibitzer (the latter is for Java)

 Adherence to claimed coding style as a proxy for quality (They formatted
FreeBSD code using indent and computed the number of lines that changed.)

http://www.qualipso.org/
http://www.qsos.org/
http://www.drakkr.org/
https://github.com/drakkr/drakkr
http://master.o3s.qsos.org/

2-10

 Mean developer engagement (MDE), the average percentage of active developers
who work on a project each week (Developers who stay inactive are eventually
considered no longer part of the total.)

 Cross-language metric tool, which collects metrics such as number of public
attributes, number of children, etc.

 Metric for developer contributions. This adds measures for not just lines of code,
but also for bug closing, documentation files, updating a wiki page, etc. Some
measures are difficult to measure using only automated tools (e.g., “participate in
a flamewar”).

It notes the SQO-OSS quality model shown in Figure 1.

Figure 1. The SQO-OSS Quality Model

And, it uses the metrics shown in Table 1 to estimate them.

Table 1. Metrics used by the SQO-OSS Quality Mode

Attribute Metric
Analyzability Cyclomatic number

 Number of statements

 Comments frequency

 Average size of statements

 Weighted methods per class (WMC)

2-11

Attribute Metric

 Number of base classes

 Class comments frequency

Changeability Average size of statements

 Vocabulary frequency

 Number of unconditional jumps

 Number of nested levels

 Coupling between objects (CBO)

 Lack of cohesion (LCOM)

 Depth of inheritance tree (DIT)

Stability Number of unconditional jumps

 Number of entry nodes

 Number of exit nodes

 Directly called components

 Number of children (NOC)

 Coupling between objects (CBO)

 Depth of inheritance tree (DIT)

Testability Number of exits of conditional structs

 Cyclomatic number

 Number of nested levels

 Number of unconditional jumps

 Response for a class (RFC)

 Average cyclomatic complexity per method

 Number of children (NOC)

Maturity Number of open critical bugs in the last 6 months

 Number of open bugs in the last 6 months

Effectiveness Number of critical bugs fixed in the last 6 months

 Number of bugs fixed in the last 6 months

Security Null dereferences

 Undefined values

Mailing list Number of unique subscribers

 Number of messages in user/support list per month

 Number of messages in developers list per month

 Average thread depth

Documentation Available documentation documents

 Update frequency

Developer base Rate of developer intake

2-12

Attribute Metric

 Rate of developer turnover

 Growth in active developers

 Quality of individual developers

The authors rank various projects by comparing values to ideal values, (e.g., the ideal
candidate for the Excellent Analyzability quality attribute should have a McCabe
Cyclomatic number equal to 4, an average function’s number of statements equal to 10, a
comments frequency equal to 0.5, and average “size of statements” equal to 2).

5. Ghapanchi’s Taxonomy for Measuring OSS Project Success
Ghapanchi et al’s “A taxonomy for measuring the success of open source software

projects” [Ghapanchi2011] used a literature survey focused on measuring OSS project
success. After identifying 154 publications in their initial set, they narrowed it down to 45
publications and categorized them into meaningful clusters.

They identified six broad areas that can lead to success:

1. Product quality. Different researchers have proposed many different measures
for product quality (leading to product success). They report that
[Crowston2003] is among the most cited; this is a content analysis of an online
focus group that reported seven main themes for OSS success: user, product,
process, developers, use, recognition, and influence.

2. Project performance: These combine efficiency and effectiveness.

3. Project effectiveness: These attempt to measure “getting the right things done.”

4. Project efficiency: These determine the extent to which a project uses its
resources to generate outcomes, typically using Data Envelopment Analysis
(DEA). The goal is to determine Output/Input. Examples of input/output pairs
are {number of developers, bug submitters}/{KiB per download, number of
downloads, project rank}; {number of downloads, number of years}/{product
size in bytes, number of code lines}; {product size (bytes), development status}/
{number of developers, product age}.

5. Project activity: This is “frequently regarded as one of the pillars of OSS project
success.” Examples include how frequently defects are fixed, new releases of
the software are posted, or support requests are answered, often over a period of
time.

6. User interest: The ability of an OSS project to attract community members to
adopt the software (its popularity).

2-13

They note that “success” can be measured for both the product and the project, so
they then map these areas to these kinds of success. User interest affects both product
success and project success. They map product quality to primarily product success, and
map project activity, project efficiency, and project effectiveness to project success.
Project effectiveness and project efficiency themselves affect project performance.

Based on this survey, they provide a “practical list of OSS success metrics,” see Table
2.

Table 2. Practical List of OSS Metrics

ASPECT USEFUL MEASURES ACCORDING TO [GHAPANCHI2011]
User interest Traffic on the project Web site, downloads of the code, number of developers

who have joined the project team, and the number of people who have
registered on the project mailing list to receive announcements such as new
release regarding a project

Project activity The number of software releases, number of patches, number of source code
lines, number of code commits

Project
effectiveness

The percentage of task completion (bug fix, feature request, and support
request), number of developers the project has attracted, number of work
weeks spent on the project

Project
efficiency

Using a DEA model with one or some input indicators (e.g., number of
developers, number of bug submitters, number of years, product size (bytes),
development status) and one or some output indicators (e.g., kilobytes per
download, number of download, project rank, product size in bytes, number of
code lines)

Product
quality

Code quality, documentation quality, understandability, consistency,
maintainability, program efficiency, testability, completeness, conciseness,
usability, portability, functionality, reliability, structuredness, meeting the
requirements, ease of use, user friendliness

Source: Ghapanchi 2011

They make the interesting observation that the kinds of data available for OSS are

typically different than for proprietary software. “Traditional [closed source] software
development success models frequently focus on success indicators such as system quality,
use, user satisfaction and organizational impacts [that are] more related to the ‘use
environment’ of the software, while studies on OSS success tend to look more at the
‘development environment’… [in traditional models] ‘development environment is not
publicly available but the ‘use environment is less difficult to study, while in OSS the
‘development environment’ is publicly visible but the ‘use environment’ is hard to study
or even to identify.”

One challenge for us is that we are interested primarily in projects that are successful
in terms of widespread adoption and satisfaction of functional requirements, yet have

2-14

serious vulnerabilities. These measures do not necessarily directly relate to our question,
but they can perhaps help suggest projects that are not adequately active.

6. Wheeler OSS Evaluation Model
David A. Wheeler (also an author of this paper) previously described a general

process for evaluating open source software in “How to Evaluate Open Source
Software/Free Software (OSS/FS) Programs.” [Wheeler2011e].

This process is based on four steps: identify candidates, read existing reviews,
compare the leading programs’ basic attributes to your needs, and analyze the top
candidates in more depth. This set of identify, read reviews, compare, and analyze can be
abbreviated as “IRCA.” Important attributes to consider include functionality, cost, market
share, support, maintenance, reliability, performance, scaleability, useability, security,
flexibility/customizability, interoperability, and legal/license issues.

The section on security mentions the following metrics:

 Coverity scan results, including the rung achieved, number of defects, and defect
density

 Fortify scan results (similar)

 Common criteria evaluation (These typically evaluate entire systems (e.g., entire
operating systems), instead of focusing on specific projects that support a
particular portion of an operating system, and thus do not provide the kinds of
measures desired for this task.)

 Reports of (many) vulnerabilities that are “unforgiveable” (MITRE identifies
criteria for identifying vulnerabilities that are especially easy to find, and thus
“unforgiveable” [Christey2007].)

 Whether or not at least one external organization is known to have reviewed or
be reviewing the software. However, some organizations that review software
(such as OpenBSD) may choose to make changes to only their version and not
necessarily report or try to get their changes back into the upstream project. In
these cases, the version they review may not be the version all other systems use.

It also notes that experts can be hired to determine whether the developers follow
good security practices when developing the software. Signs that good security practices
are being followed could include the following:

 The program’s design minimizes privileges (e.g., only small portions of the
program have special privileges or the program has special privileges only at
certain times).

 The developers strive for simplicity (simpler designs are often more secure).

2-15

 The program checks inputs with rigorous whitelists (a “whitelist” defines what is
legal input; all other input is rejected).

 Source code scanning tools report few problems when applied to the program.

The section on reliability notes the following metrics:

 Self-reported status (e.g., “mature”)

 Presence of an automated (regression) test suite.

7. Doomed to FAIL Index
Tom “spot” Callaway, Fedora Engineering Manager at Red Hat, posted “How to tell

if a FLOSS project is doomed to FAIL (or at least, held back...)” in 2009.4 The handbook
The Open Source Way includes a chapter with an updated version of this index and is
available online [Callaway]. This index is intended to be a quick measure of how well a
FLOSS project follows common practices, particularly those that impede packaging or co-
development by others. It measures “FAIL” points, so low scores are better; 0 is perfect,
5 through 25 is “You're probably doing okay, but you could be better,” and above 25 is an
indicator of serious problems.

The measures are grouped into categories: size, source (version) control, building
from source, bundling, libraries, system install, code oddities, communication, releases,
history, licensing, and documentation. Examples of causes for fail points are:

 Source Control: There is no publicly available source control (e.g., cvs, svn, bzr,
git) [+10 points of FAIL].

 Building from source: There is no documentation on how to build from source
[+20 points of FAIL].

 Communication: Your project does not have a mailing list [+10 points of FAIL],
or your project does not have a website [+50 points of FAIL].

 Licensing: Your code does not have per-file licensing [+10 points of FAIL].

Obviously, a high score does not always doom a project to fail, nor does a low score
guarantee success. However, like any metric, the score can provide a simple metric to
point out potential issues in an OSS project. It is intentionally designed to produce a
numerical score, making it relatively easy to report.

4 http://spot.livejournal.com/308370.html

2-16

8. Internet Success
The book Internet Success by Schweik and English reports a detailed quantitative

analysis to determine “what factors lead some OSS commons to success and others to
abandonment” [Schweik2012].

Schweik and English examined over 100,000 projects on SourceForge,5 using data
from SourceForge and developer surveys, and using quantitative analysis instead of
guesswork. They use a very simple project lifecycle model—projects begin in initiation,
and once the project has made its first software release, it switches to growth. Based on
this, they classified OSS projects into six “success and abandonment” classes as follows
(see their chapter 7 table 7.1):

1. Success, initiation (SI). The developers have produced a first release. Its
operational definition is having at least one release (all projects in the growth
stage by definition meet the SI criteria, but see below).

2. Abandonment, initiation (AI). The developers have not produced a first release
and the project is abandoned. Its operational definition is having zero releases
and having ≥ 1 year since project registration.

3. Success, growth (SG). The project has achieved 3 meaningful releases of the
software, and the software is deemed useful for at least a few users. Its
operational definition is ≥3 releases and ≥ 6 months between releases and >10
downloads.

4. Abandonment, growth (AG). The project appears to have been abandoned
before producing 3 releases of a useful product, or has produced 3 or more
releases in less than 6 months and is abandoned. Its operational definition is 1
or 2 releases and ≥1 year since the last release, or ≥3 releases and <11
downloads during a 6+ month time period since the date of first release, or ≥3
releases in less than 6 months and ≥1 year since the last release.

5. Indeterminate initiation (II). The project has yet to reveal a first public release
but shows significant developer activity. Its operational definition is 0 releases
and <1 year since project registration.

6. Indeterminate growth (IG). The project has not yet produced 3 releases but
shows development activity, or has produced 3 releases or more in less than 6
months and shows development activity. Its operational definition is 1 or 2
releases and <1 year since the last release, or 3 releases and <6 months between
releases and <1 year since the last release.

5 http://sourceforge.net/

2-17

Their operational definition of success initiation (SI) is oversimplified but easy to
understand: an SI project has at least one release. Note that their operational definition for
a success growth (SG) project is very generous: at least 3 releases, at least 6 months
between releases, and has more than 10 downloads.

One of the key results is that during initiation (before first release), the following are
the most important issues, in order of importance, for success in an OSS project according
to this quantitative data:

1. “Put in the hours. Work hard toward creating your first release.” The details in
Chapter 11 tell the story: If the leader put in more than 1.5 hours per week (on
average), the project was successful 73% of the time; if the leader did not, the
project was abandoned 65% of the time. They are not saying that leaders should
put in only 2 hours a week; instead, the point is that the leader must consistently
put in time for the project to get to its first release.

2. “Practice leadership by administering your project well, and thinking through
and articulating your vision as well as goals for the project. Demonstrate your
leadership through hard work….”

3. “Establish a high-quality Web site to showcase and promote your project.”

4. “Create good documentation for your (potential) user and developer
community.”

5. “Advertise and market your project, and communicate your plans and goals with
the hope of getting help from others.”

6. “Realize that successful projects are found in both GNU General Public License
(GPL)-based and [non-GPL] situations.”

7. “Consider, at the project’s outset, creating software that has the potential to be
useful to a substantial number of users.” Remarkably, the minimum number of
users is surprisingly small; they estimate that successful growth stage projects
typically have at least 200 users. In general, the more potential users, the better.

Some items that others have claimed are important, such as keeping complexity low,
were not really supported as important. In fact, successful projects tended to have a little
more complexity. We suspect both successful and abandoned projects often strive to
reduce complexity—so it not really something that distinguishes them—and that
sometimes a project that focuses on user needs has to have more complexity than one that
does not, simply because user needs can necessitate more complexity.

Additionally, they include guidance for growth projects, which may suggest some
metrics. Schweik and English report that, in order of importance, they are:

2-18

1. “Your goal should be to create a virtuous circle where others help to improve the
software, thereby attracting more users and other developers, which in turn leads
to more improvements in the software…. Do this the same way it is done in
initiation: spending time, maintain goals and plans, communicate the plans, and
maintain a high-quality project web site.” The user community should actively
interact with the development team.

We note that possible related metrics include an actively maintained website
(e.g., date of last page change on website), messages/month (e.g., email, bug
tracker, etc.), number of commits/month, and number of committers.

2. “Advertize and market your project.” In particular, successful growth projects
are frequently projects that have added at least one new developer in the growth
stage.

We note that possible related metrics include number of developers that have
been added (post initial release or within a year).

3. “Have some small tasks available for contributors with limited time.”

We note that a possible metric is a posted list of small tasks for new/limited
contributors.

4. “Welcome competition.” The authors were surprised, but noted that
“competition seems to favor success.” We do not find this surprising.
Competition often encourages others to do better; we have an entire economic
system based on that premise.

5. “Consider accepting offers of financing or paid developers (they can greatly
increase success rates).” This one, in particular, should surprise no one — if
you want to increase success, pay someone to do it.

6. “Keep institutions (rules and project governance) as lean and informal as
possible, but do not be afraid to move toward more formalization if it appears
necessary.”

They also have tips on how potential OSS users (consumers) can choose an OSS that
is more likely to endure. They determined that successful OSS projects have characteristics
such as more than 1,000 downloads, users participating in bug tracker and email lists,
goals/plans listed, a development team that responds quickly to questions, a good web site,
good user documentation, and good developer documentation. A larger development team
is a good sign, too.

2-19

C. Specific Potentially Useful Security Metrics
Many more security-focused metrics have been proposed for evaluating software.

