
Meltdown: Reading Kernel Memory from User Space

Moritz Lipp1, Michael Schwarz1, Daniel Gruss1, Thomas Prescher2,
Werner Haas2, Anders Fogh3, Jann Horn4, Stefan Mangard1,

Paul Kocher5, Daniel Genkin6,9, Yuval Yarom7, Mike Hamburg8

1Graz University of Technology, 2Cyberus Technology GmbH,
3G-Data Advanced Analytics, 4Google Project Zero,

5Independent (www.paulkocher.com), 6University of Michigan,
7University of Adelaide & Data61, 8Rambus, Cryptography Research Division

Abstract
The security of computer systems fundamentally relies
on memory isolation, e.g., kernel address ranges are
marked as non-accessible and are protected from user
access. In this paper, we present Meltdown. Meltdown
exploits side effects of out-of-order execution on mod-
ern processors to read arbitrary kernel-memory locations
including personal data and passwords. Out-of-order
execution is an indispensable performance feature and
present in a wide range of modern processors. The attack
is independent of the operating system, and it does not
rely on any software vulnerabilities. Meltdown breaks
all security guarantees provided by address space isola-
tion as well as paravirtualized environments and, thus,
every security mechanism building upon this foundation.
On affected systems, Meltdown enables an adversary to
read memory of other processes or virtual machines in
the cloud without any permissions or privileges, affect-
ing millions of customers and virtually every user of a
personal computer. We show that the KAISER defense
mechanism for KASLR has the important (but inadver-
tent) side effect of impeding Meltdown. We stress that
KAISER must be deployed immediately to prevent large-
scale exploitation of this severe information leakage.

1 Introduction

A central security feature of today’s operating systems
is memory isolation. Operating systems ensure that user
programs cannot access each other’s memory or kernel
memory. This isolation is a cornerstone of our computing
environments and allows running multiple applications at
the same time on personal devices or executing processes
of multiple users on a single machine in the cloud.

On modern processors, the isolation between the ker-
nel and user processes is typically realized by a supervi-

9Work was partially done while the author was affiliated to Univer-
sity of Pennsylvania and University of Maryland.

sor bit of the processor that defines whether a memory
page of the kernel can be accessed or not. The basic
idea is that this bit can only be set when entering kernel
code and it is cleared when switching to user processes.
This hardware feature allows operating systems to map
the kernel into the address space of every process and
to have very efficient transitions from the user process
to the kernel, e.g., for interrupt handling. Consequently,
in practice, there is no change of the memory mapping
when switching from a user process to the kernel.

In this work, we present Meltdown10. Meltdown is
a novel attack that allows overcoming memory isolation
completely by providing a simple way for any user pro-
cess to read the entire kernel memory of the machine it
executes on, including all physical memory mapped in
the kernel region. Meltdown does not exploit any soft-
ware vulnerability, i.e., it works on all major operating
systems. Instead, Meltdown exploits side-channel infor-
mation available on most modern processors, e.g., mod-
ern Intel microarchitectures since 2010 and potentially
on other CPUs of other vendors.

While side-channel attacks typically require very spe-
cific knowledge about the target application and are tai-
lored to only leak information about its secrets, Melt-
down allows an adversary who can run code on the vul-
nerable processor to obtain a dump of the entire kernel
address space, including any mapped physical memory.
The root cause of the simplicity and strength of Melt-
down are side effects caused by out-of-order execution.

Out-of-order execution is an important performance
feature of today’s processors in order to overcome laten-
cies of busy execution units, e.g., a memory fetch unit
needs to wait for data arrival from memory. Instead of
stalling the execution, modern processors run operations

10Using the practice of responsible disclosure, disjoint groups of au-
thors of this paper provided preliminary versions of our results to par-
tially overlapping groups of CPU vendors and other affected compa-
nies. In coordination with industry, the authors participated in an em-
bargo of the results. Meltdown is documented under CVE-2017-5754.

out-of-order i.e., they look ahead and schedule subse-
quent operations to idle execution units of the core. How-
ever, such operations often have unwanted side-effects,
e.g., timing differences [55, 63, 23] can leak information
from both sequential and out-of-order execution.

From a security perspective, one observation is partic-
ularly significant: vulnerable out-of-order CPUs allow
an unprivileged process to load data from a privileged
(kernel or physical) address into a temporary CPU regis-
ter. Moreover, the CPU even performs further computa-
tions based on this register value, e.g., access to an array
based on the register value. By simply discarding the
results of the memory lookups (e.g., the modified regis-
ter states), if it turns out that an instruction should not
have been executed, the processor ensures correct pro-
gram execution. Hence, on the architectural level (e.g.,
the abstract definition of how the processor should per-
form computations) no security problem arises.

However, we observed that out-of-order memory
lookups influence the cache, which in turn can be de-
tected through the cache side channel. As a result, an
attacker can dump the entire kernel memory by reading
privileged memory in an out-of-order execution stream,
and transmit the data from this elusive state via a mi-
croarchitectural covert channel (e.g., Flush+Reload) to
the outside world. On the receiving end of the covert
channel, the register value is reconstructed. Hence, on
the microarchitectural level (e.g., the actual hardware im-
plementation), there is an exploitable security problem.

Meltdown breaks all security guarantees provided by
the CPU’s memory isolation capabilities. We evaluated
the attack on modern desktop machines and laptops, as
well as servers in the cloud. Meltdown allows an unpriv-
ileged process to read data mapped in the kernel address
space, including the entire physical memory on Linux,
Android and OS X, and a large fraction of the physi-
cal memory on Windows. This may include the physical
memory of other processes, the kernel, and in the case
of kernel-sharing sandbox solutions (e.g., Docker, LXC)
or Xen in paravirtualization mode, the memory of the
kernel (or hypervisor), and other co-located instances.
While the performance heavily depends on the specific
machine, e.g., processor speed, TLB and cache sizes, and
DRAM speed, we can dump arbitrary kernel and physi-
cal memory with 3.2 KB/s to 503 KB/s. Hence, an enor-
mous number of systems are affected.

The countermeasure KAISER [20], developed initially
to prevent side-channel attacks targeting KASLR, inad-
vertently protects against Meltdown as well. Our evalu-
ation shows that KAISER prevents Meltdown to a large
extent. Consequently, we stress that it is of utmost im-
portance to deploy KAISER on all operating systems im-
mediately. Fortunately, during a responsible disclosure
window, the three major operating systems (Windows,

Linux, and OS X) implemented variants of KAISER and
recently rolled out these patches.

Meltdown is distinct from the Spectre Attacks [40] in
several ways, notably that Spectre requires tailoring to
the victim process’s software environment, but applies
more broadly to CPUs and is not mitigated by KAISER.

Contributions. The contributions of this work are:
1. We describe out-of-order execution as a new, ex-

tremely powerful, software-based side channel.
2. We show how out-of-order execution can be com-

bined with a microarchitectural covert channel to
transfer the data from an elusive state to a receiver
on the outside.

3. We present an end-to-end attack combining out-of-
order execution with exception handlers or TSX, to
read arbitrary physical memory without any permis-
sions or privileges, on laptops, desktop machines,
mobile phones and on public cloud machines.

4. We evaluate the performance of Meltdown and the
effects of KAISER on it.

Outline. The remainder of this paper is structured as
follows: In Section 2, we describe the fundamental prob-
lem which is introduced with out-of-order execution. In
Section 3, we provide a toy example illustrating the side
channel Meltdown exploits. In Section 4, we describe the
building blocks of Meltdown. We present the full attack
in Section 5. In Section 6, we evaluate the performance
of the Meltdown attack on several different systems and
discuss its limitations. In Section 7, we discuss the ef-
fects of the software-based KAISER countermeasure and
propose solutions in hardware. In Section 8, we discuss
related work and conclude our work in Section 9.

2 Background

In this section, we provide background on out-of-order
execution, address translation, and cache attacks.

2.1 Out-of-order execution
Out-of-order execution is an optimization technique that
allows maximizing the utilization of all execution units
of a CPU core as exhaustive as possible. Instead of pro-
cessing instructions strictly in the sequential program or-
der, the CPU executes them as soon as all required re-
sources are available. While the execution unit of the
current operation is occupied, other execution units can
run ahead. Hence, instructions can be run in parallel as
long as their results follow the architectural definition.

In practice, CPUs supporting out-of-order execution
allow running operations speculatively to the extent that

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U
µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Figure 1: Simplified illustration of a single core of the In-
tel’s Skylake microarchitecture. Instructions are decoded
into µOPs and executed out-of-order in the execution en-
gine by individual execution units.

the processor’s out-of-order logic processes instructions
before the CPU is certain that the instruction will be
needed and committed. In this paper, we refer to spec-
ulative execution in a more restricted meaning, where it
refers to an instruction sequence following a branch, and
use the term out-of-order execution to refer to any way
of getting an operation executed before the processor has
committed the results of all prior instructions.

In 1967, Tomasulo [61] developed an algorithm that
enabled dynamic scheduling of instructions to allow out-
of-order execution. Tomasulo [61] introduced a unified
reservation station that allows a CPU to use a data value
as it has been computed instead of storing it in a reg-
ister and re-reading it. The reservation station renames
registers to allow instructions that operate on the same
physical registers to use the last logical one to solve read-
after-write (RAW), write-after-read (WAR) and write-
after-write (WAW) hazards. Furthermore, the reserva-
tion unit connects all execution units via a common data

bus (CDB). If an operand is not available, the reservation
unit can listen on the CDB until it is available and then
directly begin the execution of the instruction.

On the Intel architecture, the pipeline consists of the
front-end, the execution engine (back-end) and the mem-
ory subsystem [32]. x86 instructions are fetched by the
front-end from memory and decoded to micro-operations
(µOPs) which are continuously sent to the execution en-
gine. Out-of-order execution is implemented within the
execution engine as illustrated in Figure 1. The Reorder
Buffer is responsible for register allocation, register re-
naming and retiring. Additionally, other optimizations
like move elimination or the recognition of zeroing id-
ioms are directly handled by the reorder buffer. The
µOPs are forwarded to the Unified Reservation Station
(Scheduler) that queues the operations on exit ports that
are connected to Execution Units. Each execution unit
can perform different tasks like ALU operations, AES
operations, address generation units (AGU) or memory
loads and stores. AGUs, as well as load and store execu-
tion units, are directly connected to the memory subsys-
tem to process its requests.