1. In-Depth Static Analysis Security Tools (e.g., Coverity Scan)
Some tools are specifically designed to look for potential security vulnerabilities and

report them. Their sheer counts, perhaps limited to most severe and/or computed as
densities, might give an indication of the security (or lack thereof) of software.

Coverity sells a proprietary tool that looks for security vulnerabilities. Coverity Scan,
at https://scan.coverity.com/, is “a service by which Coverity provides the results of
analysis on open source coding projects to open source code developers that have registered
their products with Coverity Scan.” It supports C, C++, Java, and C#. An OSS project
developer must specifically register their project to participate; results are then sent to the
project developers.

The Coverity Scan project was initially launched under a contract with the
Department of Homeland Security (DHS) to harden open source software that provides
critical infrastructure for the Internet. Coverity Scan began in collaboration with Stanford
University on March 6, 2006. During the first year of operation, over 6,000 software
defects were fixed across 50 C and C++ projects by open source developers using the
analysis results from the Coverity Scan service. DHS support ended in 2009, but the
service has continued.

A list of projects covered by Coverity scan is at https://scan.coverity.com/projects;
over 3,200 participate. Even though the exact results are not posted publicly, the fact that
a project is on the list maintained by Coverity is public, and that may by itself indicate that
a project is interested in detecting and fixing vulnerabilities. A few projects have achieved
“rung 2” which is a higher achievement.

A similar argument could apply to other tool makers who make tools that perform in-
depth static analysis of software and provide scans of OSS projects. For example,
HP/Fortify will provide static analysis tools for examining open source software, in
partnership with Sonatype; details are here: https://www.hpfod.com/open-source-review-
project.

There are some OSS tools that look for vulnerabilities as well. In particular, the splint
program was designed to do this for C, however, note that splint has not been maintained
recently. The clang static analyzer does a deeper analysis for buffer overflows and
allocation issues in C, C++, and Objective-C programs, but it is not specifically designed
for finding vulnerabilities so it lacks many rules for finding them.

Note that these tools use heuristics to determine what a vulnerability is, thus, different
tools report different values.

https://scan.coverity.com/
https://scan.coverity.com/projects
https://www.hpfod.com/open-source-review-project
https://www.hpfod.com/open-source-review-project

2-20

2. Lexically Scanning Static Analysis Security Tools (e.g., flawfinder and RATS)
A variant is to use lexically scanning tools to report constructs (“hits”) in software

that are of special concern. Again, counts or densities could be reported. OSS tools such
as flawfinder and RATS can do this. (Note: David A. Wheeler is the author of flawfinder.)

IDA previously did in-house work measuring hit density, where hits are reports from
flawfinder or another lexical tool and density is found by dividing by physical source lines
of code. These tools simply report riskier constructs, not really vulnerabilities, but the
theory is that if developers often use riskier constructs, they are more likely to produce
insecure results. A comparison we did years ago suggests this might be a useful measure.
In particular, we found that (at the time) the hit density of the mail transfer agent (MTA)
sendmail was significantly larger than that of postfix, and this was consistent with expert
opinion of their security at the time.

3. Wikipedia Article on OSS Security
Wikipedia’s article “Open-source software security” has various comments about

OSS security, including references to metrics and models. The article mentions the
following metrics6:

 Number of days between vulnerabilities. “It is argued that a system is most
vulnerable after a potential vulnerability is discovered, but before a patch is
created. By measuring the number of days between the vulnerability [being
found] and when the vulnerability is fixed, a basis can be determined on the
security of the system. There are a few caveats to such an approach: not every
vulnerability is equally bad, and fixing a lot of bugs quickly might not be better
than only finding a few and taking a little bit longer to fix them, taking into
account the operating system, or the effectiveness of the fix.”

 Morningstar model. “By comparing a large variety of open source and closed
source projects a star system could be used to analyze the security of the project
similar to how Morningstar, Inc. rates mutual funds. With a large enough data set,
statistics could be used to measure the overall effectiveness of one group over the
other. An example of such as system is as follows:[7]

– 1 Star: Many security vulnerabilities

– 2 Stars: Reliability issues

– 3 Stars: Follows best security practices

6 http://en.wikipedia.org/w/index.php?title=Open-source_software_security&oldid=627231105

(permanent link)

http://en.wikipedia.org/w/index.php?title=Open-source_software_security&oldid=627231105

2-21

– 4 Stars: Documented secure development process

– 5 Stars: Passed independent security review”

 Coverity (see discussion on Coverity).

4. Common Vulnerabilities and Exposures (CVE) Count
MITRE maintains Common Vulnerabilities and Exposures (CVE), a dictionary of

publicly known information security vulnerabilities and exposures. MITRE and the
National Institute of Standards and Technology (NIST) National Vulnerability Database
(NVD)7 maintain information about publicly known vulnerabilities in released software,
including OSS. Not all publicly known vulnerabilities are assigned CVEs, but this is
nevertheless a widely used starting point for information about vulnerabilities.

Some obvious metrics suggest themselves:

 Number of CVEs assigned to each particular OSS project, perhaps over some
fixed period (say 3 years).

 Number of CVEs with high severity (this is a subset of the whole). The NVD
reports Common Vulnerability Scoring System (CVSS) scores for each CVE.

 “Density” version (e.g., by dividing by thousands of lines of code). Since larger
projects will tend to have more vulnerabilities, a “density” version can
compensate for this.

 Average (or median) number of days between CVE reports.

These have a number of well-understood drawbacks. What we want to know is the
number of vulnerabilities remaining; however, CVEs report on the number found. The
current CVE count might be low because no one is looking, or high because substantial
effort has been spent to find and report vulnerabilities after it has been released. Also, if
projects undergo substantial changes, the CVE counts from older versions may or may not
be relevant. Still, if a project has a large number of CVEs, it might indicate that the project
has not been sufficiently active in countering vulnerabilities.

5. Schryen and Kadura
Guido Schryen and Rouven Kadura in 2009 wrote “Open source vs. closed source

software: towards measuring security” [Schryen2009]. In the process they provided
summaries of previous work to measure security of OSS in section 3, “Review:
Quantitative Models” and provide a metric for measuring software (in their case, to
measure responsiveness to vulnerability reports).

7 https://nvd.nist.gov/

https://nvd.nist.gov/

2-22

They discuss various models based on security breaches (vulnerability reports). They
include various time-based models, although they also note that these become
inappropriate when the total effort spent on detecting vulnerabilities is not linear in time.
They also review efforts based on software reliability models using exponential equations.
Sadly, Rescorla examined empirical analysis of vulnerabilities of both open and closed
source operating systems and found no strong statistical evidence that the “G-O” model (a
specific form of this approach) approximated the number of detected vulnerabilities over
time.

They also note problems in obvious metrics. In section 4, “New Security Metrics,”
they note that a single vulnerability that is easy to discover, easy to exploit, and causes
severe damage is far worse than 10 vulnerabilities that are extremely hard to discover, can
only rarely be exploited, and do not cause significant harm. They note various problems
with CVSS, and argue that it would be better to separately categorize and measure a few
severity classes (such as high, medium, and low).

Thus, they argue that it is “less reasonable to measure the number of intensity of
patches, because this provides no information on the number of covered vulnerabilities or
on the ages of covered vulnerabilities. [Instead] compute (statistical data on) the reaction
time between detection and elimination of a vulnerability, weighted by the level of severity
of the vulnerability. It might also seem reasonable to record how many of the detected
vulnerabilities are unpatched.”

They propose a “patch index” metric. This is measured at some time tn, producing a
metric termed PI(tn), as:

1

Where i is the index of an event that a vulnerability is announced or patched, ti is the
corresponding point in time, pvti is the (possibly severity-weighted) number of detected
and patched vulnerabilities in the time window [0;ti], and uvti is the corresponding (possibly
severity-weighted) number of unpatched vulnerabilities. By this measure, PI=0 means that
“for all announced vulnerabilities, a patch is already provided at the day of the
announcement. In contrast, PI=1 would imply that none of the announced vulnerabilities
has been patched.” They show graphs of this metric over time to determine trends.

Fundamentally this metric measures response to vulnerability reports, not the number
or severity of vulnerabilities. Their paper shows curves over time of both Microsoft Office
and OpenOffice that emphasize this. In their study, Microsoft Office had about seven times
more public CVE vulnerability reports than OpenOffice, but the leveled-off patch index is
somewhat similar. They note that “probably more vulnerabilities in OpenOffice than in
MS Office might have [existed], been detected, potentially discussed in forums, and finally

2-23

removed, before they could become a CVE vulnerability.” On average Microsoft Office
had 27% of all announced vulnerabilities unpatched compared to OpenOffice.org’s 18%,
while vulnerabilities were patched more rapidly in Microsoft Office (median 67.5 days,
mean 87 days) than in OpenOffice.org (median 85 days, mean 87.4 days). For more
information, see their paper.

Note that [Schryen2011] is also by Guido Schryen.

6. “Look at the Numbers” – Wheeler
David A. Wheeler (the author) has, for many years, collected quantitative metrics

about OSS in the paper “Why Open Source Software/Free Software (OSS/FS, FLOSS, or
FOSS)? Look at the Numbers!” [Wheeler2014n]. The referenced papers are also available
(from the same URL) as a Google spreadsheet that lists a number of metrics involving
security or quality that people have examined.

The security-related measures that might be relevant for our purposes included:

 [Schrye2011] examines data such as the CVEs in the National Vulnerability
Database and uses:

– Mean time between vulnerability disclosures

– Medians/standard deviations of the severity values of published
vulnerabilities as measured by CVSS

– Percentage/number of unpatched vulnerabilities after 4 weeks, and their
severity. The author found 17.6% (30.4%) of the published open (closed)
source software vulnerabilities (in terms of the median) are still unpatched,
although this is likely a significant overstatement since if the authors could
not find evidence of patching, the vulnerabilities were counted as unpatched.

 Counts of CVEs or counts of critically-important CVEs (e.g., a meta-analysis by
Bugtraq)—especially if compared to software with similar functionality.

 Percentage of CVEs that are critically important. For example, Nicholas
Petreley’s paper “Security Report: Windows vs Linux” [Petreley2004] focuses on
criticality percentages. Criticality is heavily influenced by the effectiveness of
various countermeasures, but countermeasures matter.

 Vulnerability response time: Average/median time to respond to vulnerability
report and produce a fixed version (e.g., see [Krebs2006a] [Krebs2006b]
[Krebs2006c]). Interestingly, one study found that (on average) open source
suppliers patch more quickly than closed source ones [Arora2006].

Reliability-related metrics that might be relevant include:

2-24

 Failure rates as measured by fuzz testing (note that there are varying approaches
to fuzz testing).

 Reliability or average time up under stress testing.

 Total time off-line over a given year (this is hard to apply to a large set of small
projects, however).

 Number or density of defects found by static analysis tools. Density of defects is
the number of defects divided by the source lines of code (SLOC). Most tools
will miss defects (false negatives) and falsely report issues as defects (false
positives), but this is still an indicator of relative quality, since if developers are
consistently using dangerous approaches, they are more likely to eventually make
a security-relevant mistake. If the tool focuses on security vulnerabilities, it
should be listed in the security-specific metrics. These include reports by
Coverity, Reasoning, and others.

 “Maintainability index” [Samoladas2004], published in Communications of the
ACM, examined almost 6 million lines of code using this metric. This metric was
at one point chosen by the Software Engineering Institute (SEI) as the “most
suitable tool for measuring the maintainability of systems with high-quality
requirements.” Its purpose is to measure the “size” (by various measures) of
individual modules, under the theory that if modules are too big the system is hard
to manage. However, this value is very much a heuristic built on other metrics; it
is calculated as 171–5.2ln(avgV) – 0.23avgV(g) – 16.2ln(avgLOC) +
50sin(sqrt(2.4avgPerCM)), where avgV is “average Halstead Volume per
module” (a size measure based on the number of distinct operators and operands),
avgV(g) is average cyclomatic complexity (a measure of structural complexity),
avgLOC is average physical lines of code (excluding blank and comment lines),
and avgPerCM is the percentage of lines of comments with respect to the lines of
code. See the paper for more. Note that the maintainability index is also
mentioned by [Spinellis2009].

 Harvard Business School’s “Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and Proprietary Code” by Alan
MacCormack, John Rusnak, and Carliss Baldwin (Working Paper Number 05-
016) reported using the following metrics:

– Change cost. This measures the percentage of elements affected, on
average, when a change is made to one element in the system. A smaller
value is better, since as this value gets larger, it’s becomes increasingly
likely that a change made will impact a larger number of other components
and have unintended consequences (e.g., a value of 17.35% means that if a

2-25

given file is changed, on average, 17.35% of other files in the system will be
changed, suggesting that they depend (directly or indirectly) on that file).

– “Coordination cost.” This is an estimated cost of communicating
information between agents developing each cluster. However, this
measure is strongly dependent on the size of the system, so this is not useful
for comparing projects of different sizes (and thus is not further considered
here).

7. Presence of Security Test Suite
Heartbleed [Wheeler2014h], Apple’s “goto fail” [Wheeler2014g], and many other

vulnerabilities could have been detected ahead of time through simple negative testing.
That is, identify what should not be permitted, and include such tests in the regression test
suite (e.g., for every field of a message, include a test with an invalid value (e.g., too
high/too low for integers, incorrect length in headers, and so on). Such a test suite should
be developed rigorously to cover each field or data type. The presence of such a test suite
should increase the confidence that the software resists attack; its absence should raise
questions.

8. Presence/Absence of Past Security Reviews
Security reviews are no guarantee of finding all vulnerabilities. Still, if there is no

evidence of a past in-depth security review (or any security review) that overall increases
the risk of security vulnerabilities. Lack of security testing is also an issue.

It is also important to note the limits of any particular test or review. For example,
Federal Information Processing Standard (FIPS) 140-2 checks “cryptographic modules,”
in particular to ensure that the cryptographic modules’ cryptographic algorithms produce
correct outputs given certain inputs. However, FIPS 140-2 explicitly does not perform any
tests or examinations of cryptographic protocols such as SSL or TLS [Wheeler2014h].

D. Specific Potentially Useful General Metrics
Here are other metrics that are related (e.g., they attempt to predict where defects are

especially likely). The theory is that if software has many defects, or other problems, it is
more likely to have security problems. These are imperfect predictors, since the only way
to know whether something is a defect (or a security defect) is to first compare the software
to a specification of what it should do. However, if some code is unusually complex, it
may be more likely to contain a defect. The evidence that security and quality are
interrelated is somewhat sparse. However, it is intuitively sensible, and [Woody2014]
provides some evidence for it.

2-26

This is a huge field, and not as related to our problem, so this subsection discusses an
even smaller part of the field.

1. Software Quality Metric Measurement Tools
Many tools, both OSS and proprietary, can measure various static attributes that may

suggest something is more or less likely to contain defects. There are many metrics (such
as cyclomatic complexity as described below), and many ways to combine various lower-
level metrics into higher-level metrics that might have some meaning.

Examples of proprietary software include that of CAST Software,8 Semantic Design,
and McCabe IQ.9 OSS tools include CCCC10 and Eclipse Metrics plugin.