Since CPUs usually do not run linear instruction
streams, they have branch prediction units that are used
to obtain an educated guess of which instruction is ex-
ecuted next. Branch predictors try to determine which
direction of a branch is taken before its condition is ac-
tually evaluated. Instructions that lie on that path and do
not have any dependencies can be executed in advance
and their results immediately used if the prediction was
correct. If the prediction was incorrect, the reorder buffer
allows to rollback to a sane state by clearing the reorder
buffer and re-initializing the unified reservation station.

There are various approaches to predict a branch: With
static branch prediction [28], the outcome is predicted
solely based on the instruction itself. Dynamic branch
prediction [8] gathers statistics at run-time to predict the
outcome. One-level branch prediction uses a 1-bit or 2-
bit counter to record the last outcome of a branch [45].
Modern processors often use two-level adaptive predic-
tors [64] with a history of the last n outcomes, allowing to
predict regularly recurring patterns. More recently, ideas
to use neural branch prediction [62, 38, 60] have been
picked up and integrated into CPU architectures [9].

2.2 Address Spaces

To isolate processes from each other, CPUs support vir-
tual address spaces where virtual addresses are translated
to physical addresses. A virtual address space is divided
into a set of pages that can be individually mapped to
physical memory through a multi-level page translation
table. The translation tables define the actual virtual
to physical mapping and also protection properties that

Physical memory

0 max

User

0 247

Kernel

−247 −1

Figure 2: The physical memory is directly mapped in the
kernel at a certain offset. A physical address (blue) which
is mapped accessible to the user space is also mapped in
the kernel space through the direct mapping.

are used to enforce privilege checks, such as readable,
writable, executable and user-accessible. The currently
used translation table is held in a special CPU register.
On each context switch, the operating system updates
this register with the next process’ translation table ad-
dress in order to implement per-process virtual address
spaces. Because of that, each process can only reference
data that belongs to its virtual address space. Each vir-
tual address space itself is split into a user and a kernel
part. While the user address space can be accessed by the
running application, the kernel address space can only be
accessed if the CPU is running in privileged mode. This
is enforced by the operating system disabling the user-
accessible property of the corresponding translation ta-
bles. The kernel address space does not only have mem-
ory mapped for the kernel’s own usage, but it also needs
to perform operations on user pages, e.g., filling them
with data. Consequently, the entire physical memory is
typically mapped in the kernel. On Linux and OS X, this
is done via a direct-physical map, i.e., the entire physi-
cal memory is directly mapped to a pre-defined virtual
address (cf. Figure 2).

Instead of a direct-physical map, Windows maintains
a multiple so-called paged pools, non-paged pools, and
the system cache. These pools are virtual memory re-
gions in the kernel address space mapping physical pages
to virtual addresses which are either required to remain
in the memory (non-paged pool) or can be removed from
the memory because a copy is already stored on the disk
(paged pool). The system cache further contains map-
pings of all file-backed pages. Combined, these memory
pools will typically map a large fraction of the physical
memory into the kernel address space of every process.

The exploitation of memory corruption bugs often re-
quires knowledge of addresses of specific data. In or-
der to impede such attacks, address space layout ran-
domization (ASLR) has been introduced as well as non-
executable stacks and stack canaries. To protect the
kernel, kernel ASLR (KASLR) randomizes the offsets
where drivers are located on every boot, making attacks
harder as they now require to guess the location of kernel

data structures. However, side-channel attacks allow to
detect the exact location of kernel data structures [21, 29,
37] or derandomize ASLR in JavaScript [16]. A com-
bination of a software bug and the knowledge of these
addresses can lead to privileged code execution.

2.3 Cache Attacks
In order to speed-up memory accesses and address trans-
lation, the CPU contains small memory buffers, called
caches, that store frequently used data. CPU caches hide
slow memory access latencies by buffering frequently
used data in smaller and faster internal memory. Mod-
ern CPUs have multiple levels of caches that are either
private per core or shared among them. Address space
translation tables are also stored in memory and, thus,
also cached in the regular caches.

Cache side-channel attacks exploit timing differences
that are introduced by the caches. Different cache attack
techniques have been proposed and demonstrated in the
past, including Evict+Time [55], Prime+Probe [55, 56],
and Flush+Reload [63]. Flush+Reload attacks work on
a single cache line granularity. These attacks exploit the
shared, inclusive last-level cache. An attacker frequently
flushes a targeted memory location using the clflush

instruction. By measuring the time it takes to reload the
data, the attacker determines whether data was loaded
into the cache by another process in the meantime. The
Flush+Reload attack has been used for attacks on various
computations, e.g., cryptographic algorithms [63, 36, 4],
web server function calls [65], user input [23, 47, 58],
and kernel addressing information [21].

A special use case of a side-channel attack is a covert
channel. Here the attacker controls both, the part that in-
duces the side effect, and the part that measures the side
effect. This can be used to leak information from one
security domain to another, while bypassing any bound-
aries existing on the architectural level or above. Both
Prime+Probe and Flush+Reload have been used in high-
performance covert channels [48, 52, 22].

3 A Toy Example

In this section, we start with a toy example, i.e., a simple
code snippet, to illustrate that out-of-order execution can
change the microarchitectural state in a way that leaks
information. However, despite its simplicity, it is used as
a basis for Section 4 and Section 5, where we show how
this change in state can be exploited for an attack.

Listing 1 shows a simple code snippet first raising an
(unhandled) exception and then accessing an array. The
property of an exception is that the control flow does not
continue with the code after the exception, but jumps to
an exception handler in the operating system. Regardless

1 raise_exception();

2 // the line below is never reached

3 access(probe_array[data * 4096]);

Listing 1: A toy example to illustrate side-effects of out-
of-order execution.

<instr.>
<instr.>

...
<instr.>
[Exception]

E
X

E
C

U
T

E
D

E
X

E
C

U
T

E
D

O
U

T
O

F
O

R
D

E
R<instr.>

<instr.>
<instr.>

EXCEPTION
HANDLER

<instr.>
<instr.>
[Terminate]

Figure 3: If an executed instruction causes an exception,
diverting the control flow to an exception handler, the
subsequent instruction must not be executed. Due to out-
of-order execution, the subsequent instructions may al-
ready have been partially executed, but not retired. How-
ever, architectural effects of the execution are discarded.

of whether this exception is raised due to a memory ac-
cess, e.g., by accessing an invalid address, or due to any
other CPU exception, e.g., a division by zero, the control
flow continues in the kernel and not with the next user
space instruction.

Thus, our toy example cannot access the array in the-
ory, as the exception immediately traps to the kernel and
terminates the application. However, due to the out-of-
order execution, the CPU might have already executed
the following instructions as there is no dependency on
the instruction triggering the exception. This is illus-
trated in Figure 3. Due to the exception, the instructions
executed out of order are not retired and, thus, never have
architectural effects.

Although the instructions executed out of order do not
have any visible architectural effect on registers or mem-
ory, they have microarchitectural side effects. During the
out-of-order execution, the referenced memory is fetched
into a register and also stored in the cache. If the out-
of-order execution has to be discarded, the register and
memory contents are never committed. Nevertheless, the
cached memory contents are kept in the cache. We can
leverage a microarchitectural side-channel attack such
as Flush+Reload [63], which detects whether a specific
memory location is cached, to make this microarchitec-
tural state visible. Other side channels can also detect
whether a specific memory location is cached, including
Prime+Probe [55, 48, 52], Evict+Reload [47], or Flush+
Flush [22]. As Flush+Reload is the most accurate known
cache side channel and is simple to implement, we do not
consider any other side channel for this example.

0 50 100 150 200 250
200
300
400
500

Page

A
cc

es
s

tim
e

[c
yc

le
s]

Figure 4: Even if a memory location is only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe array shows one cache
hit, exactly on the page that was accessed during the out-
of-order execution.

Based on the value of data in this example, a different
part of the cache is accessed when executing the memory
access out of order. As data is multiplied by 4096, data
accesses to probe array are scattered over the array
with a distance of 4 KB (assuming an 1 B data type for
probe array). Thus, there is an injective mapping from
the value of data to a memory page, i.e., different values
for data never result in an access to the same page. Con-
sequently, if a cache line of a page is cached, we know
the value of data. The spreading over pages eliminates
false positives due to the prefetcher, as the prefetcher
cannot access data across page boundaries [32].

Figure 4 shows the result of a Flush+Reload measure-
ment iterating over all pages, after executing the out-of-
order snippet with data = 84. Although the array ac-
cess should not have happened due to the exception, we
can clearly see that the index which would have been ac-
cessed is cached. Iterating over all pages (e.g., in the
exception handler) shows only a cache hit for page 84
This shows that even instructions which are never actu-
ally executed, change the microarchitectural state of the
CPU. Section 4 modifies this toy example not to read a
value but to leak an inaccessible secret.

4 Building Blocks of the Attack

The toy example in Section 3 illustrated that side-effects
of out-of-order execution can modify the microarchitec-
tural state to leak information. While the code snippet
reveals the data value passed to a cache-side channel, we
want to show how this technique can be leveraged to leak
otherwise inaccessible secrets. In this section, we want
to generalize and discuss the necessary building blocks
to exploit out-of-order execution for an attack.

The adversary targets a secret value that is kept some-
where in physical memory. Note that register contents
are also stored in memory upon context switches, i.e.,
they are also stored in physical memory. As described in
Section 2.2, the address space of every process typically
includes the entire user space, as well as the entire kernel

Exception Handling/
Suppression

Transient
Instructions

Secret

Microarchitectural

State Change

Section 4.1

Architectural
State

Transfer (Covert Channel)

Recovered
Secret

Recovery

L
eaked

Accessed

Section 4.2

Figure 5: The Meltdown attack uses exception handling
or suppression, e.g., TSX, to run a series of transient in-
structions. These transient instructions obtain a (persis-
tent) secret value and change the microarchitectural state
of the processor based on this secret value. This forms
the sending part of a microarchitectural covert chan-
nel. The receiving side reads the microarchitectural state,
making it architectural and recovers the secret value.

space, which typically also has all physical memory (in-
use) mapped. However, these memory regions are only
accessible in privileged mode (cf. Section 2.2).

In this work, we demonstrate leaking secrets by by-
passing the privileged-mode isolation, giving an attacker
full read access to the entire kernel space, including
any physical memory mapped and, thus, the physical
memory of any other process and the kernel. Note that
Kocher et al. [40] pursue an orthogonal approach, called
Spectre Attacks, which trick speculatively executed in-
structions into leaking information that the victim pro-
cess is authorized to access. As a result, Spectre Attacks
lack the privilege escalation aspect of Meltdown and re-
quire tailoring to the victim process’s software environ-
ment, but apply more broadly to CPUs that support spec-
ulative execution and are not prevented by KAISER.