One challenge is that different tools deliver differing results. Lincke et al’s
“Comparing Software Metrics Tools”11 compares several tools and shows that different
tools often report different values for the “same” measurement. This might seem odd since
some of these metrics have definitions published in academic journals, but in practice many
of these definitions have ambiguities that result in different values.

2. Compiler Warning Flags and Style Checkers
An alternative approach is to use compiler flags and style checkers to maximally

complain about potential issues. Both clang and gcc support many warning flags, for
example. These can, again, be divided by KSLOC (Thousands of Source Lines of Code)
to give density figures.

3. Senior Defect Prediction Measures – McCabe (Cyclomatic complexity) and
Halstead
The McCabe (cyclomatric complexity) and Halstead measures were defined in the

1970s for predicting defects in functions/methods (at the time called “modules”) through
static analysis of code. They are widely used as static measures, in part because they are
well known.

McCabe argued that code with complicated pathways are more error prone. His
metrics focus on this. Especially known is Cyclomatic complexity, which measures the
number of “linearly independent paths”; many consider a number higher than 10

8 http://www.castsoftware.com/
9 http://www.mccabe.com/iq_developers.htm
10 C and C++ Code Counter, http://cccc.sourceforge.net/
11 http://arisa.se/files/LLL-08.pdf

http://www.castsoftware.com/
http://www.mccabe.com/iq_developers.htm
http://cccc.sourceforge.net/
http://arisa.se/files/LLL-08.pdf

2-27

concerning. These do measure, in a sense, how much effort is needed to do full coverage
in branch testing [McCabe1976].

Halstead argued that code that is hard to read is more likely to be fault prone. He
estimated reading complexity by counting concepts, such as the number of unique
operators [Halstead1977].

Fenton and Pfleeger have noted a number of problems with static measures, since
they are clearly not complete measures [Fenton1997]. Of course, a measure does not need
to be complete, just useful.

See [tera-PROMISE] for a discussion of some predictive metrics, particularly the
McCabe and Halstead metrics.

4. Test Coverage
There are various ways to measure the quality of the tests (the “test coverage”) of a

regression test suite, and many tools (including gcov/gcc) that can measure them.
Especially common measures are statement coverage (the percentage of statements
executed by a test suite) and branch coverage (the percentage of branches, both true and
false, executed by a test suite).

5. Source Lines of Code
Many organizations measure source lines of code (SLOC). By itself SLOC says

nothing about security, but SLOC is highly correlated to development effort, and it is also
correlated to any review effort (although other factors, such as the complexity of those
lines, are also important). One complication is that SLOC can be measured different ways:
text lines, physical SLOC (which skip blank and comment lines), and logical SLOC (which
measure logical statements).

David A. Wheeler’s “sloccount” can automatically measure physical SLOC for
many languages. One list of tools is available at http://www.locmetrics.com/alternatives.
html.

6. Lincke Survey
Lincke, et al’s “Comparing Software Metrics Tools”12 looked at many different tools

for static metrics for (Java) source code. They identified 17 object-oriented metrics that
(1) they could rather securely assign to the same concept, (2) are known and defined in
literature, and (3) work on the level of Java classes. They selected nine such metrics that
most of the software metrics tools they identified would report. They are:

12 http://arisa.se/files/LLL-08.pdf

http://www.locmetrics.com/alternatives.html
http://www.locmetrics.com/alternatives.html
http://arisa.se/files/LLL-08.pdf

2-28

1. CBO (Coupling Between Object classes) – is the number of classes to which a
class is coupled.

2. DIT (Depth of Inheritance Tree) – is the maximum inheritance path from the
class to the root class [5].

3. LCOM-CK (Lack of Cohesion of Methods) (as originally proposed by
Chidamber & Kemerer) – describes the lack of cohesion among the methods of
a class.

4. LCOM-HS (Lack of Cohesion of Methods) (as proposed by Henderson-Sellers)
– describes the lack of cohesion among the methods of a class.

5. LOC (Lines Of Code) – counts the lines of code of a class.

6. NOC (Number Of Children) – is the number of immediate subclasses
subordinated to a class in the class hierarchy.

7. NOM (Number Of Methods) – is the number of methods in a class.

8. RFC (Response For a Class) – is the set of methods that can potentially be
executed in response to a message received by an object of the class.

9. WMC (Weighted Methods per Class) (using Cyclomatic Complexity as method
weight) – is the sum of weights for the methods of a class.

Of course, a metric might be widely reported because it is easy to measure—not because it
is useful. Still, widely measured metrics might be useful.

7. Estimating Commit Sizes Efficiently – Hoffmann and Riehle
A common variable for measuring work contributed is the “commit size,” i.e., the

number of lines added, removed, and changed. However, post-facto this can only be
estimated; typically, the only information that is available (especially in metrics
repositories) is the number of lines added and removed for each change, and obvious ways
(such as adding them up) lead to errors.

Philipp Hofmann and Dirk Riehle devised an improved method to estimate commit
size based on the data actually available (the number of added and removed lines) using a
linear regression model:

function real diff_size(int a, int r)

 if (0.01269 × a + 0.01540 × r > 2.9965)

 return 0.9497 × a + 0.9744 × r – 2.9965

 else

 return 0.9370 × a + 0.9590 × r

2-29

 end

end

More information is available in [Hofman2009].

8. Choosing Software Metrics – Gao
“Choosing software metrics for defect prediction: an investigation” [Gao2011]

examined how to identify a relatively small set of metrics that nevertheless supported
defect prediction (separating modules into “fault-prone” and “not-fault-prone”)
[Gao2011]. “The results demonstrate that while some feature ranking techniques
performed similarly, the automatic hybrid search algorithm performed the best among the
feature subset selection methods. Moreover, performances of the defect prediction models
either improved or remained unchanged when over 85% of the software metrics were
eliminated.”

The most frequently selected attributes were: “number of distinct include files
(FILINCUQ), number of different designers making changes (UNQDES), deployment
percentage of the module (USAGE), base 2 logarithm of the number of independent paths
(LGPATH), total span of branches of conditional arcs (CNDSPNSM), number of problems
fixed that were found by designers in the prior release (DESFIX), and number of problems
fixed that were found by customers in the prior release (CUSTFIX).”

9. Assessing Predictors of Software Defects – Menzies
“Assessing Predictors of Software Defects”13 by Tim Menzies et al of 2004 found

that “When learning defect detectors from static code measures, NaiveBayes learners are
better than entrophy-based decision-tree learners. Also, accuracy is not a useful way to
assess those detectors. Further, those learners need no more than 200–300 examples to
learn adequate detectors, especially when the data has been heavily stratified….” This
doesn’t seem as directly relevant for our purposes.

10. How Many Software Metrics for Defect Prediction? – Wang
“How Many Software Metrics Should be Selected for Defect Prediction?” by Wang,

et al examine various learning algorithms over various metrics [Wang 2011].

Overall, they found that the best classification model for their dataset (using Eclipse
data) was built with only three features selected by the AUC14 ranker using the logistic
regression (LR) learner. Unfortunately, they do not appear to reveal which features, nor

13 http://menzies.us/pdf/04psm.pdf
14 Area Under the Receiver Operating Characteristic (ROC) Curve

http://menzies.us/pdf/04psm.pdf

2-30

have we found enough data to allow simple reuse of the generated model. This lack of key
information makes the work tantalizing but difficult to use or repeat.

11. Software Defect Prediction – Punitha
Punitha and Chitra’s “Software defect prediction using software metrics – A survey”

surveyed materials to “help developers identify defects based on existing software metrics
using data mining techniques and thereby improve software quality, which ultimately leads
to reducing the software development cost in the development and maintenance phase.
This research focuses in identifying defective modules and hence the scope of software
that needs to be examined for defects can be prioritized.” [Punitha2013] [Mishra2012]

In their approach, they built an inference system to predict modules most likely to be
defective using supervised learning (inferring a function from labeled training data).
Specifically they applied “SVM,15 a supervised training algorithm for classification of data
into two sets, buggy and non-buggy. Then various rules [are inferred] from the support
vectors. The final set of the rules is chosen from the given set of rules using genetic
algorithm optimization. The experiments were performed on Eclipse bug data….”

Oddly, the paper describes figures of merit to show their effectiveness, and it seems
to suggest that the effectiveness is measured in the paper, but the actual measurement
values for software defect prediction do not seem to be in the paper.

In any case, this paper notes the potential use of supervised learning to help determine
vulnerable software or modules. Focusing modules may have real advantages—there is
more data to work with, and focusing on problematic portions of a program (instead of the
entire program) may increase the likelihood of real improvements. However, these are not
focused on measuring security, and there is always the risk that a module that doesn’t seem
like a vulnerable or defective module is implementing a severe vulnerability in a
straightforward way.

12. COQUALMO
COQUALMO (COnstructive QUALity Model) is “an estimation model that can be

used for predicting [the] number of residual defects/KSLOC (Thousands of Source Lines
of Code) or defects/FP (Function Point) in a software product.” Information, and a
spreadsheet that implements the model, is available at http://csse.usc.edu/csse/research/C
OQUALMO/.

It was developed in part by Barry Boehm and is similar to the COCOMO effort
estimation model. In particular, it requires information on the “defect removal” processes.

15 Support Vector Machines

http://csse.usc.edu/csse/research/COQUALMO/
http://csse.usc.edu/csse/research/COQUALMO/

2-31

It is not clear that this model would be particularly helpful for our situation, where we must
examine a large number of different projects (instead of a single project).

13. DoD/Industry 1994 Survey
David A. Wheeler co-authored a 1994 survey of software metrics in the Department

of Defense (DoD) and industry [Springsteen1994]. This is ancient history, but it clearly
shows that interest in software metrics has been around a long time. This survey was
extremely broad, covering metrics for a variety of purposes not specifically relevant to our
case. It made various points, e.g., that “collecting data is different [in general] and it is
important to have a simple, goal-directed metrics program” [Springsteen1994, 2.6.1].

Common metrics used in the DoD that are relevant here are:

 Source lines of code (SLOC) for measuring size (with some variation on
definition)

 Defect status metrics, e.g., the number and age of unresolved issues.

In industry the most common calculated metric in use was error density. Other
metrics relevant to our purposes included:

 Customer severity days (severity of customer problem multiplied by days open,
summed by severity level)

 Problems per user-month

 Mean time to defect after release

 Defect containment effectiveness (number of defects removed after internal
review but before release, divided by the (number of defects removed after
internal review but before release + number of defects remaining in release)).

E. Attack Surface Measurement
A different approach is to try to measure how easy it is to attack a program or system.

If software has code that looks like a vulnerability but that cannot be exploited, it doesn’t
really matter.

“Measuring Relative Attack Surfaces” by Michael Howard, Jon Pincus, and Jeannette
M. Wing introduced a metric “for determining whether one version of a system is more
secure than another with respect to a fixed set of dimensions. Rather than count bugs at
the code level or count vulnerability reports at the system level, we count a system’s attack
opportunities. We use this count as an indication of the system’s “attackability,” likelihood
that it will be successfully attacked.” [Howard2003]

“Measuring a System’s Attack Surface” by Pratyusa Manadhata and Jeannette M.
Wing [Manadhata2004] develops a process for measuring and comparing systems’ (not

2-32

individual programs’) attack surfaces. They note that “Today we commonly use two
measurements to determine the security of a system: at the code level, we count the number
of bugs found (or fixed from one version to the next), and at the system level, we count the
number of times a system version is mentioned in…Common Vulnerabilities and
Exposures (CVEs) [31] etc. We argue [that] both measurements, while useful, are less than
satisfactory….The system actions externally visible to the system’s users together with the
system resources accessed or modified by each action constitute the system’s attack
surface. Intuitively, the more actions available to a user or the more resources accessible
through these actions, the more exposed the attack surface. The more exposed the attack
surface, the more likely the system could be successfully attacked, and hence the more
insecure it is. We can reduce the attack surface to decrease the likelihood of attack and
make a system more secure…certain system resources are more likely to be opportunities,
i.e., targets or enablers, of attack than others…. We identify the system resources that are
opportunities of attack by a given set of properties associated with the resources, and
categorize them into attack classes. These properties reflect the attackability of a type of
resource, i.e., some types of resources are more likely to be attacked than other types.”
They then provide a specific description of this approach that counts the number of open
TCP/UDP sockets, open Remote Procedure Call (RPC) endpoints, services running as root,
etc. As written, this is intended for evaluating entire Linux distributions (or similar), not
for evaluating individual software packages. It might be possible to identify the packages
that directly cause these increases in the attack surface, to help identify specific packages
involved in the attack surface. This would not identify indirect attacks; dependency
information might help but might also pick up too many packages unlikely to be
vulnerability sources.

A later paper [Manadhata2007] expands on this approach and focuses more directly
on measuring specific applications, e.g., Internet Message Access Protocol (IMAP) servers
and File Transfer Protocol (FTP) daemons. That paper works to formalize the notion of a
system’s attack surface and proposes “a method to measure a system’s attack surface
systematically.” However, it still requires domain knowledge and execution of the
program; it is not clear that this would scale well to the large number of programs we are
considering in our case.

Open Web Application Security Project (OWASP) has some information on attack
surface at: https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet.

F. Kenn White Metrics Set
Kenn White identified some metrics that might be important (this list was provided

to us by the Linux Foundation):

 Project (name)

https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet

2-33

 Source (URL)

 Maintainers

 Commits

 Notes.

In a separate list he identified the following metrics:

 Project (name)

 Source Repo (URL)

 CoreDependents

 Maintainers

 PrimaryMaintainer

 Affiliations

 CommitsLast30

 StatsInfo (where to get statistics)

 SlocApprox

 IssuesOlder1YR (a count of the number of issues open for more than 1 year)

 OpenIssues (count of open issues)

 IssuesInfo (URL for information on issues).

G. IDA Ideas

1. Exposure to Attack
Some software vulnerabilities are more important than others. A vulnerability that

can be exploited externally through a network is especially bad, although a vulnerability
that requires execution on a local system (particularly one that allows privilege escalation)
is bad as well. Packages directly exposed to network attack are obviously at risk for
external exploitation, but indirect attacks are also dangerous (e.g., a vulnerability in an
image processing or decompression program might be remotely exploitable).

One remarkably simple approach is to simply note whether a package has at least one
CVE. A program that has at least one CVE assigned to it has, by definition, had at least
some way to exploit it. Therefore, any program with at least one CVE should be considered
as exposed to at least some level.

A simple measure of “external exposure” might be helpful; a program or library that
is externally exposed is likely more important to evaluate than one that is not. It is harder
to counter attackers who are authorized to run software on a system, so we propose starting

2-34

by focusing on countering attack via external networks. Here is a simple proposed
qualitative measure (as an example):

 3: Direct network exposure to attacker. Programs that connect to a network port
or directly manage protocols (e.g., OpenSSH).

 2: Known exposure to external network attacker data because they are often
involved in processing of it. This includes decompression algorithms and image
processing algorithms. It also includes anything that took user data and
transformed it (e.g., turning it into a query) before sending it to a database.