The full Meltdown attack consists of two building
blocks, as illustrated in Figure 5. The first building block
of Meltdown is to make the CPU execute one or more
instructions that would never occur in the executed path.
In the toy example (cf. Section 3), this is an access to
an array, which would normally never be executed, as
the previous instruction always raises an exception. We
call such an instruction, which is executed out of order
and leaving measurable side effects, a transient instruc-
tion. Furthermore, we call any sequence of instructions
containing at least one transient instruction a transient
instruction sequence.

In order to leverage transient instructions for an attack,
the transient instruction sequence must utilize a secret
value that an attacker wants to leak. Section 4.1 describes

building blocks to run a transient instruction sequence
with a dependency on a secret value.

The second building block of Meltdown is to transfer
the microarchitectural side effect of the transient instruc-
tion sequence to an architectural state to further process
the leaked secret. Thus, the second building described
in Section 4.2 describes building blocks to transfer a mi-
croarchitectural side effect to an architectural state using
a covert channel.

4.1 Executing Transient Instructions

The first building block of Meltdown is the execution
of transient instructions. Transient instructions occur all
the time, as the CPU continuously runs ahead of the
current instruction to minimize the experienced latency
and, thus, to maximize the performance (cf. Section 2.1).
Transient instructions introduce an exploitable side chan-
nel if their operation depends on a secret value. We focus
on addresses that are mapped within the attacker’s pro-
cess, i.e., the user-accessible user space addresses as well
as the user-inaccessible kernel space addresses. Note that
attacks targeting code that is executed within the context
(i.e., address space) of another process are possible [40],
but out of scope in this work, since all physical memory
(including the memory of other processes) can be read
through the kernel address space regardless.

Accessing user-inaccessible pages, such as kernel
pages, triggers an exception which generally terminates
the application. If the attacker targets a secret at a user-
inaccessible address, the attacker has to cope with this
exception. We propose two approaches: With excep-
tion handling, we catch the exception effectively occur-
ring after executing the transient instruction sequence,
and with exception suppression, we prevent the excep-
tion from occurring at all and instead redirect the control
flow after executing the transient instruction sequence.
We discuss these approaches in detail in the following.

Exception handling. A trivial approach is to fork the
attacking application before accessing the invalid mem-
ory location that terminates the process and only access
the invalid memory location in the child process. The
CPU executes the transient instruction sequence in the
child process before crashing. The parent process can
then recover the secret by observing the microarchitec-
tural state, e.g., through a side-channel.

It is also possible to install a signal handler that is exe-
cuted when a certain exception occurs, e.g., a segmenta-
tion fault. This allows the attacker to issue the instruction
sequence and prevent the application from crashing, re-
ducing the overhead as no new process has to be created.

Exception suppression. A different approach to deal
with exceptions is to prevent them from being raised in
the first place. Transactional memory allows to group
memory accesses into one seemingly atomic operation,
giving the option to roll-back to a previous state if an er-
ror occurs. If an exception occurs within the transaction,
the architectural state is reset, and the program execution
continues without disruption.

Furthermore, speculative execution issues instructions
that might not occur on the executed code path due to
a branch misprediction. Such instructions depending on
a preceding conditional branch can be speculatively ex-
ecuted. Thus, the invalid memory access is put within
a speculative instruction sequence that is only executed
if a prior branch condition evaluates to true. By making
sure that the condition never evaluates to true in the ex-
ecuted code path, we can suppress the occurring excep-
tion as the memory access is only executed speculatively.
This technique may require sophisticated training of the
branch predictor. Kocher et al. [40] pursue this approach
in orthogonal work, since this construct can frequently
be found in code of other processes.

4.2 Building a Covert Channel

The second building block of Meltdown is the transfer
of the microarchitectural state, which was changed by
the transient instruction sequence, into an architectural
state (cf. Figure 5). The transient instruction sequence
can be seen as the sending end of a microarchitectural
covert channel. The receiving end of the covert channel
receives the microarchitectural state change and deduces
the secret from the state. Note that the receiver is not
part of the transient instruction sequence and can be a
different thread or even a different process e.g., the parent
process in the fork-and-crash approach.

We leverage techniques from cache attacks, as the
cache state is a microarchitectural state which can be re-
liably transferred into an architectural state using vari-
ous techniques [55, 63, 22]. Specifically, we use Flush+
Reload [63], as it allows to build a fast and low-noise
covert channel. Thus, depending on the secret value, the
transient instruction sequence (cf. Section 4.1) performs
a regular memory access, e.g., as it does in the toy exam-
ple (cf. Section 3).

After the transient instruction sequence accessed an
accessible address, i.e., this is the sender of the covert
channel; the address is cached for subsequent accesses.
The receiver can then monitor whether the address has
been loaded into the cache by measuring the access time
to the address. Thus, the sender can transmit a ‘1’-bit by
accessing an address which is loaded into the monitored
cache, and a ‘0’-bit by not accessing such an address.

Using multiple different cache lines, as in our toy ex-
ample in Section 3, allows to transmit multiple bits at
once. For every of the 256 different byte values, the
sender accesses a different cache line. By performing
a Flush+Reload attack on all of the 256 possible cache
lines, the receiver can recover a full byte instead of just
one bit. However, since the Flush+Reload attack takes
much longer (typically several hundred cycles) than the
transient instruction sequence, transmitting only a single
bit at once is more efficient. The attacker can simply do
that by shifting and masking the secret value accordingly.

Note that the covert channel is not limited to microar-
chitectural states which rely on the cache. Any microar-
chitectural state which can be influenced by an instruc-
tion (sequence) and is observable through a side channel
can be used to build the sending end of a covert channel.
The sender could, for example, issue an instruction (se-
quence) which occupies a certain execution port such as
the ALU to send a ‘1’-bit. The receiver measures the la-
tency when executing an instruction (sequence) on the
same execution port. A high latency implies that the
sender sends a ‘1’-bit, whereas a low latency implies
that sender sends a ‘0’-bit. The advantage of the Flush+
Reload cache covert channel is the noise resistance and
the high transmission rate [22]. Furthermore, the leakage
can be observed from any CPU core [63], i.e., reschedul-
ing events do not significantly affect the covert channel.

5 Meltdown

In this section, we present Meltdown, a powerful at-
tack allowing to read arbitrary physical memory from
an unprivileged user program, comprised of the build-
ing blocks presented in Section 4. First, we discuss the
attack setting to emphasize the wide applicability of this
attack. Second, we present an attack overview, show-
ing how Meltdown can be mounted on both Windows
and Linux on personal computers, on Android on mo-
bile phones as well as in the cloud. Finally, we discuss a
concrete implementation of Meltdown allowing to dump
arbitrary kernel memory with 3.2 KB/s to 503 KB/s.

Attack setting. In our attack, we consider personal
computers and virtual machines in the cloud. In the
attack scenario, the attacker has arbitrary unprivileged
code execution on the attacked system, i.e., the attacker
can run any code with the privileges of a normal user.
However, the attacker has no physical access to the ma-
chine. Furthermore, we assume that the system is fully
protected with state-of-the-art software-based defenses
such as ASLR and KASLR as well as CPU features like
SMAP, SMEP, NX, and PXN. Most importantly, we as-
sume a completely bug-free operating system, thus, no

1 ; rcx = kernel address, rbx = probe array

2 xor rax, rax

3 retry:

4 mov al, byte [rcx]

5 shl rax, 0xc

6 jz retry

7 mov rbx, qword [rbx + rax]

Listing 2: The core of Meltdown. An inaccessible kernel
address is moved to a register, raising an exception.
Subsequent instructions are executed out of order before
the exception is raised, leaking the data from the kernel
address through the indirect memory access.

software vulnerability exists that can be exploited to gain
kernel privileges or leak information. The attacker tar-
gets secret user data, e.g., passwords and private keys, or
any other valuable information.

5.1 Attack Description
Meltdown combines the two building blocks discussed
in Section 4. First, an attacker makes the CPU execute
a transient instruction sequence which uses an inacces-
sible secret value stored somewhere in physical memory
(cf. Section 4.1). The transient instruction sequence acts
as the transmitter of a covert channel (cf. Section 4.2),
ultimately leaking the secret value to the attacker.

Meltdown consists of 3 steps:
Step 1 The content of an attacker-chosen memory loca-

tion, which is inaccessible to the attacker, is loaded
into a register.

Step 2 A transient instruction accesses a cache line
based on the secret content of the register.

Step 3 The attacker uses Flush+Reload to determine the
accessed cache line and hence the secret stored at the
chosen memory location.

By repeating these steps for different memory locations,
the attacker can dump the kernel memory, including the
entire physical memory.

Listing 2 shows the basic implementation of the tran-
sient instruction sequence and the sending part of the
covert channel, using x86 assembly instructions. Note
that this part of the attack could also be implemented en-
tirely in higher level languages like C. In the following,
we will discuss each step of Meltdown and the corre-
sponding code line in Listing 2.

Step 1: Reading the secret. To load data from the
main memory into a register, the data in the main mem-
ory is referenced using a virtual address. In parallel to
translating a virtual address into a physical address, the
CPU also checks the permission bits of the virtual ad-

dress, i.e., whether this virtual address is user accessible
or only accessible by the kernel. As already discussed in
Section 2.2, this hardware-based isolation through a per-
mission bit is considered secure and recommended by the
hardware vendors. Hence, modern operating systems al-
ways map the entire kernel into the virtual address space
of every user process.

As a consequence, all kernel addresses lead to a valid
physical address when translating them, and the CPU can
access the content of such addresses. The only differ-
ence to accessing a user space address is that the CPU
raises an exception as the current permission level does
not allow to access such an address. Hence, the user
space cannot simply read the contents of such an address.
However, Meltdown exploits the out-of-order execution
of modern CPUs, which still executes instructions in the
small time window between the illegal memory access
and the raising of the exception.

In line 4 of Listing 2, we load the byte value located
at the target kernel address, stored in the RCX register,
into the least significant byte of the RAX register repre-
sented by AL. As explained in more detail in Section 2.1,
the MOV instruction is fetched by the core, decoded into
µOPs, allocated, and sent to the reorder buffer. There, ar-
chitectural registers (e.g., RAX and RCX in Listing 2) are
mapped to underlying physical registers enabling out-of-
order execution. Trying to utilize the pipeline as much as
possible, subsequent instructions (lines 5-7) are already
decoded and allocated as µOPs as well. The µOPs are
further sent to the reservation station holding the µOPs
while they wait to be executed by the corresponding ex-
ecution unit. The execution of a µOP can be delayed if
execution units are already used to their corresponding
capacity, or operand values have not been computed yet.

When the kernel address is loaded in line 4, it is likely
that the CPU already issued the subsequent instructions
as part of the out-of-order execution, and that their cor-
responding µOPs wait in the reservation station for the
content of the kernel address to arrive. As soon as the
fetched data is observed on the common data bus, the
µOPs can begin their execution. Furthermore, processor
interconnects [31, 3] and cache coherence protocols [59]
guarantee that the most recent value of a memory address
is read, regardless of the storage location in a multi-core
or multi-CPU system.

When the µOPs finish their execution, they retire in-
order, and, thus, their results are committed to the archi-
tectural state. During the retirement, any interrupts and
exceptions that occurred during the execution of the in-
struction are handled. Thus, if the MOV instruction that
loads the kernel address is retired, the exception is regis-
tered, and the pipeline is flushed to eliminate all results
of subsequent instructions which were executed out of

order. However, there is a race condition between raising
this exception and our attack step 2 as described below.

As reported by Gruss et al. [21], prefetching kernel ad-
dresses sometimes succeeds. We found that prefetching
the kernel address can slightly improve the performance
of the attack on some systems.

Step 2: Transmitting the secret. The instruction se-
quence from step 1 which is executed out of order has to
be chosen in a way that it becomes a transient instruction
sequence. If this transient instruction sequence is exe-
cuted before the MOV instruction is retired (i.e., raises the
exception), and the transient instruction sequence per-
formed computations based on the secret, it can be uti-
lized to transmit the secret to the attacker.

As already discussed, we utilize cache attacks that al-
low building fast and low-noise covert channels using the
CPU’s cache. Thus, the transient instruction sequence
has to encode the secret into the microarchitectural cache
state, similar to the toy example in Section 3.

We allocate a probe array in memory and ensure that
no part of this array is cached. To transmit the secret, the
transient instruction sequence contains an indirect mem-
ory access to an address which is computed based on the
secret (inaccessible) value. In line 5 of Listing 2, the se-
cret value from step 1 is multiplied by the page size, i.e.,
4 KB. The multiplication of the secret ensures that ac-
cesses to the array have a large spatial distance to each
other. This prevents the hardware prefetcher from load-
ing adjacent memory locations into the cache as well.
Here, we read a single byte at once. Hence, our probe
array is 256×4096 bytes, assuming 4 KB pages.

Note that in the out-of-order execution we have a
noise-bias towards register value ‘0’. We discuss the rea-
sons for this in Section 5.2. However, for this reason, we
introduce a retry-logic into the transient instruction se-
quence. In case we read a ‘0’, we try to reread the secret
(step 1). In line 7, the multiplied secret is added to the
base address of the probe array, forming the target ad-
dress of the covert channel. This address is read to cache
the corresponding cache line. The address will be loaded
into the L1 data cache of the requesting core and, due to
the inclusiveness, also the L3 cache where it can be read
from other cores. Consequently, our transient instruction
sequence affects the cache state based on the secret value
that was read in step 1.

Since the transient instruction sequence in step 2 races
against raising the exception, reducing the runtime of
step 2 can significantly improve the performance of the
attack. For instance, taking care that the address trans-
lation for the probe array is cached in the translation-
lookaside buffer (TLB) increases the attack performance
on some systems.

Step 3: Receiving the secret. In step 3, the attacker
recovers the secret value (step 1) by leveraging a mi-
croarchitectural side-channel attack (i.e., the receiving
end of a microarchitectural covert channel) that transfers
the cache state (step 2) back into an architectural state.
As discussed in Section 4.2, our implementation of Melt-
down relies on Flush+Reload for this purpose.

When the transient instruction sequence of step 2 is
executed, exactly one cache line of the probe array is
cached. The position of the cached cache line within the
probe array depends only on the secret which is read in
step 1. Thus, the attacker iterates over all 256 pages of
the probe array and measures the access time for every
first cache line (i.e., offset) on the page. The number of
the page containing the cached cache line corresponds
directly to the secret value.

Dumping the entire physical memory. Repeating all
3 steps of Meltdown, an attacker can dump the entire
memory by iterating over all addresses. However, as the
memory access to the kernel address raises an exception
that terminates the program, we use one of the methods
from Section 4.1 to handle or suppress the exception.

As all major operating systems also typically map the
entire physical memory into the kernel address space (cf.
Section 2.2) in every user process, Meltdown can also
read the entire physical memory of the target machine.

5.2 Optimizations and Limitations
Inherent bias towards 0. While CPUs generally stall
if a value is not available during an out-of-order load op-
eration [28], CPUs might continue with the out-of-order
execution by assuming a value for the load [12]. We
observed that the illegal memory load in our Meltdown
implementation (line 4 in Listing 2) often returns a ‘0’,
which can be clearly observed when implemented using
an add instruction instead of the mov. The reason for this
bias to ‘0’ may either be that the memory load is masked
out by a failed permission check, or a speculated value
because the data of the stalled load is not available yet.

This inherent bias results from the race condition in
the out-of-order execution, which may be won (i.e., reads
the correct value), but is often lost (i.e., reads a value of
‘0’). This bias varies between different machines as well
as hardware and software configurations and the specific
implementation of Meltdown. In an unoptimized ver-
sion, the probability that a value of ’0’ is erroneously
returned is high. Consequently, our Meltdown imple-
mentation performs a certain number of retries when the
code in Listing 2 results in reading a value of ‘0’ from the
Flush+Reload attack. The maximum number of retries is
an optimization parameter influencing the attack perfor-
mance and the error rate. On the Intel Core i5-6200U

using exeception handling, we read a ’0’ on average in
5.25 % (σ = 4.15) with our unoptimized version. With
a simple retry loop, we reduced the probability to 0.67 %
(σ = 1.47). On the Core i7-8700K, we read on average
a ’0’ in 1.78 % (σ = 3.07). Using Intel TSX, the proba-
bility is further reduced to 0.008 %.

Optimizing the case of 0. Due to the inherent bias of
Meltdown, a cache hit on cache line ‘0’ in the Flush+
Reload measurement, does not provide the attacker with
any information. Hence, measuring cache line ‘0’ can
be omitted and in case there is no cache hit on any other
cache line, the value can be assumed to be ‘0’. To min-
imize the number of cases where no cache hit on a non-
zero line occurs, we retry reading the address in the tran-
sient instruction sequence until it encounters a value dif-
ferent from ‘0’ (line 6). This loop is terminated either
by reading a non-zero value or by the raised exception of
the invalid memory access. In either case, the time un-
til exception handling or exception suppression returns
the control flow is independent of the loop after the in-
valid memory access, i.e., the loop does not slow down
the attack measurably. Hence, these optimizations may
increase the attack performance.

Single-bit transmission. In the attack description in
Section 5.1, the attacker transmitted 8 bits through the
covert channel at once and performed 28 = 256 Flush+
Reload measurements to recover the secret. However,
there is a trade-off between running more transient in-
struction sequences and performing more Flush+Reload
measurements. The attacker could transmit an arbitrary
number of bits in a single transmission through the covert
channel, by reading more bits using a MOV instruction for
a larger data value. Furthermore, the attacker could mask
bits using additional instructions in the transient instruc-
tion sequence. We found the number of additional in-
structions in the transient instruction sequence to have a
negligible influence on the performance of the attack.

The performance bottleneck in the generic attack de-
scribed above is indeed, the time spent on Flush+Reload
measurements. In fact, with this implementation, almost
the entire time is spent on Flush+Reload measurements.
By transmitting only a single bit, we can omit all but
one Flush+Reload measurement, i.e., the measurement
on cache line 1. If the transmitted bit was a ‘1’, then
we observe a cache hit on cache line 1. Otherwise, we
observe no cache hit on cache line 1.

Transmitting only a single bit at once also has draw-
backs. As described above, our side channel has a bias
towards a secret value of ‘0’. If we read and transmit
multiple bits at once, the likelihood that all bits are ‘0’
may be quite small for actual user data. The likelihood
that a single bit is ‘0’ is typically close to 50 %. Hence,

the number of bits read and transmitted at once is a trade-
off between some implicit error-reduction and the overall
transmission rate of the covert channel.

However, since the error rates are quite small in either
case, our evaluation (cf. Section 6) is based on the single-
bit transmission mechanics.

Exception Suppression using Intel TSX. In Sec-
tion 4.1, we discussed the option to prevent that an ex-
ception is raised due an invalid memory access. Using
Intel TSX, a hardware transactional memory implemen-
tation, we can completely suppress the exception [37].

With Intel TSX, multiple instructions can be grouped
to a transaction, which appears to be an atomic opera-
tion, i.e., either all or no instruction is executed. If one
instruction within the transaction fails, already executed
instructions are reverted, but no exception is raised.

If we wrap the code from Listing 2 with such a TSX
instruction, any exception is suppressed. However, the
microarchitectural effects are still visible, i.e., the cache
state is persistently manipulated from within the hard-
ware transaction [19]. This results in higher channel ca-
pacity, as suppressing the exception is significantly faster
than trapping into the kernel for handling the exception,
and continuing afterward.

Dealing with KASLR. In 2013, kernel address space
layout randomization (KASLR) was introduced to the
Linux kernel (starting from version 3.14 [11]) allowing
to randomize the location of kernel code at boot time.
However, only as recently as May 2017, KASLR was
enabled by default in version 4.12 [54]. With KASLR
also the direct-physical map is randomized and not fixed
at a certain address such that the attacker is required to
obtain the randomized offset before mounting the Melt-
down attack. However, the randomization is limited to
40 bit.

Thus, if we assume a setup of the target machine with
8 GB of RAM, it is sufficient to test the address space
for addresses in 8 GB steps. This allows covering the
search space of 40 bit with only 128 tests in the worst
case. If the attacker can successfully obtain a value from
a tested address, the attacker can proceed to dump the
entire memory from that location. This allows mount-
ing Meltdown on a system despite being protected by
KASLR within seconds.

6 Evaluation

In this section, we evaluate Meltdown and the perfor-
mance of our proof-of-concept implementation.11 Sec-
tion 6.1 discusses the information which Meltdown can

11https://github.com/IAIK/meltdown

Table 1: Experimental setups.