 1: Known to pass attacker data into the system from external networks, but do not
meet the previous criteria. This includes database systems (e.g., MariaDB and the
dbm implementations). This also includes any shell used as /bin/sh; POSIX and
many programming languages include built-in calls that go through the shell.
These have a somewhat lower risk than programs that directly process the data,
but small errors can still cause serious issues. Note that SQL injection attacks
would normally be covered by the above categories, since SQL injections are
typically caused by a failure to process attacker-provided data correctly (e.g.,
using prepared statements), and not by the database systems themselves having a
vulnerability. Shellshock is an example of this category; in Shellshock the bash
shell did process externally provided data in an unexpected way.

 0: Little external exposure. Attacks might still subvert vulnerabilities in these
programs and cause great damage, but that is deemed less likely.

There is also the risk that something could be exploited to cause privilege escalation.
This especially includes any package with a setuid or setgid program (especially if it grants
privileges as root or another privileged user), as well as privileged processes that users can
communicate with (e.g., via local sockets or Dbus). There is a risk that the programs these
depend on could be used; perhaps package dependency information could be used to
estimate this.

There is some literature on quantitatively measuring the attack surface of programs.
However, the attack surface measurement approaches described in the literature would be
time-consuming and difficult to apply across a high number of different programs in
different languages, so we have not pursued this approach.

2. Other Work
IDA previously did in-house work measuring hit density. Hit density is simply the

number of hits divided by KSLOC, where hits are reports of risky constructs (that may lead
to vulnerabilities) from flawfinder or some other lexical tool. These tools simply report
riskier constructs, not vulnerabilities, but the theory is that if developers often use riskier

2-35

constructs, they are more likely to produce insecure results. A comparison of sendmail and
postfix of years ago suggests this might be a useful measure.

Programming language can also be a potential indicator. A vulnerability can be
created in any language. That said, it is especially easy to write vulnerable code in C and
C++ because some of their fundamental operations (e.g., array and pointer access) provide
no protections (e.g., against buffer overwrites or overreads)—a problem exposed by
Heartbleed. C and C++ do not provide automatic memory management; there are
advantages to this, but it can increase code complexity and provides additional methods of
attack (e.g., through double-frees). PHP16 is another potentially concerning language, in
part because some of its operators have surprising properties (e.g., due to surprising type
conversions), but also because many developers with limited skills develop using PHP.
Thus, while many good developers use PHP, many developers who do not know how to
develop secure software use PHP. David A. Wheeler (one of the authors) recommends
specially examining programs written in PHP, simply because so many people who write
PHP programs do not know how to do it well.

Programs that contain a large percentage of code developed many years ago (say,
more than 10 years ago) can be a potential sign of trouble. Many years ago, fewer
developers knew how to develop secure software, and a program with that much unchanged
code may suggest that it is fairly inactive. Of course, software can be stable because it is
well written and its requirements have not changed, so this measure is not always a sign of
trouble. This kind of information can often be retrieved from version control systems, but
in some cases this information is not easily available. A plausible proxy could be the
project start date; a project that started long ago, even if active, might harbor many
vulnerabilities due to old bad practices. For example, some vulnerabilities in X-Windows
found in 2014 were due to old code [Thomson2014].

Complexity density (cyclomatic complexity divided by KSLOC) is another
potentially promising measure of riskiness. If software is especially complex as measured
by complexity density, compared to other software, this could indicate unusually complex
software. Since such software is harder to review, it may be more likely to harbor
vulnerabilities.

H. London January 2015 Meeting
On January 11 and 12, 2015, the invitation-only “Core Infrastructure Workshop” in

London examined what metrics would suggest a project that needs investment. David A.
Wheeler participated in this meeting, and many people contributed their ideas of what
metrics might be appropriate. Here is a summary created by Wheeler.

16 PHP originally stood for Personal Home Page, but it now stands for PHP: Hypertext Preprocessor.

2-36

First, metrics that might assess project health:

1. Easy:

a. History of many vulnerabilities (e.g., as counted by CVEs).

b. Few/1/no developers.

c. Poor bug response (long delay on average, large percentage ignored).
Unfortunately, it is often difficult to distinguish between bug reports and
feature requests (there is no standard way to distinguish them, and many
projects do not distinguish them at all). When there is no simple way to
distinguish between bug reports and feature requests across many projects,
merge their results into a single value.

d. Number of commits over time.

e. Exploitability (e.g., direct or indirect exposure to remote network, potential
for exploit use as local privilege gain).

f. Language in use (e.g., C or C++).

2. Hard but could be easy:

a. Examine dependency information—this can help indicate importance (a
program may be very important if many other programs depend on it).

b. Differentiate between bugs and feature requests—create a standard way to
see the difference across all projects.

c. Determine whether it has been fuzz tested or audited.

3. Hard:

a. Measure security directly (unfortunately, we don’t know how to measure
security directly).

b. What can projects do to make it easier to capture metrics? (e.g., tweaks in
GitHub, SourceForge, etc.)

c. Huge impact if broken. This is like importance/widespreadness (e.g., “What
percentage of the Internet breaks if this breaks?”).

d. Cross-project algorithmic similarity (e.g., if code is copied/pasted, how can
we tell that there’s a common problem?) The company SourceDNA
actively works on this problem.

e. Scoring algorithms: How do you combine metrics especially well?

2-37

f. It would be possible to use learning algorithms and data analysis to see what
is effective, but that requires that we know the “truth values” (which we
typically do not know).

g. What are the stakeholder priorities?

h. Exposure (this is related to exploitability).

There was a perceived need to make this data available to the public.

Once higher-risk projects are identified there are many potential responses. These
include modifying the software, funding developers and auditors, refactoring it, and
rewriting it from scratch.

I. Additional Areas for Review
Time constraints limited the sources we could examine for measurement ideas. Some

additional sources we could review further include:

 Examining more sources on “how to release” OSS (i.e., best practices). The
failure to apply best practices may indicate problems. The “FAIL” measure is an
example of this approach.

 Looking at more search results (e.g., for “Best software defect prediction metrics”
and “OSS security evaluation”).

 Reviewing more OSS evaluation methods. Wikipedia has a long list at
http://en.wikipedia.org/wiki/Open-source_software_assessment_methodologies.

 Ross Anderson’s paper “Security in Open versus Closed Systems: The
Dance of Boltzmann, Coase and Moore,” http://www.cl.cam.ac.uk/~rja14/Papers/t
oulouse.pdf.

J. Comments on Metrics
Some metrics that are especially obvious to collect at first are:

 Project name. This is more complex than you might think. The same name may
be used by different projects, and a single project may have more than one name.
Project forks complicate this further. In many cases the project URL can be used
to distinguish programs because Open Hub and typical Linux packages include
this information.

 Source lines of code (SLOC). Larger programs will take longer to audit, so this
number is important to help understand the scale of a program.

http://en.wikipedia.org/wiki/Open-source_software_assessment_methodologies
http://www.cl.cam.ac.uk/%7Erja14/Papers/toulouse.pdf
http://www.cl.cam.ac.uk/%7Erja14/Papers/toulouse.pdf

2-38

The following project data seem very promising as metrics:

 Size of development team (committers), e.g., the number of people who
committed over the last 12-month period. 0 is especially bad, but 1 is also bad
(this is vulnerable to the “hit by the bus” problem). In some cases version control
systems don’t report the real facts (if all changes are allocated to the final
committer, not to the submitter).

 Activity metrics. Number of commits or change counts, especially over the last
12 months. Ideally this number is stable or increased over the previous 12
months.

 Bug report responsiveness (e.g., average response time for a bug report). The
number or percentage of bug reports that have not been resolved after 30 days, the
percentage or number of bug reports resolved after 30 days. These should be for
true bugs and should not include wish lists/feature requests, although that may not
always be possible. There may need to be a separate statistic for percentage of
bugs closed as “WONTFIX”; it is easy to close all bugs quickly if you don’t fix
any of them. We should probably only care about the statistic for the last 12
months (e.g., of all bugs opened starting this year). We expect that most bug
tracking systems are covered by a few repositories or bug-tracking systems, such
as GitHub (label “bug”), SourceForge, Savannah, or Bugzilla. If the system does
not separate features vs. bugs, we can only report on the combination. On some
systems (e.g., GitHub) there is a way to identify bugs, but there is no standard
way to use it and/or it is not always used; in that case, report what you can. It
would be great if, in the long term, organizations made it easier to separate bugs
from non-bugs in a standardized way.

Data suggesting riskiness (likelihood of security problems) may include:

 Dominant programming language. C is considered especially dangerous, with
C++ also dangerous.

 Year of project start (or at least, if it is more than 10 years old). If it started long
ago, it may have lots of bad practices. Version control databases may not record
the entire history of a project, but they can typically report whether it is more than
10 years old. Open Hub does capture “maturity,” which hints at this.

CVE counts are related to security, but that relationship is complicated. After all, if
a program undergoes intense audits and has fixed them, it may have many more CVE
reports than a critical program that has been ignored. We intend to capture CVE counts,
primarily as a way to determine that a program is especially relevant to security; if it has
at least two CVEs, it clearly is relevant to security. (One could be a fluke.) See the
discussion earlier about CVEs.

2-39

Some “project smells” (some inspired by the FAIL metric) suggest that there may be
problems:

 Failure to have a (working) website. This is “communication” in the “doomed to
FAIL” index.

 Failure to have a mailing list or Internet Relay Chat (IRC) mechanism. This also
is “communication” in the “doomed to FAIL” index.

 Failure to have a public source version control repository. If users can download
only the final code, there is no opportunity to review the code as it was before
users were supposed to use it, and there is little opportunity to collaborate. This is
“source control” in the “doomed to FAIL” index. The most common OSS version
control software today is almost certainly git, but projects could use subversion,
mercurial, the long-obsolete CVS, or other software to accomplish this.

 Failure to have a public bug report tracking system. Without this, it is more
difficult to determine whether the developers are being responsive to reports, and
it is harder for users to determine whether the problem has previously occurred. It
is possible to use mailing lists and IRC for bug reporting, but if that is the only
mechanism, there is a risk that problems (including vulnerabilities) will be
forgotten and not fixed. Some projects intentionally delay publicly reporting
vulnerabilities until the fix is available, but there are a variety of ways a public
bug report tracking system can support this. The public bug tracking system
could be implemented using GitHub’s issue tracker, SourceForge’s tracker,
Bugzilla, etc.

Finding code repositories is an interesting problem. We can use Open Hub to find
human-visible project info, for example, https://www.openhub.net/p/openssl. In some
cases it points to “Issue tracker” and “Code Locations.” If not, we can look at “browse
code” to see whether it refers to a publicly accessible repository (and not just a copy of a
final downloadable tarball, e.g., if it ends in “trunk/” it is almost certainly a subversion
repository; if it starts with “git:” or ends with “.git” it is a git repository). Debian often
records, as part of its copyright information, a URL for a repository, though this may not
be current.

It would be possible to examine projects for more complex measurements, especially
of the code itself. However, these may take more time to collect, so it might be appropriate
to get these measures only once a subset of projects has been identified—if we want to get
them at all:

 Percentage of comments (compared to norm for that language). Programs with
few comments may be harder to review, and thus vulnerabilities may be easier to
miss. However, this metric is not especially informative—a program with many

https://www.openhub.net/p/openssl

2-40

comments may be strewn with vulnerabilities, and comments can often mislead.
This data is automatically provided by Open Hub, so we may as well use it.

 Potential security defect density. Run Coverity scan, flawfinder, RATS, and/or
some other tool and divide these by the KSLOC. Higher numbers suggest that the
program often uses risky constructs, and thus is at higher risk for vulnerabilities.

 Warning density. Run warning flag/quality tools (e.g., clang warning flags) and
divide by SLOC, again, to see whether the program often uses risky constructs.

 Regression test coverage (e.g., statement coverage, or even better branch
coverage). A program that has poor test coverage has many untested areas. This
requires running the regression test suite; that is not an easy thing to do for a large
set of programs.

 Complexity (McCabe). Complexity measures for functions/methods can be rolled
up in various ways (e.g., the percentage of functions or methods with a
complexity more than 10, or the average complexity density (for each function,
divide by lines of code, report the average)). Highly complex code is more likely
to have vulnerabilities. Some OSS tools can collect this data for some languages.

 Vulnerability repair speed, (i.e., responsiveness (how quickly they respond to a
vulnerability report, especially a public one)). This may be determinable from the
bug database, but this is often harder because bug databases don’t always link to
vulnerability reports. The CVE database may help.

3-1

3. Important OSS Projects

Another challenge is to identify OSS projects that might need investment. These
potential projects need to have metrics collected about them, and then those metrics
compared to determine which projects to evaluate.

Identifying important OSS projects involves many challenges. Many OSS projects
themselves depend on other projects, which may be copied into them; this means that some
lower-level libraries are not necessarily obvious as being widely used.

Some OSS projects are rarely used; others are very widely used. In general, we prefer
ones that are widely used in various configurations (e.g., OSS that are widely used in
common Linux distributions) especially if they are in the minimal install or in common
configurations (e.g., server installs, are of special interest).

Not all OSS projects are equally exposed to attack; some software, such as network
programs and decompression libraries are obviously directly exposed to data from
attackers, while others are less exposed (and thus it is harder to determine their importance
for investment). Some lists (e.g., the Linux Foundation original list) take this into account;
in addition, we have contemplated using a rough “exposure” metric to capture this issue.

Some sources that can be used as a starting point for identifying these projects are
discussed below.

A. Common in Distributions
One approach is to take a common Linux distribution (e.g., Debian) and find:

1. Packages always installed in the minimal (“Base”) install

2. Packages installed by a predefined group (e.g., “Web Server”)

3. Packages commonly installed in common cases as a server OS

4. Packages commonly installed by a developer. For example, GnuPG is an
infrastructure component widely used to secure the development and
distribution process, because it is used for signing in git and many other tools.

We started with the first two (Debian “Base” and “Web Server”), and augmented that
with an installation of ssh, because these are extremely common programs. Debian is a
useful place to start, since it has a large number of packages that represent OSS widely.

3-2

It would be possible to cross-reference this among Red Hat-derived distributions.
They sometimes choose different package names, but in those cases, the project URLs
could be used to match the actual programs. In many cases Debian and Red Hat-derived
distributions use the same underlying programs.

B. Linux Foundation Original List
The Linux Foundation CII frequently asked questions (FAQ) listed the following as

“critical open source software projects”17:

 Network Time Protocol (NTP); note that there are several implementations of the
NTP protocol

 OpenSSH

 OpenSSL.

The Linux Foundation had a brainstorming session to identify some projects that
might be worth considering, which resulted in the following list:

1. Compression libraries, including LZ0, LZ4, libgz. We would add
implementations of unzip; many formats are basically extensions of the zip
format, so there are many routines that depend on them.

2. Pluggable Authentication Modules (pam). Everyone uses it, and it is critically
important.

3. Web services libraries: libcurl, libxml, json-c, libpng.

4. Voice: libzrtp.

5. Apache-related: mod_ssl, mod_tls, mod_auth_*, mod_compress.

6. Encryption libraries: LibreSSL, modssl, modtls, BouncyCastle, gpg, otr, axolotl.

7. Static analyzers: Clang, Frama-C.

8. Nginx.

9. OpenVPN. It was noted that the funding model may be similar to OpenSSL,
where consulting funds the company. It was also noted that OpenVPN needs to
correctly use OpenSSL in order to be secure, so focusing on OpenSSL may be
more worthwhile.