Environment CPU Model Cores

Lab Celeron G540 2
Lab Core i5-3230M 2
Lab Core i5-3320M 2
Lab Core i7-4790 4
Lab Core i5-6200U 2
Lab Core i7-6600U 2
Lab Core i7-6700K 4
Lab Core i7-8700K 12
Lab Xeon E5-1630 v3 8

Cloud Xeon E5-2676 v3 12
Cloud Xeon E5-2650 v4 12
Phone Exynos 8890 8

leak, and Section 6.2 evaluates the performance of Melt-
down, including countermeasures. Finally, we discuss
limitations for AMD and ARM in Section 6.3.

Table 1 shows a list of configurations on which we
successfully reproduced Meltdown. For the evaluation of
Meltdown, we used both laptops as well as desktop PCs
with Intel Core CPUs and an ARM-based mobile phone.
For the cloud setup, we tested Meltdown in virtual ma-
chines running on Intel Xeon CPUs hosted in the Ama-
zon Elastic Compute Cloud as well as on DigitalOcean.
Note that for ethical reasons we did not use Meltdown on
addresses referring to physical memory of other tenants.

6.1 Leakage and Environments
We evaluated Meltdown on both Linux (cf. Sec-
tion 6.1.1), Windows 10 (cf. Section 6.1.3) and Android
(cf. Section 6.1.4), without the patches introducing the
KAISER mechanism. On these operating systems, Melt-
down can successfully leak kernel memory. We also
evaluated the effect of the KAISER patches on Meltdown
on Linux, to show that KAISER prevents the leakage of
kernel memory (cf. Section 6.1.2). Furthermore, we dis-
cuss the information leakage when running inside con-
tainers such as Docker (cf. Section 6.1.5). Finally, we
evaluate Meltdown on uncached and uncacheable mem-
ory (cf. Section 6.1.6).

6.1.1 Linux

We successfully evaluated Meltdown on multiple ver-
sions of the Linux kernel, from 2.6.32 to 4.13.0, with-
out the patches introducing the KAISER mechanism. On
all these versions of the Linux kernel, the kernel address
space is also mapped into the user address space. Thus,
all kernel addresses are also mapped into the address
space of user space applications, but any access is pre-
vented due to the permission settings for these addresses.

As Meltdown bypasses these permission settings, an at-
tacker can leak the complete kernel memory if the vir-
tual address of the kernel base is known. Since all major
operating systems also map the entire physical memory
into the kernel address space (cf. Section 2.2), all physi-
cal memory can also be read.

Before kernel 4.12, kernel address space layout ran-
domization (KASLR) was not active by default [57]. If
KASLR is active, Meltdown can still be used to find the
kernel by searching through the address space (cf. Sec-
tion 5.2). An attacker can also simply de-randomize the
direct-physical map by iterating through the virtual ad-
dress space. Without KASLR, the direct-physical map
starts at address 0xffff 8800 0000 0000 and linearly
maps the entire physical memory. On such systems, an
attacker can use Meltdown to dump the entire physical
memory, simply by reading from virtual addresses start-
ing at 0xffff 8800 0000 0000.

On newer systems, where KASLR is active by default,
the randomization of the direct-physical map is limited
to 40 bit. It is even further limited due to the linearity of
the mapping. Assuming that the target system has at least
8 GB of physical memory, the attacker can test addresses
in steps of 8 GB, resulting in a maximum of 128 memory
locations to test. Starting from one discovered location,
the attacker can again dump the entire physical memory.

Hence, for the evaluation, we can assume that the ran-
domization is either disabled, or the offset was already
retrieved in a pre-computation step.

6.1.2 Linux with KAISER Patch

The KAISER patch by Gruss et al. [20] implements
a stronger isolation between kernel and user space.
KAISER does not map any kernel memory in the user
space, except for some parts required by the x86 archi-
tecture (e.g., interrupt handlers). Thus, there is no valid
mapping to either kernel memory or physical memory
(via the direct-physical map) in the user space, and such
addresses can therefore not be resolved. Consequently,
Meltdown cannot leak any kernel or physical memory
except for the few memory locations which have to be
mapped in user space.

We verified that KAISER indeed prevents Meltdown,
and there is no leakage of any kernel or physical memory.

Furthermore, if KASLR is active, and the few re-
maining memory locations are randomized, finding these
memory locations is not trivial due to their small size of
several kilobytes. Section 7.2 discusses the security im-
plications of these mapped memory locations.

6.1.3 Microsoft Windows

We successfully evaluated Meltdown on a recent Mi-
crosoft Windows 10 operating system, last updated just
before patches against Meltdown were rolled out. In line
with the results on Linux (cf. Section 6.1.1), Meltdown
also can leak arbitrary kernel memory on Windows. This
is not surprising, since Meltdown does not exploit any
software issues, but is caused by a hardware issue.

In contrast to Linux, Windows does not have the con-
cept of an identity mapping, which linearly maps the
physical memory into the virtual address space. Instead,
a large fraction of the physical memory is mapped in
the paged pools, non-paged pools, and the system cache.
Furthermore, Windows maps the kernel into the address
space of every application too. Thus, Meltdown can read
kernel memory which is mapped in the kernel address
space, i.e., any part of the kernel which is not swapped
out, and any page mapped in the paged and non-paged
pool, and the system cache.

Note that there are physical pages which are mapped
in one process but not in the (kernel) address space of
another process, i.e., physical pages which cannot be at-
tacked using Meltdown. However, most of the physical
memory will still be accessible through Meltdown.

We were successfully able to read the binary of the
Windows kernel using Meltdown. To verify that the
leaked data is actual kernel memory, we first used the
Windows kernel debugger to obtain kernel addresses
containing actual data. After leaking the data, we again
used the Windows kernel debugger to compare the leaked
data with the actual memory content, confirming that
Meltdown can successfully leak kernel memory.

6.1.4 Android

We successfully evaluated Meltdown on a Samsung
Galaxy S7 mohile phone running LineageOS Android
14.1 with a Linux kernel 3.18.14. The device is equipped
with a Samsung Exynos 8 Octa 8890 SoC consisting
of a ARM Cortex-A53 CPU with 4 cores as well as an
Exynos M1 ”Mongoose” CPU with 4 cores [6]. While
we were not able to mount the attack on the Cortex-
A53 CPU, we successfully mounted Meltdown on Sam-
sung’s custom cores. Using exception suppression de-
scribed in Section 4.1, we successfully leaked a pre-
defined string using the direct-physical map located at
the virtual address 0xffff ffbf c000 0000.

6.1.5 Containers

We evaluated Meltdown in containers sharing a kernel,
including Docker, LXC, and OpenVZ and found that the
attack can be mounted without any restrictions. Running
Meltdown inside a container allows to leak information

not only from the underlying kernel but also from all
other containers running on the same physical host.

The commonality of most container solutions is that
every container uses the same kernel, i.e., the kernel is
shared among all containers. Thus, every container has
a valid mapping of the entire physical memory through
the direct-physical map of the shared kernel. Further-
more, Meltdown cannot be blocked in containers, as it
uses only memory accesses. Especially with Intel TSX,
only unprivileged instructions are executed without even
trapping into the kernel.

Thus, the isolation of containers sharing a kernel can
be entirely broken using Meltdown. This is especially
critical for cheaper hosting providers where users are not
separated through fully virtualized machines, but only
through containers. We verified that our attack works in
such a setup, by successfully leaking memory contents
from a container of a different user under our control.

6.1.6 Uncached and Uncacheable Memory

In this section, we evaluate whether it is a requirement
for data to be leaked by Meltdown to reside in the L1 data
cache [33]. Therefore, we constructed a setup with two
processes pinned to different physical cores. By flush-
ing the value, using the clflush instruction, and only
reloading it on the other core, we create a situation where
the target data is not in the L1 data cache of the attacker
core. As described in Section 6.2, we can still leak the
data at a lower reading rate. This clearly shows that data
presence in the attacker’s L1 data cache is not a require-
ment for Meltdown. Furthermore, this observation has
also been confirmed by other researchers [7, 35, 5].

The reason why Meltdown can leak uncached mem-
ory may be that Meltdown implicitly caches the data.
We devise a second experiment, where we mark pages
as uncacheable and try to leak data from them. This
has the consequence that every read or write operation to
one of those pages will directly go to the main memory,
thus, bypassing the cache. In practice, only a negligible
amount of system memory is marked uncacheable. We
observed that if the attacker is able to trigger a legitimate
load of the target address, e.g., by issuing a system call
(regular or in speculative execution [40]), on the same
CPU core as the Meltdown attack, the attacker can leak
the content of the uncacheable pages. We suspect that
Meltdown reads the value from the line fill buffers. As
the fill buffers are shared between threads running on the
same core, the read to the same address within the Melt-
down attack could be served from one of the fill buffers
allowing the attack to succeed. However, we leave fur-
ther investigations on this matter open for future work.

A similar observation on uncacheable memory was
also made with Spectre attacks on the System Manage-

ment Mode [10]. While the attack works on memory
set uncacheable over Memory-Type Range Registers, it
does not work on memory-mapped I/O regions, which
is the expected behavior as accesses to memory-mapped
I/O can always have architectural effects.

6.2 Meltdown Performance

To evaluate the performance of Meltdown, we leaked
known values from kernel memory. This allows us to
not only determine how fast an attacker can leak mem-
ory, but also the error rate, i.e., how many byte errors to
expect. The race condition in Meltdown (cf. Section 5.2)
has a significant influence on the performance of the at-
tack, however, the race condition can always be won. If
the targeted data resides close to the core, e.g., in the
L1 data cache, the race condition is won with a high
probability. In this scenario, we achieved average read-
ing rates of up to 582 KB/s (µ = 552.4,σ = 10.2) with
an error rate as low as 0.003 % (µ = 0.009,σ = 0.014)
using exception suppression on the Core i7-8700K over
10 runs over 10 seconds. With the Core i7-6700K we
achieved 569 KB/s (µ = 515.5,σ = 5.99) with an min-
imum error rate of 0.002 % (µ = 0.003,σ = 0.001) and
491 KB/s (µ = 466.3,σ = 16.75) with a minimum error
rate of 10.7 % (µ = 11.59,σ = 0.62) on the Xeon E5-
1630. However, with a slower version with an average
reading speed of 137 KB/s, we were able to reduce the
error rate to 0. Furthermore, on the Intel Core i7-6700K
if the data resides in the L3 data cache but not in L1,
the race condition can still be won often, but the average
reading rate decreases to 12.4 KB/s with an error rate as
low as 0.02 % using exception suppression. However, if
the data is uncached, winning the race condition is more
difficult and, thus, we have observed reading rates of less
than 10 B/s on most systems. Nevertheless, there are
two optimizations to improve the reading rate: First, by
simultaneously letting other threads prefetch the memory
locations [21] of and around the target value and access
the target memory location (with exception suppression
or handling). This increases the probability that the spy-
ing thread sees the secret data value in the right moment
during the data race. Second, by triggering the hardware
prefetcher through speculative accesses to memory loca-
tions of and around the target value. With these two opti-
mizations, we can improve the reading rate for uncached
data to 3.2 KB/s.