10. OpenWRT. Imagination is working on OpenWRT, but may not be focused on
security. It was noted this that this would be a big effort.

17 http://www.linuxfoundation.org/programs/core-infrastructure-initiative/faq#faq11

http://www.linuxfoundation.org/programs/core-infrastructure-initiative/faq%23faq11

3-3

11. BIOS projects: coreboot and TianoCore.

12. Remote Direct Memory Access (RDMA) – these are kernel drivers that access
memory directly (used to support, e.g., InfiniBand).

C. Kenn White List
Kenn White developed a list of potential projects, including:

 libBFD (binutils; gdb)

 libcURL

 libIDN

 libXML

 libLZMA.

Example dependents for Web Servers/Core WS include:

 Apache (2.x): mod_php, mod_python, mod_ssl

 BusyBox

 Django (PycURL)

 FastCGI/lighttpd

 Grails

 Java (JSP, J2EE, XML services)

 Nginx

 PHP (5.x)

 Ruby Gems

 Ruby on Rails (Passenger)

 Tomcat (6/7.x).

Example dependents for Core OS Services are:

 b43 (wireless networking)

 cryptsetup – luks (volume/disk encryption)

 device – mapper

 dhclient (DHCP)

 dracut (bootup, kernel bootstrap)

 Internationalized characters/Unicode/Puny/DNS

3-4

 Iproute

 Iptables

 gnupg2

 lvm2

 openssh (server and clients)

 SE Linux (policycoreutils)

 Mail (postfix)

 RPM and Yum

 RSyslog.

D. Google Application Security Patch Reward Program
On October 9, 2013, Google announced a program to reward proactive security

improvements to some open-source projects.18 As of December 8, 2014, this program
limits potential awards to the following OSS projects, which Google appears to consider
important:

1. Open-source foundations of Chrome and Android: Chromium, Blink, Omaha,
Android Open Source Project (AOSP)

2. Security-critical, commonly used components of the Linux kernel, including
Kernel-based Virtual Machine (KVM)

3. High-profile web and mail servers: Apache httpd, lighttpd, nginx, Sendmail,
Postfix, Exim, Dovecot

4. Other high-impact network services: OpenSSH, OpenVPN, BIND, ISC DHCP,
University of Delaware NTPD

5. Core infrastructure data parsers: libjpeg, libjpeg-turbo, libpng, giflib, zlib,
libxml2

6. Other essential libraries: OpenSSL, Mozilla NSS

7. The reference implementation of Certificate Transparency and its open-source
dependencies

8. Toolchain security improvements for GCC, binutils, and llvm

9. Security-relevant bits of common package managers: yum, apt, pip, npm

18 Details are available at: https://www.google.com/about/appsecurity/patch-rewards/

https://www.google.com/about/appsecurity/patch-rewards/

3-5

10. Popular web frameworks: Angular, Closure, Dart, Django, Dojo Foundation,
Ember, GWT, Go, Jinja (Werkzeug, Flask), jQuery, Knockout, Struts, Web2py,
Wicket.

E. Recent Problem Reports
Some software with known recent problems (vulnerabilities or known lack of support)

include:

 Network Time Protocol (NTP) services, since these are directly exposed to
external exploitation19

 GNU Privacy Guard (GPG), which has only one developer but is widely used to
secure software (including signing of commits).20 There are also known problems
with GPG: they have dropped the ability to read old formats (requiring people to
keep old versions with known problems) and do not support smart cards.21

F. Augmented List of Programs
As noted earlier, we started with Debian “Base” and “Web Server” augmented with

an installation of ssh.

We then looked for programs/projects that should be added. We did not want to
include simple bindings for different programming languages; there are many bindings for
a given library, and since the functionality is primarily in the base, we wanted to start by
focusing on the base library. For our purposes, we use Debian package names as an index
key. The categories (based on the above) that we added are:

1. Encryption libraries/tools: These were found using “grep -E
'([Ee]ncrypt|[Dd]ecrypt|cryptographic|\<TLS\>|\<SSL\>)' …” on the full Debian
package list and then manually reviewing the results. Note that LibreSSL also
would qualify. We identified 214 packages, many of which are rarely used or
are implementations for specific languages, which makes it harder to determine
what to include. Manual review of this list identified the following as
potentially especially important: coolkey, gnutls-bin (and other gnutls),
libopencryptoki0, and libpolarssl-runtime. Note that libssl1.0.0, openssl, and
libgnutls26 were already on the list. Others that may also be important are
libace-inet-ssl-6.0.3, aespipe, aolserver4-nsopenssl, libbeecrypt7, ccrypt, claws-
mail-smime-plugin, courier-imap-ssl, and courier-ssl.

19 https://ics-cert.us-cert.gov/advisories/ICSA-14-353-01
20 https://gnupg.org/blog/20141214-gnupg-and-g10.html.
21 https://lwn.net/Articles/626660/

https://ics-cert.us-cert.gov/advisories/ICSA-14-353-01
https://gnupg.org/blog/20141214-gnupg-and-g10.html
https://lwn.net/Articles/626660/

3-6

2. Compression libraries. The Debian packages in the base that have “compress”
in their description are: bzip2, gzip, libbz2-1.0, liblzma5, xz-utils, and zlib1g.
(These are thus already covered in our starting set.) At a minimum, adding
“zip” and “unzip” (from info-zip) seems wise.

3. Image processing libraries.

4. C/C++-based XML processing libraries.

5. Key network protocols: ntp (Network Time Protocol), bootp.

We then added others as they were identified as important so they could be analyzed.
Our time was limited; adding more programs would be useful.

The story of PAM22 is complex. The OpenPAM program is used by many *BSDs23
and Apple MacOS X; see http://www.openpam.org/wiki/History for details. This is not
the same as Linux-PAM, which is used by many Linux distributions. Thus, multiple
projects may appear to have the same name, which can be confusing. In addition, the site
at https://linux-pam.org cross-links to https://fedorahosted.org/linux-pam/, and on both
sites at the time we examined it several links did not work that should have led to more
information about the development status. Our data about Linux-PAM suggested it was
not very active, but this is probably an artifact of the difficulty that the automated tools had
in tracing the web sites to determine the actual situation.

The library for Binary File Descriptor (BFD) files is part of binutils; binutils itself has
significant maintenance, but the BFD portion less so. This is difficult to tease apart because
of the way it is packaged.

Kenn White mentioned “otr”; we believe this is the “off-the-record” (otr) message
protocol, and probably more specifically the portable sample library and toolkit
implementation available via the home page https://otr.cypherpunks.ca/.

22 Pluggable Authentication Module.
23 *BSD is a conventional abbreviation for the operating systems that descended from the Berkeley

Software Distribution (BSD), including FreeBSD, NetBSD, and OpenBSD.

http://www.openpam.org/wiki/History
https://linux-pam.org/
https://fedorahosted.org/linux-pam/
https://otr.cypherpunks.ca/

4-1

4. Selected Approach and Early Results

A. Overall Approach
We had little time to complete the analysis, and the goal was to quickly identify

plausible candidates for human review. Thus, we focused on metric values that can be
easily and quickly acquired. In particular, we used data from Black Duck Open Hub where
possible, as well as from the Debian package repository, because these are easy to get
quickly.

We plan to extend this start with other information that can help us quickly filter out
likely candidates. We are gathering this data via programs so that the results can be re-run
later as more data is desired or updated information becomes available.

We have been asked by the Linux Foundation to focus on projects that have relatively
little activity or current development effort. For example, the content management systems
(CMS) WordPress, Joomla!, and Drupal are widely used, and all have had many
vulnerabilities identified (especially when their plug-ins are included).24 However, these
CMSs have a number of developers behind them, who already look for and attempt to
counter vulnerabilities. They could do better, but at least there is typically progress in those
areas; our concern for now is those projects that are relatively inactive and thus are unlikely
to improve over time. Some CMS plug-ins are widely used yet are inadequately audited;
we are not looking at such plug-ins at this time, but they would be good candidates for
future investigation.

B. Caveats
We have developed software to automatically gather data, attempt to “clean it up”

(e.g., to match names), and report it. However, this is subject to the messiness of real-
world data.

Names in particular are difficult. The same name may be used by unrelated projects,
forks of projects may have different names, and different sources may use different names
for the same project. We have tried to correlate the data, but this is certain to be imperfect.

24 Those who doubt this can just look at http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=wordpress,

http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=joomla, and http://cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=drupal.

4-2

Open Hub is an important data source for our process, but in some cases it provides
only summary data in its API (e.g., it reports that the number of commits is going up or
down, but not the exact number). In many cases we can get this information from other
sources, but we did so only when it seemed important.

The first CVE reports used keyword matching. This means, for example, that if a
CVE report mentions product X, then the CVE will show up even if the CVE does not
actually apply to product X. CVEs are often specific to environments. This was later
changed to use the Debian project’s special mapping database, which greatly improved the
results.

Since it is difficult to directly estimate the vulnerability of software, we primarily
emphasized process measures that suggest inadequate maintenance, as described above.

Our primary purpose is to identify likely OSS candidates for investment. It is
acceptable to have some false positives (that is, to identify some candidates that do not
really need significant investment), because the list of candidates will then be reviewed by
humans. Our primary goal was to avoid significant false negatives, that is, we wanted to
avoid failing to identify a candidate that truly needed investment. As a result, we tended
to identify a candidate as needing investment when we were not sure (e.g., due to lack of
data about the candidate). However, we could not take this to extremes because identifying
all OSS projects would not be useful.

C. First Stage
On December 16, 2014, we submitted an early mock-up of OSS projects and data

about them. This was partly created automatically, and partly by hand, to see whether our
overall approach would work. We determined that although there were difficulties with
data “messiness,” the overall approach did work.

We first took the list of Debian packages in Base + Web-server + ssh. Specifically
we used Debian 7.7.0 (Wheezy) stable version for the x86_64 platform; this was first
released on October 18, 2014. That has 368 binary packages (not including 3 “tasks” that
are not really packages, and including 4 packages that are only installed when running on
virtualbox). Our theory is that if a package is in the Debian base, it applies to most Linux
distributions (it almost certainly applies to Ubuntu, and Red-Hat-based systems have many
of the same software packages). The packages probably apply to many non-Linux
situations as well. In some cases, one source package generates multiple binary packages.
We can expand this, of course, but we think it’s a plausible start.

We then cross-referenced that list to Open Hub metrics. There is about a 70% match
(about 70% of the time, we found that Open Hub has metrics data), which saves a lot of
time. We had to hand-determine the mapping between Debian and OpenHub. In the longer
term, matching on home page URLs might help.

4-3

OpenHub does not provide all the data we would like to have (e.g., the exposure to
vulnerabilities or how well they process bug reports) but it still helps us identify projects
that are probably not well maintained.

We then investigated whether just those metrics would be adequate for finding
concerning projects. We filtered on projects that Open Hub reported were Small/Single
Developer and Small/Stable Activity. Note that this automatically does not include the
30% of projects for which we have no data, but we were basically seeing whether the
process made some sense. We then manually looked through the list. Just doing that
suggested plausible candidates, such as (giving the Debian package names): PAM-related
packages (libpam-modules, libpam-modules-bin, libpam-runtime, libpam0g), libexpat1,
procmail, zlib1g, libsasl2-2, libsasl2-modules, gzip, libfuse2, libgpgme11, libkeyutils1,
and libpng12-0. Ones that met the criteria, and perhaps might justify more investigation,
included: netcat-traditional, dmidecode, libgdbm3, libnfnetlink0, libsemanage1,
libsemanage-common, locales, and libpopt0.

As noted, there are projects that we don’t have any data on, and there are other
important metrics that OpenHub doesn’t provide (bug tracker or repository URL, CVE
data, bug processing data, whether or not there are setuid or accessible privileged programs,
etc.). In addition, there were almost certainly projects that were not in that set of Debian
packages that should be considered. However, this first pass convinced us that we were
making reasonable progress and that our approach was reasonable.

The heading names began with “Debian_” if the data source was Debian, and
“Openhub” if the data source was Open Hub (Ohloh).

The headings in this version were:

1. Debian_Package: Debian name of binary package

2. Debian_Source: Debian name of source package; one source package may
generate multiple binary packages

3. Debian_Version

4. Debian_Description: Debian’s one-line description

5. Debian_Homepage: Homepage for the entire project

6. Debian_Install: Debian installation package, e.g., Standard System Utilities

7. OpenHub Query Name: This mapped the Debian package name to the name
useful for querying; in some cases this is odd, e.g., Debian’s “apt-listchanges”
maps to “8066”

8. Openhub_name: The user-visible name produced by Open Hub

9. Openhub_description

4-4

10. Openhub_homepage_url

11. Openhub_download_url: Location where the stable version (e.g., tarball) can be
downloaded

12. Openhub_twelve_month_contributor_count: Number of contributors within the
last 12 months

13. Openhub_total_contributor_count: Total number of contributors according to
Open Hub; note that many old projects will under-report, since this information
is captured from version control systems that may not have full histories

14. Openhub_total_code_lines: SLOC

15. Openhub_main_language_name: Primary programming language

16. Openhub_licences

17. Openhub_codebase_factoid: Length of time extant (as text) (e.g., “Mature, well-
established codebase” or “Well-established codebase” or “Short source control
history”)

18. Openhub_activity_factoid: Activity as measured by commits compared to
previous year, e.g., “Increasing Y-O-Y development activity” or “Decreasing Y-
O-Y development activity” or “No recent development activity”

19. Openhub_comments_factoid: Percentage of comments in source (e.g., “Very
few source code comments” or “Few source code comments”)

20. Openhub_devteam_factoid: Size of development team (e.g., “No recent
development activity” or “Only a single active developer” or “Small
development team”).

D. Second Stage
We took our early code and modified it to more automatically generate the results

(the first version was partly done by hand to see whether the overall approach made sense).
Our automated code is implemented in Python, which extracts data from a variety of
sources. Data is cached to reduce the impact on servers and to speed updates of results.

We also spent time finding additional matches between the Debian and Open Hub
lists; in many more cases we found more matches. We then worked to extract CVE data
for each project because this helped us identify what was relevant for security.

The second stage was used to create the draft results shown in London in January
2015.

4-5

Figure 2. Analysis Process, Stage 2

The “projects_to_examine.csv” file lists the projects to examine, along with related

information (e.g., the keys to use with CVE or OpenHub). The list of projects to consider
began with all files in Debian base, and we then added others as appropriate. This file is
editable; we added comments as appropriate to explain why the additional files were added.