For all tests, we used Flush+Reload as a covert chan-
nel to leak the memory as described in Section 5, and In-
tel TSX to suppress the exception. An extensive evalua-
tion of exception suppression using conditional branches
was done by Kocher et al. [40] and is thus omitted in this
paper for the sake of brevity.

6.3 Limitations on ARM and AMD

We also tried to reproduce the Meltdown bug on several
ARM and AMD CPUs. While we were able to suc-
cessfully leak kernel memory with the attack described
in Section 5 on different Intel CPUs and a Samsung
Exynos M1 processor, we did not manage to mount Melt-
down on other ARM cores nor on AMD. In the case of
ARM, the only affected processor is the Cortex-A75 [17]
which has not been available and, thus, was not among
our devices under test. However, appropriate kernel
patches have already been provided [2]. Furthermore, an
altered attack of Meltdown targeting system registers in-
stead of inaccessible memory locations is applicable on
several ARM processors [17]. Meanwhile, AMD pub-
licly stated that none of their CPUs are not affected by
Meltdown due to architectural differences [1].

The major part of a microarchitecture is usually not
publicly documented. Thus, it is virtually impossible
to know the differences in the implementations that al-
low or prevent Meltdown without proprietary knowledge
and, thus, the intellectual property of the individual CPU
manufacturers. The key point is that on a microarchitec-
tural level the load to the unprivileged address and the
subsequent instructions are executed while the fault is
only handled when the faulting instruction is retired. It
can be assumed that the execution units for the load and
the TLB are designed differently on ARM, AMD and
Intel and, thus, the privileges for the load are checked
differently and occurring faults are handled differently,
e.g., issuing a load only after the permission bit in the
page table entry has been checked. However, from a
performance perspective, issuing the load in parallel or
only checking permissions while retiring an instruction
is a reasonable decision. As trying to load kernel ad-
dresses from user space is not what programs usually do
and by guaranteeing that the state does not become ar-
chitecturally visible, not squashing the load is legitimate.
However, as the state becomes visible on the microarchi-
tectural level, such implementations are vulnerable.

However, for both ARM and AMD, the toy example
as described in Section 3 works reliably, indicating that
out-of-order execution generally occurs and instructions
past illegal memory accesses are also performed.

7 Countermeasures

In this section, we discuss countermeasures against the
Meltdown attack. At first, as the issue is rooted in the
hardware itself, we discuss possible microcode updates
and general changes in the hardware design. Second, we
discuss the KAISER countermeasure that has been de-
veloped to mitigate side-channel attacks against KASLR
which inadvertently also protects against Meltdown.

7.1 Hardware

Meltdown bypasses the hardware-enforced isolation of
security domains. There is no software vulnerabil-
ity involved in Meltdown. Any software patch (e.g.,
KAISER [20]) will leave small amounts of memory ex-
posed (cf. Section 7.2). There is no documentation
whether a fix requires the development of completely
new hardware, or can be fixed using a microcode update.

As Meltdown exploits out-of-order execution, a trivial
countermeasure is to disable out-of-order execution com-
pletely. However, performance impacts would be devas-
tating, as the parallelism of modern CPUs could not be
leveraged anymore. Thus, this is not a viable solution.

Meltdown is some form of race condition between the
fetch of a memory address and the corresponding per-
mission check for this address. Serializing the permis-
sion check and the register fetch can prevent Meltdown,
as the memory address is never fetched if the permission
check fails. However, this involves a significant overhead
to every memory fetch, as the memory fetch has to stall
until the permission check is completed.

A more realistic solution would be to introduce a hard
split of user space and kernel space. This could be en-
abled optionally by modern kernels using a new hard-
split bit in a CPU control register, e.g., CR4. If the hard-
split bit is set, the kernel has to reside in the upper half
of the address space, and the user space has to reside in
the lower half of the address space. With this hard split,
a memory fetch can immediately identify whether such a
fetch of the destination would violate a security bound-
ary, as the privilege level can be directly derived from
the virtual address without any further lookups. We ex-
pect the performance impacts of such a solution to be
minimal. Furthermore, the backwards compatibility is
ensured, since the hard-split bit is not set by default and
the kernel only sets it if it supports the hard-split feature.

Note that these countermeasures only prevent Melt-
down, and not the class of Spectre attacks described by
Kocher et al. [40]. Likewise, their presented countermea-
sures [40] do not affect Meltdown. We stress that it is im-
portant to deploy countermeasures against both attacks.

7.2 KAISER

As existing hardware is not as easy to patch, there is a
need for software workarounds until new hardware can
be deployed. Gruss et al. [20] proposed KAISER, a
kernel modification to not have the kernel mapped in
the user space. This modification was intended to pre-
vent side-channel attacks breaking KASLR [29, 21, 37].
However, it also prevents Meltdown, as it ensures that
there is no valid mapping to kernel space or physical
memory available in user space. In concurrent work

to KAISER, Gens et al. [14] proposed LAZARUS as a
modification to the Linux kernel to thwart side-channel
attacks breaking KASLR by separating address spaces
similar to KAISER. As the Linux kernel continued the
development of the original KAISER patch and Win-
dows [53] and macOS [34] based their implementation
on the concept of KAISER to defeat Meltdown, we will
discuss KAISER in more depth.

Although KAISER provides basic protection against
Meltdown, it still has some limitations. Due to the design
of the x86 architecture, several privileged memory loca-
tions are still required to be mapped in user space [20],
leaving a residual attack surface for Meltdown, i.e., these
memory locations can still be read from user space. Even
though these memory locations do not contain any se-
crets, e.g., credentials, they might still contain pointers.
Leaking one pointer can suffice to break KASLR, as the
randomization can be computed from the pointer value.

Still, KAISER is the best short-time solution currently
available and should therefore be deployed on all sys-
tems immediately. Even with Meltdown, KAISER can
avoid having any kernel pointers on memory locations
that are mapped in the user space which would leak in-
formation about the randomized offsets. This would re-
quire trampoline locations for every kernel pointer, i.e.,
the interrupt handler would not call into kernel code di-
rectly, but through a trampoline function. The trampo-
line function must only be mapped in the kernel. It must
be randomized with a different offset than the remaining
kernel. Consequently, an attacker can only leak pointers
to the trampoline code, but not the randomized offsets of
the remaining kernel. Such trampoline code is required
for every kernel memory that still has to be mapped in
user space and contains kernel addresses. This approach
is a trade-off between performance and security which
has to be assessed in future work.

The original KAISER patch [18] for the Linux kernel
has been improved [24, 25, 26, 27] with various opti-
mizations, e.g., support for PCIDs. Afterwards, before
merging it into the mainline kernel, it has been renamed
to kernel page-table isolation (KPTI) [49, 15]. KPTI is
active in recent releases of the Linux kernel and has been
backported to older versions as well [30, 43, 44, 42].

Microsoft implemented a similar patch inspired by
KAISER [53] named KVA Shadow [39]. While KVA
Shadow only maps a minimum of kernel transition
code and data pages required to switch between address
spaces, it does not protect against side-channel attacks
against KASLR [39].

Apple released updates in iOS 11.2, macOS 10.13.2
and tvOS 11.2 to mitigate Meltdown. Similar to Linux
and Windows, macOS shared the kernel and user address
spaces in 64-bit mode unless the -no-shared-cr3 boot
option was set [46]. This option unmaps the user space

while running in kernel mode but does not unmap the
kernel while running in user mode [51]. Hence, it has
no effect on Meltdown. Consequently, Apple introduced
Double Map [34] following the principles of KAISER to
mitigate Meltdown.

8 Discussion

Meltdown fundamentally changes our perspective on the
security of hardware optimizations that manipulate the
state of microarchitectural elements. The fact that hard-
ware optimizations can change the state of microar-
chitectural elements, and thereby imperil secure soft-
ware implementations, is known since more than 20
years [41]. Both industry and the scientific community
so far accepted this as a necessary evil for efficient com-
puting. Today it is considered a bug when a crypto-
graphic algorithm is not protected against the microar-
chitectural leakage introduced by the hardware optimiza-
tions. Meltdown changes the situation entirely. Melt-
down shifts the granularity from a comparably low spa-
tial and temporal granularity, e.g., 64-bytes every few
hundred cycles for cache attacks, to an arbitrary granu-
larity, allowing an attacker to read every single bit. This
is nothing any (cryptographic) algorithm can protect it-
self against. KAISER is a short-term software fix, but the
problem we have uncovered is much more significant.

We expect several more performance optimizations in
modern CPUs which affect the microarchitectural state
in some way, not even necessarily through the cache.
Thus, hardware which is designed to provide certain se-
curity guarantees, e.g., CPUs running untrusted code, re-
quires a redesign to avoid Meltdown- and Spectre-like
attacks. Meltdown also shows that even error-free soft-
ware, which is explicitly written to thwart side-channel
attacks, is not secure if the design of the underlying hard-
ware is not taken into account.

With the integration of KAISER into all major oper-
ating systems, an important step has already been done
to prevent Meltdown. KAISER is a fundamental change
in operating system design. Instead of always mapping
everything into the address space, mapping only the min-
imally required memory locations appears to be a first
step in reducing the attack surface. However, it might not
be enough, and even stronger isolation may be required.
In this case, we can trade flexibility for performance and
security, by e.g., enforcing a certain virtual memory lay-
out for every operating system. As most modern oper-
ating systems already use a similar memory layout, this
might be a promising approach.

Meltdown also heavily affects cloud providers, espe-
cially if the guests are not fully virtualized. For per-
formance reasons, many hosting or cloud providers do
not have an abstraction layer for virtual memory. In

such environments, which typically use containers, such
as Docker or OpenVZ, the kernel is shared among all
guests. Thus, the isolation between guests can simply be
circumvented with Meltdown, fully exposing the data of
all other guests on the same host. For these providers,
changing their infrastructure to full virtualization or us-
ing software workarounds such as KAISER would both
increase the costs significantly.