We also created an early scoring mechanism to try to combine the metrics. This was
a “risk” score, where a higher value suggests a higher risk. This draft combined score is:

 Project website: 1 point if there is no identified project website (identified by
either the Debian database or OpenHub database); there may be a website not
identified by our databases, but this can be determined later

 CVE vulnerability reports: 3 points if 4+, 2 points for 2-3, 1 point for 1

 main_language_name: 2 points for C or C++; secure programs can be written in
these languages, but it is especially easy to make vulnerabilities in them

 twelve_month_contributor_count: 2 points for 0 contributors, 1 point for 1-3
contributors

 FactoidTeamSize: 2 points for “No recent development activity” or “Only a single
active developer”; 1 point for “Small development team” or unknown.

oss_package_analysis.py

projects_to_examine.csv

File with projects to analyze with corresponding
names in openhub and cve search keywords

results.csv

apt_cache_dumpavail.txt

get_debian_data()

get_openhub_data()

get_cve_data()

https://www.openhub.net

https://cve.mitre.org

Note: Website
accesses are cached

4-6

It’s arguable that the last two items double-count the number of contributors.

This process identified several projects that we agreed were concerning (e.g., xauth).
However, for some of the projects identified, this scoring mechanism did not do a good job
identifying projects with a significant security impact. We believe that part of the problem
is that the exploitability of a program was not captured at all. Thus, we determined that
adding data about exploitability would help us identify relevant programs.

On January 6, 2015, we received approval from Black Duck to use the Open Hub data
in a different way than was usually allowed. They simply wanted to be sure that we would
not download and redistribute their database wholesale, and they also wanted to ensure that
they received credit (which we are happy to provide). They requested the following
attribution: “Data sourced from the Black Duck Open HUB, a free online community
resource for discovering, evaluating, tracking and comparing open source code and
projects.” In the event that the data is quoted in text, they asked us to identify the source
of that data by referring to it at “Black Duck data” or “data from Black Duck.”

At the January 2015 London meeting we received helpful feedback. Many noted the
need to stress exploitability or importance (this was consistent with our thinking). Florian
Weimer identified a much better source for package-specific CVE information, as well as
a popularity database that might be useful. At the same time, Samir Khakimov determined
that the Python program would be easier to understand if it used a more OO-based approach
(our analysis program had previously grown as necessary to gather data, and we had not
focused on the temporary data structures used to capture the data). David A. Wheeler noted
that the code should pull all data into memory, or at least into quickly searched data
structures, so that results could be quickly recalculated. Quick recalculation made it easier
for us to refine our approach.

5-1

5. Current Process

The latest version of our analysis program is written in Python. It looks at the file
“projects_to_examine.csv” to determine what to examine, gathers data from a variety of
sources, and merges it into a file called “results.csv” for review. Much of this code was
written by Samir Khakimov at IDA. The code is released under the MIT license, which is
an OSS license. The package names are the Debian binary package names; the list includes
the base Debian packages and others that have been identified as important. This is a small
set of the over 37,500 packages in Debian.

A. Current Simplified Approach
Figure 3 shows how the program currently works.

Figure 3. Analysis Process, Current Stage

Note that some of this data (OpenHub) is sourced from the Black Duck Open HUB,

“a free online community resource for discovering, evaluating, tracking and comparing
open source code and projects”; we gratefully acknowledge them. Other sources include

oss_package_analysis.py

projects_to_examine.csv

results.csv

apt_cache_dumpavail.txt

get_debian()

get_openhub()

get_cve_debian()

www.openhub.net

security‐
tracker.debian.org/track
er/source‐package/

Note: Website
accesses are cached

popcon.debian.org

get_debian_pop()

File with projects to analyze

5-2

the Debian package information (obtained from Debian’s apt program), popularity data
maintained by Debian, and CVE data provided in yet another Debian location. This version
responds to January 2015 feedback in London (e.g., adding popularity score and an
improved data source for CVE counts).

Unfortunately many of our data sources are extremely noisy. It is often difficult to
determine whether there is a match between the Debian database and the OpenHub
database (when projects refer to the same home page, there is a clear match, but in other
cases it is more difficult). In some cases there is no OpenHub entry at all. Our software
works to counter this noisiness, and we hand-reviewed results with higher risk indexes (to
reduce the likelihood that the report included irrelevant work).

B. Risk Index
Our revised risk index is:

 Project website: 1 point if there is no identified project website (identified by
either the Debian database or OpenHub database). This is given only 1 point
because our data sources often fail to identify websites even when they exist.

 main_language_name: 2 points for C or C++. Secure programs can be written in
these languages, but it is especially easy to make vulnerabilities in them.
OpenHub data is used to identify the primary language in many cases; where it is
not available, the Debian repository website is scraped to determine the language.

 CVE vulnerability reports: 3 points if 4+ , 2 points for 2–3, 1 point for 1. The
CVE count is now direct from Debian, and thus more reliable. CVE counts are a
double-edged sword. The number of reports may be low because there are few
existing problems or because few reviewed it; the number may be high because
there are many existing problems or because the software has undergone
extensive review. We are using CVEs primarily to help determine the exposure
of the program to attack; if several CVEs exist, then it is clearly exposed to attack.

 twelve_month_contributor_count: 5 points for 0 contributors, 4 points for 1–3
contributors, 2 points if the number is unknown (blank).

 Debian popularity count: 1 point if the “popularity” score per Debian is more than
the tenth percentile of the packages being analyzed. The set of packages being
considered is heavily skewed to packages in wide use, and the “popularity” score
is noisy anyway (e.g., a single install from Debian by a router supplier might
result in millions of uses). Thus, this is primarily used to reduce the rating of
projects that appear to be less used.

 Exposure values: 2 points if directly exposed to the network (as a server or client),
1 point if it is often used to process data provided by a network, and 1 point if it

5-3

could be used for local privilege escalation. These values were from expert
estimation by the authors.

 Application data only: Subtract 3 points if the Debian database reports that it is
“Application Data” or “Standalone Data” because this indicates the package isn’t
really code but is instead application data for code (e.g., “geoip-database”). We
believe there is an error in the Debian dataset; “apache2.2-bin” (“binary”) is
marked as application data, while “apache2.2-doc” is not. This error doesn’t
matter since binary package “apache2-utils” also maps to the source package
“apache2,” and so Apache is still considered. Note that “isc-dhcp-common” is
marked as data, but “isc-dhcp-client” is not, so the source package isc-dhcp is still
considered.

The risk rating “ca-certificates” (a list of certificate authorities) is lowered by this
rule. Since the list of certificates is important for security, this is a debatable
result of this rule. However, all major distributions have an active separate
process for reviewing their list of certificate authorities. Thus, we do not think
this lowering of the ca-certificates index rating is a serious problem.

Areas to potentially improve include:

 Improve/fill in missing data. In general we have messy and incomplete data
sources, which require time to address. We already do this in some cases (e.g., to
determine the primary implementation language).

 Gather and analyze bug report processing (e.g., how long (on average) does it take
to respond to a bug report, and how many bug reports lie unresolved after some
time (such as 90 days)). This turns out to be hard data to gather across a large
number of projects, because many projects do not separate bug reports from
enhancement requests. The “isitmaintained.com” site can analyze GitHub
projects to separate bug reports from enhancement requests, but it cannot analyze
projects on sites other than GitHub, and it requires that a project use one of the
tags it knows about.

 Perform static analysis on source code to determine the likely number of latent
vulnerabilities (e.g., using Coverity scan, RATS, or flawfinder); measures such as
hit density could indicate more problematic software.

There are many ways to acquire more data, and many ways to combine data to find a
combined score. The heuristic above described here is our current attempt.

6-1

6. Current Process Results

The file “results.csv” contains the entire set of packages we’ve measured, sorted by
the heuristic risk index we created. We first present the list of packages that are considered
riskiest, considering only the risk score. We manually reviewed the packages that scored
riskiest, and selected the ones we believe actually are riskier (since humans can estimate
other factors such as the likelihood that a program defect will lead to a vulnerability).

A. Riskiest OSS Programs (straight from scores)
The OSS Debian binary packages with the largest two risk values are shown in

Table 3.

Table 3. Riskiest OSS Programs (straight from scores)

BINARY PACKAGE
NAME

SOURCE PACKAGE NAME
(IF DIFFERENT)

ftp netkit-ftp

netcat-traditional netcat

tcpd tcp-wrappers

whois

at

libwrap0 tcp-wrappers

traceroute

xauth

bzip2

hostname

libacl1 acl

libaudit0 audit

libbz2-1.0 bzip2

libept1.4.12 libept

libreadline6 readline6

libtasn1-3

linux-base

telnet netkit-telnet

6-2

B. Riskiest OSS Programs
We examined the top packages as determined by the score and selected a subset we

thought were especially risky. In this process, we used the score to guide us on what to
look at, but we also took into account our knowledge of how the programs are used and
marked those that appeared most risky with “++”; where we were especially concerned,
we marked them with “+++”. Here the “Debian source” is the name of the source package
(which is the name of the overall project this comes from), while “project name” is the
Debian binary package (a source package can generate many binary packages). We did
analysis on a binary package level since there can be distinctions between different binary
packages, but the table below re-groups the information into source package names to make
this easier to follow.

Projects that we find especially concerning, because they appear to be relatively
unmaintained even after searching for more information, are the following (we marked
these with “+++”):

 bzip2

 gzip

 expat (libexpat1)

 zlib (zlib1g)

 libjpeg8

 libpng (libpng12-0)

 unzip

 mod-gnutls (libapache2-mod-gnutls).

The “libapache2-mod-gnutls” package is especially concerning; this is a key glue
mechanism between Apache and GnuTLS, but it seems to be minimally maintained. The
others are libraries for processing various formats (images, compression, and XML) that
are the basis for many other functions that do not seem to be well maintained. These
packages appear because our metrics focus on projects that have relatively little
maintenance and either are exposed to the network or are often used to directly process
data provided by potential attackers.

Table 4 lists the riskiest OSS programs, as determined by humans examining the list
of the projects ranking higher on our risk index. The “comment_on_priority” field is
ASCII text commenting on why they are prioritized; in some cases words are emphasized
through capitalization, and short incomplete phrases are used for brevity. These are sorted
by our risk index:

6-3

Table 4. Riskiest OSS Programs (human-identified subset informed by risk measures)

debian_source project_name comment_on_priority

xauth xauth X Authentication - might enable local privilege escalation.
Home Page: http://www.x.org/. There are current efforts to
replace this (e.g., Wayland, Mir). One nice thing...
www.x.org/wiki/Development/Security/. ++

bzip2 bzip2 Bzip2 is widely used for decompression of network-supplied
data. No code repo, only released code source tarballs. This
is the reference implementation, many alternate
implementations shown on https://en.wikipedia.org/wiki/Bzip
2. Last release in 2010, v1.0.6, in response to CVE-2010-
0405. No forums found. At least one HTTP server supports
bzip2 for compression. +++

audit libaudit0 Audit framework for Debian, many other components
depend on it. Useful for detecting problems. Project
infrastructure at Red Hat. SVN repo available. Mailing lists
and IRC exist. v2.4 release 10/2014, plans exist for v2.5 and
2.6. Couldn't find an issue tracker. ++

bzip2 libbz2-1.0 Bzip2 is widely used for decompression of network-supplied
data. ++

libtasn1-3 libtasn1-3 Important because X.509 certificates (standard for
certificates) use ASN.1. A Gnu project, git repo and mailing
list available from home page. No issue tracker found.
Search on 'security' in mailing list archives shows a few
messages from Debian using security-related compiler flags.
Debian security page shows a history of CVE's being fixed,
most recent in 2014. OpenHub page at https://www.openhub
.net/p/libtasn1 gives stats. Active effort of one developer,
with some external contributions. ++

bind9 bind9-host,
dnsutils, libbind9-
80, libdns88,
libisc84,
libisccc80,
libisccfg82,
liblwres80

Bind9 is critical for security. Support is via mailing lists. Very
active development, issue tracker intentionally not
public...claimed to be "huge backlog" of issues. Public git
repo. Active history of CVEs raised and fixed. ++

exim4 exim4, exim4-
base, exim4-
config, exim4-
daemon-light

This is an MTA, thus has to process untrustworthy data.
Mailing lists, bugzilla tracker, public git repo. Active history of
CVE issues and fixes. Active with 16 contributors in last
year. ++

isc-dhcp isc-dhcp-client In wide use, accepts data from external sources. Includes
dhclient. Very similar to BIND. Perhaps slightly less active,
lower developer count, but steady commits and releases.
Somewhat critical due to being core network functionality.
++

gnutls26 libgnutls26 TLS implementation. Less used than OpenSSL, but is in use
(it avoids OpenSSL licensing issues). Good "security
activity" metrics, except suspiciously empty GitLab issue
tracker, especially when Debian Security page shows many

6-4

debian_source project_name comment_on_priority
existing vulnerabilities. They may sweep the public issue
tracker so as not to expose what they're trying to fix before
it's ready. Notably still supporting SSL 3.0, which has known
exploits. There is evidence they do stay on top of things,
though. They have responded to questions regarding
FREAK in their mailing lists, explaining gnutls is not
vulnerable due to how it operates. ++

gpgme1.0 libgpgme11 Vital for protecting email (see gpg) Git repo available. Issue
tracker site uses self-signed cert; it's concerning that a user
would have to compromise the HTTPS security model just to
view and interact with the bug tracker. Openhub doesn't
reflect their mailing lists in *multiple languages*. Appears to
be actively maintained mostly by one dev, but notably just
got donations supporting him for the next 2–3 years. ++

openldap libldap-2.4-2 Wide use, vitally important. Very active. Public repo, issue
tracker, lists, active development, closing CVEs, the works.
This is vitally important, but they appear to have things in
hand in terms of project activity. ++

pam libpam-modules,
libpam0g, libpam-
modules-bin

Critical central role for authentication. Real site is
http://www.linux-pam.org/ (Debian lists as
http://pam.sourceforge.net/, but that points to
https://fedorahosted.org/linux-pam/, which points to this). It
has a somewhat active mailing list, and an active issue
tracker where issues are clearly opened and closed. Stable
version is somewhat old (2013); recent changes in git
though relatively small (https://git.fedorahosted.org/cgit/linux
-pam.git/) ++

openssl libssl1.0.0,
openssl

Critical, in wide use. OpenSSL is already funded by CII. ++

net-tools net-tools It is unclear whether the Debian package and SourceForge
project are still related. This warrants further examination.
Upstream listed as https://developer.berlios.de/projects/net-
tools/ but has moved to http://sourceforge.net/projects/net-
tools/. Has mailing though rather inactive. Has public git
repo, latest commit 2015-01-07 on 2015-03-12. These are
tools for controlling the network and typically run as root; it is
unclear how exposed they are to network attack (most, if not
all, are probably not exposed). This lack of exposure
probably lowers their priority. ++

openssh openssh-client,
openssh-server

Vital for security. CII already investing in this. ++

rsyslog rsyslog Processes data from untrusted users. Important today; as
systemd becomes more used, its use may lessen but still
important for merging data sources. Project page
http://www.rsyslog.com/. Official repo on GitHub,
https://github.com/rsyslog. This is an active multi-person
project; in the 1-month period February 12, 2015 through
March 12, 2015, excluding merges, 7 authors have pushed
27 commits to master and 40 commits to all branches. On

6-5

debian_source project_name comment_on_priority
master, 37 files have changed and there have been 677
additions and 216 deletions. ++

wget wget Directly processes potentially malicious data from the
Internet, often used in scripts. GNU project.
https://www.gnu.org/software/wget/. Actual development on
GNU's Savannah using git and its bugtracker,
http://savannah.gnu.org/projects/wget/. Actively developed,
many patches. wget-1.16.3 released 2015-03-09 on
downloads. Note that this is directly exposed to attack. It has
some code documentation (e.g.,
http://wget.addictivecode.org/NavigatingTheSource), but it
warns that it can be fairly hard to follow, contains a fair
number of hacks, and functionality that was "tacked on"
(which is not good for security). ++

apr-util libaprutil1-ldap,
libaprutil1

Important. The general Apache Portable Runtime (APR)
appears to be actively maintained. The LDAP driver is
maintained as part of APR, http://apr.apache.org/. The APR-
util version 1.5.4 was released September 22, 2014, so it is
actively maintained. They use the apache.org repo and
subversion; apr-util has been merged into main trunk,
making it a little harder to see LDAP specifics to determine
whether the LDAP portion is active. Mailing list
dev@apr.apache.org seems active. ++

coolkey coolkey Smart card drivers. Not used in many environments, but
critically important for security in other environments. Activity
unclear. Managed via Fedora packaging, active here:
https://apps.fedoraproject.org/packages/coolkey, but that is
not where the real code is maintained. Important for users of
PKCS#11, but slightly specialized.
http://pkgs.fedoraproject.org/gitweb/?p=coolkey.git
http://pkg-coolkey.alioth.debian.org/ ++

ntp ntp Directly connects to network and open to attack. HAS Home
Page, NO issue tracker, has mailing list, public repo. CII
investing. ++

gnupg gnupg, gpgv Vital for protecting email (CII has already invested with a
one-time investment). ++

gzip gzip Widely-used compression/decompression. Vital, a
vulnerability here could be very serious.
http://www.gnu.org/software/gzip/ Maintained on Savannah
(http://savannah.gnu.org/projects/gzip/) using git. Last formal
release was June 2013. Multiple contributors, but not many.
Current git contributions, but only a few a month (2015-02-
08, 2015-01-02, 2014-11-10, 2014-10-10), and most seem
to be small/trivial (document and syntax tweaks). +++

expat libexpat1 Parses potentially-dangerous data. This is an XML parser
library written in C. Maintenance appears to have effectively
halted after its 2012 release. Project at: http://www.libexpat.
org/ (It was at, http://expat.sourceforge.net/ and its
movement is not obvious, so some may be using an older

6-6

debian_source project_name comment_on_priority
version; this was follow-on from James Clark's original
Expat). On 24 March 2012 Expat 2.1.0 released, it includes
security vulnerability fixes for 5 CVEs; Previous release was
2007. "Bug reports" produces error page - tracking does not
seem to work. No public mailing list. CVS browsing suggests
little or no activity after 2012 (and little before that). Many
systems build on top of this library. Note that this doesn't
support XML 1.1. +++

freetype libfreetype6 Dangerous. Processes data from network, including fonts
embedded in websites. Main site http://www.freetype.org/
Last release FreeType 2.5.5, 2014-12-30. Git repo. Very
active git repo by multiple contributors. ++

libgcrypt11 libgcrypt11 Crypto library, security-relevant. LGPL crypto library. Part of
GnuPG (GNU Privacy Guard). http://ftp.gnupg.org/gcrypt/lib
gcrypt/. Already selected by CII. ++

keyutils libkeyutils1 Manages authorization and encryption keys required to
perform secure operations. Public Repo, NO bug tracker,
NO mailing list. ++

xz-utils liblzma5, xz-utils Widely-used compression/decompression. Vital, a
vulnerability here could be very serious. Has Home page,
public repo, Fairly active ML http://www.mail-archive.com/xz-
devel@tukaani.org/, NO bug tracker ++

p11-kit libp11-kit0 Manages security keys. Has Home page, Bug Tracker
https://bugs.freedesktop.org/enter_bug.cgi?product=p11-
glue, ML http://lists.freedesktop.org/archives/p11-glue/ fairly
active ++

pcre3 libpcre3 Regexes are widely used for security-relevant input
validation. Has Home page, Bug Tracker
http://bugs.exim.org/buglist.cgi?product=PCRE NOT very
active, public repo http://sourceforge.net/projects/pcre/files/
++

cyrus-sasl2 libsasl2-2,
libsasl2-modules

Authentication library. Has Home Page, HAS bug tracker
https://bugzilla.cyrusimap.org/index.cgi, fairly active ML
http://asg.andrew.cmu.edu/archive/index.php?mailbox=archi
ve.cyrus-sasl ++

libxml2 libxml2 Processes attacker-provided data. Has Home Page, Has
bug tracker
https://bugzilla.gnome.org/buglist.cgi?product=libxml2 which
is very active. ++

shadow login Front door for local login. Has Home Page, part of shadow
tool suite, Latest release May 2014, Public Repo, Somewhat
active mailing list, NO issue tracker. ++

tar tar Widely-used compression/decompression. Vital, a
vulnerability here could be very serious. Has Home page,
mailing list, Public Repo git://git.savannah.gnu.org/tar.git,
uses "technical support" for issue tracking (could be
confusing). Does have changes in git repo, but only a few a
month and typically small. ++

6-7

debian_source project_name comment_on_priority

zlib zlib1g Widely-used compression/decompression. Vital, a
vulnerability here could be very serious. Has Home Page,
has mailing list zlib@gzip.org, NO issue tracker, Latest
release April 2013 (old). +++

apr libapr1 Important. The general Apache Portable Runtime (APR)
appears to be actively maintained. However, it's not as clear
that the LDAP library in it is as actively managed. Has Home
Page, HAS Mailing List, Issue tracker
https://bz.apache.org/bugzilla/enter_bug.cgi?product=APR
++

libjpeg8 libjpeg8 Widely-used format that is decompressed and provided by
attackers. HAS Home Page, Can download as tarball, NO
issue tracker, latest version/activity Jan 2014, NO mailing list
+++

libpng libpng12-0 Widely-used format that is decompressed and provided by
attackers. HAS Home Page, Can Access Source code, Not
much activity - just warnings about CVEs that were fixed.
+++

libressl libressl Fork of OpenSSL. Has Home Page, Can Download as
tarball, VERY Active on Github https://github.com/libressl-
portable/portable ++

unzip unzip Widely-used format that is decompressed and provided by
attackers. Has Home Page, Can Download Binaries, NO
issue tracker. +++

giflib libgif4 Widely-used format that is decompressed and provided by
attackers. Has Home Page, Active issue tracker, Mailing list,
public repo. ++

mod-gnutls libapache2-mod-
gnutls

This is in widespread use for SSL/TLS on webservers; it
uses GnuTLS instead of OpenSSL. Old website
http://www.outoforder.cc/projects/apache/mod_gnutls/ points
to newer site "https://mod.gnutls.org/?outoforder-ref". At
newer site the mailing list has a few relevant
postings/month, though the March 2015 postings raise
concerns about dropped patches. The bug tracker is badly
spammed and one seems to be fixing/addressing it. Last
release 17-Feb-2014. This looks like it badly needs help.
+++

postfix postfix "This is a widely-used mail transfer agent (MTA). Postfix was
created by Wietse Venema, main site www.postfix.org. On
February 8, 2015 Postfix released 3.0.0, so currently active.
Developer mailing list postfix-devel has activity.
(e.g., http://news.gmane.org/gmane.mail.postfix.devel/cutoff
=2948). There is no public repo; Wietse (the lead developer)
does not want to allow any external review
before formal release, as noted in https://groups.google.com
/forum/#!topic/mailing.postfix.users/6Kkel3J_nv4 (The
Debian package may be an obsolete fork; the Debian
package has been assembled by LaMont Jones from
sources available from http://www.postfix.org, and can be

6-8

debian_source project_name comment_on_priority
cloned from git via: git clone git://git.debian.org/~lamont/post
fix.git. Changes on http://anonscm.debian.org/cgit/users/lam
ont/postfix.git/log/ in git stop in 2011.). ++"

cryptsetup cryptsetup This is used to set up disk encryption (at rest) (e.g., Linux
Unified Key Setup (LUKS)). Home page
http://code.google.com/p/cryptsetup, uses git. Tracker in
active use. Latest version 1.6.6 released 2014-08-16.
Development ongoing; 8 commits in February 2015. ++

C. Potential Improvements to Other Sites to Improve Data
Some changes to other sites would make tasks like this much easier:

1. Debian could include in their packages detailed automatically extractable URLs
that identify their upstream source (and if different, the repository they directly
use). This information is often in the “copyright” information, but not
necessarily in a specific format, and it is often stale (e.g., if the project moves,
the Debian data often includes only the old URL).

2. Individual projects should have publicly visible version control repositories,
discussion mechanisms (e.g., mailing list), and issue trackers (security-relevant
issues may be temporarily private). Projects can use GitHub, SourceForge,
Savannah, and similar systems to easily meet these needs; if they choose to self-
host, they should do so in a standardized way so that automated crawlers can
gather data across multiple projects. Doing this makes it much easier for third
parties to determine whether a project is active. There are good reasons to do
this anyway; potential users and developers will also want to see this, to give
them confidence that the software is being actively maintained by multiple
people.

3. Issue trackers should have a clear and standard mechanism for distinguishing
bugs from enhancement requests. Bug response times are important indicators
for project responsiveness, and mixing them up with enhancement requests
makes the data less useful. It would be very helpful if sites like GitHub would
build in, by default, some tags for this purpose when projects start.

7-1

7. Conclusions

Some OSS projects are more concerning from a security point of view than others.
We have used quantitative analysis, combined with human knowledge, to identify
especially concerning OSS projects for further (human) investigation and possible
investment. It would be a mistake to assume that all OSS is insecure. It would also be a
mistake to assume that just because software has an OSS license it must be secure. Instead,
OSS should be evaluated; if a particular OSS project is important but insecure, steps should
be taken to improve or replace it.

This work does not “turn the crank and produce the answers.” There are many reasons
for this; for example, limited metrics were available in the limited time we had, and some
metrics, such as the metrics for bug report responses, turned out to be difficult to acquire
in the time we had. Measuring software security is notoriously difficult, so we did not
attempt to do it directly. The data sources we had were “messy”; for example, it is difficult
to map names to the correct project websites, and data such as number of contributors can
be difficult to get automatically across many projects. Indeed, project websites may not
give a full picture of the actual situation.

An additional challenge is that a lot of human knowledge is not easily captured. For
example, “ftp” (the client) and “netcat-traditional” rank as high risk; that makes sense
because they definitely interact with the network and thus create opportunities for remote
attack. What is more, the ones used by Debian do not appear to be very active projects.
Are they really that critical, though? A vulnerability in netcat, while undesirable, is
unlikely to have the same impact as a vulnerability in openssl, openssh, or some other
programs.

There are also some strategic questions in terms of what kinds of programs should
receive investment. For example, Mail Transfer Agents (MTAs) scored higher than many
other programs in terms of risk, in part because they are directly exposed to attack from
the network. Should security investments be made in MTAs, or would the money be better
spent elsewhere?

Thus, though we provide a list of programs identified solely by our metrics, we also
provide a list of programs that were identified as higher risk, and then selected the most
likely ones from them. That is the process we would recommend to others as well. That
said, we were guided by the data, especially for identifying the larger set to then be
examined further. We have provided our initial cut using this process. We believe the next
step is to further investigate these OSS projects for security and project healthiness. The

7-2

more detailed “results.csv” file includes the complete list of packages and data that we have
gathered about them.

R-1

References

[Arora2006] Arora, Ahsish, Ramayya Krishnan, Rahul Telang, and Yubao Yang.
An Empirical Analysis of Software Vendors’ Patching Behavior:
Impact of Vulnerability Disclosure. Carnegie Mellon University.
January 2006.
http://www.heinz.cmu.edu/~rtelang/disclosure_jan_06.pdf

[Callaway] Callaway, Tom. “How to tell if a FLOSS project is doomed to FAIL.”
The Open Source Way. https://www.theopensourceway.org/wiki/How_
to_tell_if_a_FLOSS_project_is_doomed_to_FAIL

[Christey2007] Christey, Steve. Unforgiveable Vulnerabilities. 2007-08-02.
http://cve.mitre.org/docs/docs-2007/unforgivable.pdf

[Crowston2003] Crowston, K., H. Annabi, and J. Howison. “Defining open source
software project success.” ICIS 2003: Proceedings of the 24th
Internatinoal Conference on Information Systems (Seattle, WA). 2003.

[DoD2009] U.S. Department of Defense (DoD) Chief Information Officer (CIO).
“Clarifying Guidance Regarding Open Source Software (OSS).” 2009-
10-19. http://dodcio.defense.gov/Portals/0/Documents/FOSS/2009OSS
.pdf

[Fenton1997] Fenton, N.E. and S.L. Pfleeger. Software metrics: a Rigorous &
Practical Approach. International Thompson Press. 1997.

[Fogel2013] Fogel, Karl. Producing Open Source Software: How to Run a
Successful Free Software Project. 2013. http://producingoss.com/

[FSF] Free Software Foundation (FSF). The Free Software Definition
(FSD). Retrieved 2015-03-27. https://www.gnu.org/philosophy/free-
sw.html

[Gao2011] Gao, Kehan, Taghi M. Khoshgoftaar, Huanjing Wang, and Naeem
Seliya. “Choosing software metrics for defect prediction: an
investigation.” Software – Practice and Experience. pp. 579–606.
2011. http://deepblue.lib.umich.edu/bitstream/handle/2027.42/83475/
1043_ftp.pdf

[Ghapanchi2011] Ghapanchi, Amir Hossein , Aybuke Aurum, and Graham Low. “A
taxonomy for measuring the success of open source software projects.”

https://www.theopensourceway.org/wiki/How_to_tell_if_a_FLOSS_project_is_doomed_to_FAIL
https://www.theopensourceway.org/wiki/How_to_tell_if_a_FLOSS_project_is_doomed_to_FAIL
http://cve.mitre.org/docs/docs-2007/unforgivable.pdf
http://dodcio.defense.gov/Portals/0/Documents/FOSS/2009OSS.pdf
http://dodcio.defense.gov/Portals/0/Documents/FOSS/2009OSS.pdf
http://producingoss.com/
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/83475/1043_ftp.pdf
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/83475/1043_ftp.pdf

R-2

First Monday. 2011.
http://firstmonday.org/ojs/index.php/fm/article/view/3558/3033

[Halstead1977] Halstead, M.H. Elements of Software Science. Elsevier. 1977.