Concurrent work has investigated the possibility to
read kernel memory via out-of-order or speculative ex-
ecution, but has not succeeded [13, 50]. We are the first
to demonstrate that it is possible. Even if Meltdown is
fixed, Spectre [40] will remain an issue, requiring differ-
ent defenses. Mitigating only one of them will leave the
security of the entire system at risk. Meltdown and Spec-
tre open a new field of research to investigate to what ex-
tent performance optimizations change the microarchi-
tectural state, how this state can be translated into an ar-
chitectural state, and how such attacks can be prevented.

9 Conclusion

In this paper, we presented Meltdown, a novel software-
based attack exploiting out-of-order execution and side
channels on modern processors to read arbitrary ker-
nel memory from an unprivileged user space program.
Without requiring any software vulnerability and inde-
pendent of the operating system, Meltdown enables an
adversary to read sensitive data of other processes or vir-
tual machines in the cloud with up to 503 KB/s, affect-
ing millions of devices. We showed that the counter-
measure KAISER, originally proposed to protect from
side-channel attacks against KASLR, inadvertently im-
pedes Meltdown as well. We stress that KAISER needs
to be deployed on every operating system as a short-term
workaround, until Meltdown is fixed in hardware, to pre-
vent large-scale exploitation of Meltdown.

Acknowledgments

Several authors of this paper found Meltdown indepen-
dently, ultimately leading to this collaboration. We want
to thank everyone who helped us in making this collabo-
ration possible, especially Intel who handled our respon-
sible disclosure professionally, comunicated a clear time-
line and connected all involved researchers. We thank
Mark Brand from Google Project Zero for contributing
ideas and Peter Cordes and Henry Wong for valuable
feedback. We would like to thank our anonymous re-
viewers for their valuable feedback. Furthermore, we
would like to thank Intel, ARM, Qualcomm, and Mi-
crosoft for feedback on an early draft.

Daniel Gruss, Moritz Lipp, Stefan Mangard and
Michael Schwarz were supported by the European Re-
search Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant
agreement No 681402).

Daniel Genkin was supported by NSF awards
#1514261 and #1652259, financial assistance award
70NANB15H328 from the U.S. Department of Com-
merce, National Institute of Standards and Technol-
ogy, the 2017-2018 Rothschild Postdoctoral Fellowship,
and the Defense Advanced Research Project Agency
(DARPA) under Contract #FA8650-16-C-7622.

References
[1] AMD. Software techniques for managing speculation on AMD

processors, 2018.

[2] ARM. AArch64 Linux kernel port (KPTI base),
https://git.kernel.org/pub/scm/linux/kernel/

git/arm64/linux.git/log/?h=kpti 2018.

[3] ARM LIMITED. ARM CoreLink CCI-400 Cache Coherent In-
terconnect Technical Reference Manual, r1p5 ed. ARM Limited,
2015.

[4] BENGER, N., VAN DE POL, J., SMART, N. P., AND YAROM, Y.
“Ooh Aah... Just a Little Bit”: A small amount of side channel
can go a long way. In CHES’14 (2014).

[5] BOLDIN, P. Meltdown reading other process’s memory, https:
//www.youtube.com/watch?v=EMBGXswJC4s Jan 2018.

[6] BURGESS, B. Samsung Exynos M1 Processor. In IEEE Hot
Chips (2016).

[7] CARVALHO, R. Twitter: Meltdown with uncached mem-
ory, https://twitter.com/raphael_scarv/status/

952078140028964864 Jan 2018.

[8] CHENG, C.-C. The schemes and performances of dynamic
branch predictors. Berkeley Wireless Research Center, Tech. Rep
(2000).

[9] DEVIES, A. M. AMD Takes Computing to a New Hori-
zon with RyzenTMProcessors, https://www.amd.com/en-

us/press-releases/Pages/amd-takes-computing-

2016dec13.aspx 2016.

[10] ECLYPSIUM. System Management Mode Speculative Execution
Attacks, https://blog.eclypsium.com/2018/05/17/

system-management-mode-speculative-execution-

attacks/ May 2018.

[11] EDGE, J. Kernel address space layout randomization, https:
//lwn.net/Articles/569635/ 2013.

[12] EICKEMEYER, R., LE, H., NGUYEN, D., STOLT, B., AND
THOMPTO, B. Load lookahead prefetch for microproces-
sors, 2006. https://encrypted.google.com/patents/

US20060149935 US Patent App. 11/016,236.

[13] FOGH, A. Negative Result: Reading Kernel Memory From
User Mode, https://cyber.wtf/2017/07/28/negative-

result-reading-kernel-memory-from-user-mode/

2017.

[14] GENS, D., ARIAS, O., SULLIVAN, D., LIEBCHEN, C., JIN, Y.,
AND SADEGHI, A.-R. Lazarus: Practical side-channel resilient
kernel-space randomization. In International Symposium on Re-
search in Attacks, Intrusions, and Defenses (2017).

[15] GLEIXNER, T. x86/kpti: Kernel Page Table Isolation
(was KAISER), https://lkml.org/lkml/2017/12/4/709

Dec 2017.

[16] GRAS, B., RAZAVI, K., BOSMAN, E., BOS, H., AND GIUF-
FRIDA, C. ASLR on the Line: Practical Cache Attacks on the
MMU. In NDSS (2017).

[17] GRISENTHWAITE, R. Cache Speculation Side-channels, 2018.

[18] GRUSS, D. [RFC, PATCH] x86 64: KAISER - do not map kernel
in user mode, https://lkml.org/lkml/2017/5/4/220 May
2017.

[19] GRUSS, D., LETTNER, J., SCHUSTER, F., OHRIMENKO, O.,
HALLER, I., AND COSTA, M. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In
USENIX Security Symposium (2017).

[20] GRUSS, D., LIPP, M., SCHWARZ, M., FELLNER, R., MAU-
RICE, C., AND MANGARD, S. KASLR is Dead: Long Live
KASLR. In International Symposium on Engineering Secure
Software and Systems (2017), Springer, pp. 161–176.

[21] GRUSS, D., MAURICE, C., FOGH, A., LIPP, M., AND MAN-
GARD, S. Prefetch Side-Channel Attacks: Bypassing SMAP and
Kernel ASLR. In CCS (2016).

[22] GRUSS, D., MAURICE, C., WAGNER, K., AND MANGARD,
S. Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA
(2016).

[23] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache
Template Attacks: Automating Attacks on Inclusive Last-Level
Caches. In USENIX Security Symposium (2015).

[24] HANSEN, D. [PATCH 00/23] KAISER: unmap most of the kernel
from userspace page tables, https://lkml.org/lkml/2017/
10/31/884 Oct 2017.

[25] HANSEN, D. [v2] KAISER: unmap most of the kernel from
userspace page tables, https://lkml.org/lkml/2017/11/

8/752 Nov 2017.

[26] HANSEN, D. [v3] KAISER: unmap most of the kernel from
userspace page tables, https://lkml.org/lkml/2017/11/

10/433 Nov 2017.

[27] HANSEN, D. [v4] KAISER: unmap most of the kernel from
userspace page tables, https://lkml.org/lkml/2017/11/

22/956 Nov 2017.

[28] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architec-
ture: A Quantitative Approach, 6 ed. Morgan Kaufmann, 2017.

[29] HUND, R., WILLEMS, C., AND HOLZ, T. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In S&P (2013).

[30] HUTCHINGS, B. Linux 3.16.53, https://cdn.kernel.org/
pub/linux/kernel/v3.x/ChangeLog-3.16.53 2018.

[31] INTEL. An introduction to the intel quickpath interconnect, Jan
2009.

[32] INTEL. Intel R© 64 and IA-32 Architectures Optimization Refer-
ence Manual, 2017.

[33] INTEL. Intel analysis of speculative execution side channels,
https://newsroom.intel.com/wp-content/uploads/

sites/11/2018/01/Intel-Analysis-of-Speculative-

Execution-Side-Channels.pdf Jan 2018.

[34] IONESCU, A. Twitter: Apple Double Map, https://twitter.
com/aionescu/status/948609809540046849 2017.

[35] IONESCU, A. Twitter: Meltdown with uncached
memory, https://twitter.com/aionescu/status/

950994906759143425 Jan 2018.

[36] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Wait a minute! A fast, Cross-VM attack on AES. In RAID’14
(2014).

[37] JANG, Y., LEE, S., AND KIM, T. Breaking Kernel Address
Space Layout Randomization with Intel TSX. In CCS (2016).

[38] JIMÉNEZ, D. A., AND LIN, C. Dynamic branch prediction with
perceptrons. In High-Performance Computer Architecture, 2001.
HPCA. The Seventh International Symposium on (2001), IEEE,
pp. 197–206.

[39] JOHNSON, K. KVA Shadow: Mitigating Meltdown on Windows,
https://blogs.technet.microsoft.com/srd/2018/03/

23/kva-shadow-mitigating-meltdown-on-windows/

Mar 2018.

[40] KOCHER, P., HORN, J., FOGH, A., GENKIN, D., GRUSS,
G., HAAS, W., HAMBURG, M., LIPP, M., MANGARD, S.,
PRESCHER, T., SCHWARZ, M., AND YAROM, Y. Spectre at-
tacks: Exploiting speculative execution. In S&P (2019). A pre-
print was published in 2018 as arXiv:1801.01203.

[41] KOCHER, P. C. Timing Attacks on Implementations of Diffe-
Hellman, RSA, DSS, and Other Systems. In CRYPTO (1996).

[42] KROAH-HARTMAN, G. Linux 4.14.11, https://cdn.

kernel.org/pub/linux/kernel/v4.x/ChangeLog-

4.14.11 2018.

[43] KROAH-HARTMAN, G. Linux 4.4.110, https://cdn.

kernel.org/pub/linux/kernel/v4.x/ChangeLog-

4.4.110 2018.

[44] KROAH-HARTMAN, G. Linux 4.9.75, https://cdn.kernel.
org/pub/linux/kernel/v4.x/ChangeLog-4.9.75 2018.

[45] LEE, B., MALISHEVSKY, A., BECK, D., SCHMID, A., AND
LANDRY, E. Dynamic branch prediction. Oregon State Univer-
sity.

[46] LEVIN, J. Mac OS X and IOS Internals: To the Apple’s Core.
John Wiley & Sons, 2012.

[47] LIPP, M., GRUSS, D., SPREITZER, R., MAURICE, C., AND
MANGARD, S. ARMageddon: Cache Attacks on Mobile De-
vices. In USENIX Security Symposium (2016).

[48] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-Level Cache Side-Channel Attacks are Practical. In IEEE
Symposium on Security and Privacy – SP (2015), IEEE Computer
Society, pp. 605–622.

[49] LWN. The current state of kernel page-table isolation, https://
lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/

Dec. 2017.

[50] MAISURADZE, G., AND ROSSOW, C. Speculose: Analyz-
ing the Security Implications of Speculative Execution in CPUs.
arXiv:1801.04084 (2018).

[51] MANDT, T. Attacking the iOS Kernel: A Look at ’evasi0n’,
www.nislab.no/content/download/38610/481190/

file/NISlecture201303.pdf 2013.

[52] MAURICE, C., WEBER, M., SCHWARZ, M., GINER, L.,
GRUSS, D., ALBERTO BOANO, C., MANGARD, S., AND
RÖMER, K. Hello from the Other Side: SSH over Robust Cache
Covert Channels in the Cloud. In NDSS (2017).

[53] MILLER, M. Mitigating speculative execution side channel hard-
ware vulnerabilities, https://blogs.technet.microsoft.

com/srd/2018/03/15/mitigating-speculative-

execution-side-channel-hardware-vulnerabilities/

Mar 2018.

[54] MOLNAR, I. x86: Enable KASLR by de-
fault, https://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git/commit/?id=

6807c84652b0b7e2e198e50a9ad47ef41b236e59 2017.

[55] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache Attacks
and Countermeasures: the Case of AES. In CT-RSA (2006).

[56] PERCIVAL, C. Cache missing for fun and profit. In Proceedings
of BSDCan (2005).

[57] PHORONIX. Linux 4.12 To Enable KASLR By De-
fault, https://www.phoronix.com/scan.php?page=news_

item&px=KASLR-Default-Linux-4.12 2017.

[58] SCHWARZ, M., LIPP, M., GRUSS, D., WEISER, S., MAURICE,
C., SPREITZER, R., AND MANGARD, S. KeyDrown: Eliminat-
ing Software-Based Keystroke Timing Side-Channel Attacks. In
NDSS’18 (2018).

[59] SORIN, D. J., HILL, M. D., AND WOOD, D. A. A Primer on
Memory Consistency and Cache Coherence. 2011.

[60] TERAN, E., WANG, Z., AND JIMÉNEZ, D. A. Perceptron learn-
ing for reuse prediction. In Microarchitecture (MICRO), 2016
49th Annual IEEE/ACM International Symposium on (2016),
IEEE, pp. 1–12.

[61] TOMASULO, R. M. An efficient algorithm for exploiting multi-
ple arithmetic units. IBM Journal of research and Development
11, 1 (1967), 25–33.

[62] VINTAN, L. N., AND IRIDON, M. Towards a high performance
neural branch predictor. In Neural Networks, 1999. IJCNN’99.
International Joint Conference on (1999), vol. 2, IEEE, pp. 868–
873.

[63] YAROM, Y., AND FALKNER, K. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In USENIX
Security Symposium (2014).

[64] YEH, T.-Y., AND PATT, Y. N. Two-level adaptive training
branch prediction. In Proceedings of the 24th annual interna-
tional symposium on Microarchitecture (1991), ACM, pp. 51–61.

[65] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART,
T. Cross-Tenant Side-Channel Attacks in PaaS Clouds. In CCS
(2014).

A Meltdown in Practice

In this section, we show how Meltdown can be used in
practice. In Appendix A.1, we show physical memory
dumps obtained via Meltdown, including passwords of
the Firefox password manager. In Appendix A.2, we
demonstrate a real-world exploit.

A.1 Physical-memory Dump using Melt-
down

Listing 3 shows a memory dump using Meltdown on
an Intel Core i7-6700K running Ubuntu 16.10 with the
Linux kernel 4.8.0. In this example, we can identify
HTTP headers of a request to a web server running on
the machine. The XX cases represent bytes where the side
channel did not yield any results, i.e., no Flush+Reload
hit. Additional repetitions of the attack may still be able
to read these bytes.

Listing 4 shows a memory dump of Firefox 56 using
Meltdown on the same machine. We can clearly iden-
tify some of the passwords that are stored in the internal
password manager, i.e., Dolphin18, insta 0203, and
secretpwd0. The attack also recovered a URL which
appears to be related to a Firefox add-on.

79cbb80: 6c4c 48 32 5a 78 66 56 44 73 4b 57 39 34 68 6d |lLH2ZxfVDsKW94hm|

79cbb90: 3364 2f 41 4d 41 45 44 41 41 41 41 41 51 45 42 |3d/AMAEDAAAAAQEB|

79cbba0: 4141 41 41 41 41 3d 3d XX XX XX XX XX XX XX XX |AAAAAA==........|

79cbbb0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbc0: XXXX XX 65 2d 68 65 61 64 XX XX XX XX XX XX XX |...e-head.......|

79cbbd0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbe0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbbf0: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc00: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc10: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc20: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc30: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc40: XXXX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

79cbc50: XXXX XX XX 0d 0a XX 6f 72 69 67 69 6e 61 6c 2d |.......original-|

79cbc60: 7265 73 70 6f 6e 73 65 2d 68 65 61 64 65 72 73 |response-headers|

79cbc70: XX44 61 74 65 3a 20 53 61 74 2c 20 30 39 20 44 |.Date: Sat, 09 D|

79cbc80: 6563 20 32 30 31 37 20 32 32 3a 32 39 3a 32 35 |ec 2017 22:29:25|

79cbc90: 2047 4d 54 0d 0a 43 6f 6e 74 65 6e 74 2d 4c 65 | GMT..Content-Le|

79cbca0: 6e67 74 68 3a 20 31 0d 0a 43 6f 6e 74 65 6e 74 |ngth: 1..Content|

79cbcb0: 2d54 79 70 65 3a 20 74 65 78 74 2f 68 74 6d 6c |-Type: text/html|

79cbcc0: 3b20 63 68 61 72 73 65 74 3d 75 74 66 2d 38 0d |; charset=utf-8.|

Listing (3) Memory dump showing HTTP Headers on Ubuntu
16.10 on a Intel Core i7-6700K

f94b76f0: 12 XX e0 81 19 XX e0 81 44 6f 6c 70 68 69 6e 31 |........Dolphin1|

f94b7700: 38 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |8...............|

f94b7710: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX |pR.k............|

f94b7720: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7730: XX XX XX XX 4a XX XX XX XX XX XX XX XX XX XX XX |....J...........|

f94b7740: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7750: XX XX XX XX XX XX XX XX XX XX e0 81 69 6e 73 74 |............inst|

f94b7760: 61 5f 30 32 30 33 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |a_0203..........|

f94b7770: 70 52 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |pR.}(...........|

f94b7780: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7790: XX XX XX XX 54 XX XX XX XX XX XX XX XX XX XX XX |....T...........|

f94b77a0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b77b0: XX XX XX XX XX XX XX XX XX XX XX XX 73 65 63 72 |............secr|

f94b77c0: 65 74 70 77 64 30 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |etpwd0..........|

f94b77d0: 30 b4 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX |0..}(...........|

f94b77e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b77f0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |................|

f94b7800: e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |................|

f94b7810: 68 74 74 70 73 3a 2f 2f 61 64 64 6f 6e 73 2e 63 |https://addons.c|

f94b7820: 64 6e 2e 6d 6f 7a 69 6c 6c 61 2e 6e 65 74 2f 75 |dn.mozilla.net/u|

f94b7830: 73 65 72 2d 6d 65 64 69 61 2f 61 64 64 6f 6e 5f |ser-media/addon_|

Listing (4) Memory dump of Firefox 56 on Ubuntu 16.10 on
a Intel Core i7-6700K disclosing saved passwords.

A.2 Real-world Meltdown Exploit
In this section, we present a real-world exploit showing
the applicability of Meltdown in practice, implemented
by Pavel Boldin in collaboration with Raphael Carvalho.
The exploit dumps the memory of a specific process, pro-
vided either the process id (PID) or the process name.

First, the exploit de-randomizes the kernel address
space layout to be able to access internal kernel struc-
tures. Second, the kernel’s task list is traversed until the
victim process is found. Finally, the root of the victim’s
multilevel page table is extracted from the task structure
and traversed to dump any of the victim’s pages.

The three steps of the exploit are combined to an end-
to-end exploit which targets a specific kernel build and
a specific victim. The exploit can easily be adapted to
work on any kernel build. The only requirement is ac-
cess to either the binary or the symbol table of the kernel,
which is true for all public kernels which are distributed
as packages, i.e., not self-compiled. In the remainder
of this section, we provide a detailed explanation of the
three steps.

A.2.1 Breaking KASLR

The first step is to de-randomize KASLR to access in-
ternal kernel structures. The exploit locates a known
value inside the kernel, specifically the Linux banner
string, as the content is known and it is large enough to
rule out false positives. It starts looking for the banner
string at the (non-randomized) default address according
to the symbol table of the running kernel. If the string
is not found, the next attempt is made at the next pos-
sible randomized address until the target is found. As
the Linux KASLR implementation only has an entropy
of 6 bits [37], there are only 64 possible randomization
offsets, making this approach practical.

The difference between the found address and the non-
randomized base address is then the randomization offset

of the kernel address space. The remainder of this section
assumes that addresses are already de-randomized using
the detected offset.

A.2.2 Locating the Victim Process

Linux manages all processes (including their hierarchy)
in a linked list. The head of this task list is stored in the
init task structure, which is at a fixed offset that only
varies among different kernel builds. Thus, knowledge
of the kernel build is sufficient to locate the task list.

Among other members, each task list structure con-
tains a pointer to the next element in the task list as well
as a task’s PID, name, and the root of the multilevel page
table. Thus, the exploit traverses the task list until the
victim process is found.

A.2.3 Dumping the Victim Process

The root of the multilevel page table is extracted from
the victim’s task list entry. The page table entries on
all levels are physical page addresses. Meltdown can
read these addresses via the direct-physical map, i.e., by
adding the base address of the direct-physical map to the
physical addresses. This base address is 0xffff 8800

0000 0000 if the direct-physical map is not randomized.
If the direct-physical map is randomized, it can be ex-
tracted from the kernel’s page offset base variable.

Starting at the root of the victim’s multilevel page ta-
ble, the exploit can simply traverse the levels down to the
lowest level. For a specific address of the victim, the ex-
ploit uses the paging structures to resolve the respective
physical address and read the content of this physical ad-
dress via the direct-physical map. The exploit can also
be easily extended to enumerate all pages belonging to
the victim process, and then dump any (or all) of these
pages.