[Hofman2009] Hofmann, Philipp and Dirk Riehle. “Estimating Commit Sizes
Efficiently.” http://dirkriehle.com/wp-
content/uploads/2009/02/hofmann-riehle-oss-2009-final.pdf

[Howard2003] Michael Howard, Jon Pincus, and Jeannette M. Wing. Measuring
Relative Attack Surfaces. 2003.
http://www.cs.cmu.edu/~wing/publications/Howard-Wing03.pdf

[Krebs2006a] Krebs, Brian. “A Time to Patch.” The Washington Post. January 11,
2006. http://voices.washingtonpost.com/securityfix/2006/01/a_time_to
_patch.html

[Krebs2006b] Krebs, Brian. “A Time to Patch II: Mozilla.” The Washington Post.
February 7, 2006.
http://voices.washingtonpost.com/securityfix/2006/02/a_time_to_patch
_ii_mozilla.html

[Krebs2006c] Krebs, Brian. “A Time to Patch III: Apple.” The Washington Post.
May 1, 2006. http://voices.washingtonpost.com/securityfix/2006/05/a_
time_to_patch_iii_apple_2.html

[Manadhata2004] Manadhata, Pratyusa, and Jeannette M. Wing. “Measuring a System’s
Attack Surface.” January 2004. CMU-CS-04-102.
http://www.cs.cmu.edu/~wing/publications/tr04-102.pdf

[Manadhata2007] Manadhata, Pratyusa K., Kymie M. C. Tan, Roy A. Maxion, Jeannette
M. Wing. “An Approach to Measuring A System’s Attack Surface.”
August 2007. CMU-CS-07-146.
http://www.cs.cmu.edu/~wing/publications/CMU-CS-07-146.pdf

[McCabe1976] McCabe, T.J. “A Complexity Measure.” IEEE Transactions on
Software Engineering. 1976-12. Volume 2, number 4. pp. 308–320.

[Misra2012] Mishra, Bharavi, and K.K. Shukla. “Defect Prediction for Object
Oriented Software using Support Vector based Fuzzy Classification
Model.” International Journal of Computer Applications, Volume 60,
No. 15. December 2012. http://citeseerx.ist.psu.edu/viewdoc/download
?doi=10.1.1.303.3890&rep=rep1&type=pdf

[Obama2013] Obama, Barack (in his role as President of the United States).
Executive Order 13636—Improving Critical Infrastructure

http://firstmonday.org/ojs/index.php/fm/article/view/3558/3033
http://dirkriehle.com/wp-content/uploads/2009/02/hofmann-riehle-oss-2009-final.pdf
http://dirkriehle.com/wp-content/uploads/2009/02/hofmann-riehle-oss-2009-final.pdf
http://www.cs.cmu.edu/%7Ewing/publications/Howard-Wing03.pdf
http://voices.washingtonpost.com/securityfix/2006/01/a_time_to_patch.html
http://voices.washingtonpost.com/securityfix/2006/01/a_time_to_patch.html
http://voices.washingtonpost.com/securityfix/2006/02/a_time_to_patch_ii_mozilla.html
http://voices.washingtonpost.com/securityfix/2006/02/a_time_to_patch_ii_mozilla.html
http://voices.washingtonpost.com/securityfix/2006/05/a_time_to_patch_iii_apple_2.html
http://voices.washingtonpost.com/securityfix/2006/05/a_time_to_patch_iii_apple_2.html
http://www.cs.cmu.edu/%7Ewing/publications/tr04-102.pdf
http://www.cs.cmu.edu/%7Ewing/publications/CMU-CS-07-146.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.303.3890&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.303.3890&rep=rep1&type=pdf

R-3

Cybersecurity. The Federal Register. Vol. 78, No. 33. 2011-02-19.
http://www.gpo.gov/fdsys/pkg/FR-2013-02-19/pdf/2013-03915.pdf

[OSI] Open Source Initiative (OSI). The Open Source Definition (OSD).
Retrieved 2015-03-27. http://opensource.org/osd

[Petreley2004] Petreley, Nicholas. “Security Report: Windows vs Linux.” The
Register. http://www.theregister.co.uk/2004/10/22/security_report_win
dows_vs_linux/

[Punitha2013] Punitha, K. and S. Chitra. Software defect prediction using software
metrics – A survey. International Conference on Information
Communication and Embedded Systems (ICICES). 2013. 2013-02-21
and -22. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6508369

[Rodriguez2012] Rodriguez, Daniel, Israel Herraiz, and Rachel Harrison. “On Software
Engineering Repositories and their Open Problems.”
http://promisedata.org/raise/2012/slides/RAISE12_Rguez.pdf

[Samoladas2004] Samoladas, Ioannis, Ioannis Stamelos, Lefteris Angelis, and Apostolos
Oikonomou. “Open Source Software Development Should Strive For
Even Greater Code Maintainability.” Communications of the ACM.
Volume 47 Issue 10, October 2004. pp. 83–87.
http://dl.acm.org/citation.cfm?id=1022598

[Schryen2009] Schryen, Guido, and Rouven Kadura. “Open source vs. closed source
software: towards measuring security.” SAC ’09 Proceedings of the
2009 ACM symposium on Applied Computing. pp. 2016–2023. ACM
New York, NY, USA. ISBN: 978-1-60558-166-8
doi>10.1145/1529282.1529731.
http://dl.acm.org/citation.cfm?id=1529731

[Schryen2011] Schryen, Guido. “Is Open Source Security a Myth?” Communications
of the ACM, Vol. 54 No. 5, pp. 130–140. 10.1145/1941487.1941516.
May 2011. http://cacm.acm.org/magazines/2011/5/107687-is-open-
source-security-a-myth/fulltext

[Schweik2012] Schweik, Charles M. and Robert C. English. Internet Success.

[Shaikh2009] Shaikh, Siraj A. and Antonio Cerone. Towards a metric for Open
Source Software Quality. ECEASST 2009. Volume 20.
http://journal.ub.tu-berlin.de/eceasst/article/view/279/287

[Spinellis2009] Spinellis, Diomidis, Georgios Gousios, Vassilios Karakoidas,
Panagiotis Louridas, Paul J. Adams, Ioannis Samoladas, and Ioannis

http://www.gpo.gov/fdsys/pkg/FR-2013-02-19/pdf/2013-03915.pdf
http://opensource.org/osd
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6508369
http://promisedata.org/raise/2012/slides/RAISE12_Rguez.pdf
http://dl.acm.org/citation.cfm?id=1022598
http://cacm.acm.org/magazines/2011/5/107687-is-open-source-security-a-myth/fulltext
http://cacm.acm.org/magazines/2011/5/107687-is-open-source-security-a-myth/fulltext
http://journal.ub.tu-berlin.de/eceasst/article/view/279/287

R-4

Stamelos. Evaluating the Quality of Open Source Software. Electronic
Notes in Theoretical Computer Science 233 (2009) 5–28.

[Springsteen1994] Springsteen, Beth, Dennis W. Fife, John F. Kramer, Reginald N.
Meeson, Judy Popelas, and David A. Wheeler. Survey of Software
Metrics in the Department of Defense and Industry. April 1994. IDA
Paper P-2996. Institute for Defense Analyses, Alexandria, VA. IDA
Log No. HQ 94-045746.

[tera-PROMISE] tera-PROMISE. “Tutorial on Defect Prediction: Generating defect
predictors.” http://openscience.us/repo/defect/tut.html

[Thomson2014] Thomson, Iain. “‘Critical’ security bugs dating back to 1987 found in
X Window.” The Register. December 10, 2014.
http://www.theregister.co.uk/2014/12/10/x_window_system_bugs/

[Wang2011] Wang, Huanjing, Taghi M. Khoshgoftaar, and Naeem Seliya. “How
Many Software Metrics Should be Selected for Defect Prediction?”
2011. Association for the Advancement of Artificial Intelligence.
http://www.aaai.org/ocs/index.php/flairs/flairs11/paper/download/255
8/2993

[Wheeler2011e] Wheeler, David A. How to Evaluate Open Source Software / Free
Software (OSS/FS) Programs.
http://www.dwheeler.com/oss_fs_eval.html

[Wheeler2014g] Wheeler, David A. The Apple goto fail vulnerability: lessons learned.
2014-11-27. http://www.dwheeler.com/essays/apple-goto-fail.html

[Wheeler2014h] Wheeler, David A. How to Prevent the next Heartbleed. 2014-10-20.
http://www.dwheeler.com/essays/heartbleed.html

[Wheeler2014n] Wheeler, David A. Why Open Source Software / Free Software
(OSS/FS, FLOSS, or FOSS)? Look at the Numbers!
http://www.dwheeler.com/oss_fs_why.html

[Woody2014] Woody, Carol, Robert Ellison, and William Nichols. Predicting
Software Assurance Using Quality and Reliability Measures.
December 2014. CMU/SEI-2014-TN-026.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=428589

http://openscience.us/repo/defect/tut.html
http://www.theregister.co.uk/2014/12/10/x_window_system_bugs/
http://www.aaai.org/ocs/index.php/flairs/flairs11/paper/download/2558/2993
http://www.aaai.org/ocs/index.php/flairs/flairs11/paper/download/2558/2993
http://www.dwheeler.com/oss_fs_eval.html
http://www.dwheeler.com/essays/apple-goto-fail.html
http://www.dwheeler.com/essays/heartbleed.html
http://www.dwheeler.com/oss_fs_why.html
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=428589

AA-1

Acronyms and Abbreviations

*BSD One of the descendants of the BSD operating system, such as FreeBSD,
NetBSD, and OpenBSD

AOSP Android Open Source Project
API Application Programming Interface
AUC Area Under the ROC Curve
BFD Binary File Descriptor
BSD Berkeley Software Distribution
BY Attribution (a Creative Commons license)
CC Creative Commons
CCCC C and C++ Code Counter
CII Core Infrastructure Initiative
CMS Content Management System
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
DEA Data Envelopment Analysis
DHS Department of Homeland Security
FAQ Frequently Asked Questions
FIPS Federal Information Processing Standards
FLOSS Free/Libre/Open Source Software
FS Free Software
FSF Free Software Foundation
FTP File Transfer Protocol
GCC GNU Compiler Collection
GNU GNU’s Not Unix
GPG GNU Privacy Guard
GPL (GNU) General Public License
GTRI Georgia Tech Research Institute
HOST Homeland Open Security Technology
IDA Institute for Defense Analyses
IMAP Internet Message Access Protocol
IRC Internet Relay Chat
KSLOC Thousand Source Lines of Code
KVM Kernel-based Virtual Machine
LF Linux Foundation
LR Logistic Regression
MIT Massachusetts Institute of Technology
MTA Mail Transfer Agent
NIST National Institute of Standards and Technology
NTP Network Time Protocol
NVD (NIST) National Vulnerability Database

AA-2

OS Operating System
OSI Open Source Initiative
OSMM Open Source Maturity Model (note: several different projects use this name)
OSS Open Source Software
OWASP Open Web Application Security Project
PAM Pluggable Authentication Module
PHP PHP: Hypertext Preprocessor
QSOS Qualification and Selection of Open Source software
RDMA Remote Direct Memory Access
REST Representational State Transfer
ROC Receiver Operating Characteristic
RPC Remote Procedure Call
SLOC Source Lines of Code
SSL Secure Sockets Layer
SVM Support Vector Machines; see [Mishra2012]
TLS Transport Layer Security
Y-O-Y Year-Over-Year

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

15-06-19 Final
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Open Source Software Projects Needing Security Investments N66001-11-C-0001,
Subcontract D6384-S5

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

David A. Wheeler, Samir Khakimov GT-5-3329
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

D-5459 v 1.0
H 15-000253

Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

GTRI / Linux Joshua L. Davis
Georgia Tech Research Institute
250 14th Street NW, Room 256, Atlanta, GA 30318
&
Jim Zemlin, The Linux Foundation, jzemlin@gmail.com

11. SPONSOR’S / MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Project Leader: David A. Wheeler
14. ABSTRACT

Some open source software (OSS) is widely used and depended on, and yet not received the level of security analysis
appropriate to its importance. This paper describes our work to help identify OSS projects that may especially need
investment for security by identifying and using metrics. We performed a literature search, identified promising metrics
and potentially-concerning software packages to investigate, developed a specific approach, and applied it to identify a set
of OSS projects that we believe are especially concerning. We have focused on automatically gathering metrics, especially
those that suggest less active projects. For our initial set of projects to examine we took the set of software packages
installed by Debian base and added packages that we or others identified as potentially concerning; we could easily add
more projects to consider in the future.
15. SUBJECT TERMS

open source software, security, software assurance, vulnerabilities, metrics, measurement, investment, free software,
Heartbleed, OpenSSL, Linux Foundation, HOST

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

88

19a. NAME OF RESPONSIBLE PERSON
 Joshua L. Davis

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area
Code)

 678-831-0182 Unclassified Unclassified Unclassified

mailto:jzemlin@gmail.com

	1. Introduction
	2. Some Past and Current Efforts to Identify Relevant OSS Project Metrics
	A. OSS Metrics Data Sources
	1. Black Duck Open Hub
	2. OSS Repository Statistics (GitHub, SourceForge, git, etc.)
	3. Linux Distribution Repositories
	4. FLOSSmole
	5. FLOSSMetrics Project
	6. FLOSS Community Metrics Meeting
	7. Rodriguez Survey of Software Data Repositories
	8. PROMISE

	B. Methods for Evaluating OSS Projects
	1. Stol and Babar
	2. QualiPSo OpenSource Maturity Model (OMM)
	3. QSOS
	4. SQO-OSS / Spinellis, et al
	5. Ghapanchi’s Taxonomy for Measuring OSS Project Success
	6. Wheeler OSS Evaluation Model
	7. Doomed to FAIL Index
	8. Internet Success

	C. Specific Potentially Useful Security Metrics
	1. In-Depth Static Analysis Security Tools (e.g., Coverity Scan)
	2. Lexically Scanning Static Analysis Security Tools (e.g., flawfinder and RATS)
	3. Wikipedia Article on OSS Security
	4. Common Vulnerabilities and Exposures (CVE) Count
	5. Schryen and Kadura
	6. “Look at the Numbers” – Wheeler
	7. Presence of Security Test Suite
	8. Presence/Absence of Past Security Reviews

	D. Specific Potentially Useful General Metrics
	1. Software Quality Metric Measurement Tools
	2. Compiler Warning Flags and Style Checkers
	3. Senior Defect Prediction Measures – McCabe (Cyclomatic complexity) and Halstead
	4. Test Coverage
	5. Source Lines of Code
	6. Lincke Survey
	7. Estimating Commit Sizes Efficiently – Hoffmann and Riehle
	8. Choosing Software Metrics – Gao
	9. Assessing Predictors of Software Defects – Menzies
	10. How Many Software Metrics for Defect Prediction? – Wang
	11. Software Defect Prediction – Punitha
	12. COQUALMO
	13. DoD/Industry 1994 Survey

	E. Attack Surface Measurement
	F. Kenn White Metrics Set
	G. IDA Ideas
	1. Exposure to Attack
	2. Other Work

	H. London January 2015 Meeting
	I. Additional Areas for Review
	J. Comments on Metrics

	3. Important OSS Projects
	A. Common in Distributions
	B. Linux Foundation Original List
	C. Kenn White List
	D. Google Application Security Patch Reward Program
	E. Recent Problem Reports
	F. Augmented List of Programs

	4. Selected Approach and Early Results
	A. Overall Approach
	B. Caveats
	C. First Stage
	D. Second Stage

	5. Current Process
	A. Current Simplified Approach
	B. Risk Index

	6. Current Process Results
	A. Riskiest OSS Programs (straight from scores)
	B. Riskiest OSS Programs
	C. Potential Improvements to Other Sites to Improve Data

	7. Conclusions

