{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import sys\n",
"import warnings\n",
"if not sys.warnoptions:\n",
" warnings.simplefilter(\"ignore\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Machine learning topics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Academics tend to use SVM\n",
"- Industry tends to use Logistic regressions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. Linear classifiers\n",
"\n",
"Seperate object classes\n",
"\n",
"$$x^T w =0$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.1 Python example: Linear classifiers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.1.1 Importing dataset from sklearn "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.1.1.1 User function: convert sklearn data $\\rightarrow$ dataframe"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def to_df(dataset):\n",
" df = pd.DataFrame(dataset.data, columns= dataset.feature_names)\n",
" df['target'] = pd.Series(dataset.target)\n",
" df['target_cat'] = pd.Categorical.from_codes(dataset.target, dataset.target_names)\n",
" return df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.1.1.2 Import breast cancer data set with user created fucntion"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" mean radius | \n",
" mean texture | \n",
" mean perimeter | \n",
" mean area | \n",
" mean smoothness | \n",
" mean compactness | \n",
" mean concavity | \n",
" mean concave points | \n",
" mean symmetry | \n",
" mean fractal dimension | \n",
" ... | \n",
" worst perimeter | \n",
" worst area | \n",
" worst smoothness | \n",
" worst compactness | \n",
" worst concavity | \n",
" worst concave points | \n",
" worst symmetry | \n",
" worst fractal dimension | \n",
" target | \n",
" target_cat | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 17.99 | \n",
" 10.38 | \n",
" 122.8 | \n",
" 1001.0 | \n",
" 0.11840 | \n",
" 0.27760 | \n",
" 0.3001 | \n",
" 0.14710 | \n",
" 0.2419 | \n",
" 0.07871 | \n",
" ... | \n",
" 184.6 | \n",
" 2019.0 | \n",
" 0.1622 | \n",
" 0.6656 | \n",
" 0.7119 | \n",
" 0.2654 | \n",
" 0.4601 | \n",
" 0.11890 | \n",
" 0 | \n",
" malignant | \n",
"
\n",
" \n",
" | 1 | \n",
" 20.57 | \n",
" 17.77 | \n",
" 132.9 | \n",
" 1326.0 | \n",
" 0.08474 | \n",
" 0.07864 | \n",
" 0.0869 | \n",
" 0.07017 | \n",
" 0.1812 | \n",
" 0.05667 | \n",
" ... | \n",
" 158.8 | \n",
" 1956.0 | \n",
" 0.1238 | \n",
" 0.1866 | \n",
" 0.2416 | \n",
" 0.1860 | \n",
" 0.2750 | \n",
" 0.08902 | \n",
" 0 | \n",
" malignant | \n",
"
\n",
" \n",
"
\n",
"
2 rows × 32 columns
\n",
"
"
],
"text/plain": [
" mean radius mean texture mean perimeter mean area mean smoothness \\\n",
"0 17.99 10.38 122.8 1001.0 0.11840 \n",
"1 20.57 17.77 132.9 1326.0 0.08474 \n",
"\n",
" mean compactness mean concavity mean concave points mean symmetry \\\n",
"0 0.27760 0.3001 0.14710 0.2419 \n",
"1 0.07864 0.0869 0.07017 0.1812 \n",
"\n",
" mean fractal dimension ... worst perimeter worst area worst smoothness \\\n",
"0 0.07871 ... 184.6 2019.0 0.1622 \n",
"1 0.05667 ... 158.8 1956.0 0.1238 \n",
"\n",
" worst compactness worst concavity worst concave points worst symmetry \\\n",
"0 0.6656 0.7119 0.2654 0.4601 \n",
"1 0.1866 0.2416 0.1860 0.2750 \n",
"\n",
" worst fractal dimension target target_cat \n",
"0 0.11890 0 malignant \n",
"1 0.08902 0 malignant \n",
"\n",
"[2 rows x 32 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.datasets import load_breast_cancer\n",
"cancer = load_breast_cancer()\n",
"#User created function\n",
"cancer_df = to_df(cancer)\n",
"\n",
"cancer_df.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.1.2 Predict cancer with 3 linear classifiers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.1.2.1 Create arrays for two features and target"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"X_twofeatures = cancer_df[['mean radius','mean texture']]\n",
"y = cancer_df.target.values.reshape(-1,1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.1.2.2 User function: Predict label (cancer or not) with 3 classifiers:\n",
"1. SVM\n",
"2. Logistic regression\n",
"3. K-neighbors"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def LinearClass(X,y, classifier, split=False):\n",
" fit = eval(linear_class + \"().fit(X_twofeatures, y)\")\n",
" X_twofeatures['Predict'] = fit.fit(X_twofeatures, y).predict(X_twofeatures)\n",
" sns.scatterplot('mean radius','mean texture', data=X_twofeatures, hue='Predict')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.1.2.3. Input X_twofeatures and y (1.1.2.1) to user function for all three classifiers"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAALJCAYAAAB7goiiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd5iU1fXA8e+ZtjPbly20pfeONEEQe+9GbEms0Rg1xhj1pynGEo3GRGNixRIsCYodC2ADBQURkN47S99eZqff3x/vsGwDdtm+ez7Psw87d95yZ3bZec97zz1XjDEopZRSSimlVFtla+oOKKWUUkoppVRT0qBIKaWUUkop1aZpUKSUUkoppZRq0zQoUkoppZRSSrVpGhQppZRSSiml2jQNipRSSimllFJtmgZFSinVTIjI8SKyrqn7cSQiYkSkdwMd+6ci8lm5x+NFZIOIFIvIhSIyQ0SubohzH6FfvxeRlxr7vEoppRqH6DpFSinVuERkK/ALY8wXTd2XoyEiBuhjjNnYCOf6EphujHmqEc7VHdgCOI0xoYY+X02JSCbwFHAC4AS2A/8A3gT2ABcbY76qtM+TQBdjzCXRx1cCdwD9gSJgKfCwMWZeY70OpZRqznSkSCml2jgRcTR1Hw6jG7Cqrgdp5q/xkETEDrwO7MB6L1KBq4C9xhgf8Fb0ceV9rgBejT6+A/gn8AjQHugKPAtc0DivQimlmj8NipRSqpkQkRNFJKvc460icqeILBeRAhF5S0Tc5Z4/V0SWiki+iHwnIkPLPXePiGwSkSIRWS0iF5V77hoR+VZEnhSRXOD+avpij6aMHTjGYhHpUs1254jIjyJSKCI7ROT+cs+5ReQNEcmJ9vEHEWlfrg+bo8feIiI/Ldc+L/r9JqAn8FE0fS5GROaIyC/KneM6EVkjInkiMktEupV7zojILSKyAdhQ259Hpdd5v4i8Ef2+e/TYV4vIdhHJFpE/lNvWVu79zxGRaSLSrtzzb4vInujP9BsRGVTuuSki8pyIfCoiJcBJwGhgijGmxBgTMsb8aIyZEd3lVeAnIhJbrrtnYH2+zxCRJOBB4BZjzHvRYwSNMR8ZY+6qy3uilFKtiQZFSinVvF0KnAn0AIYC1wCIyAjgFeCXWKMHLwDTRSQmut8m4HggCXgAeENEOpY77rHAZiADeLia896BNdpwNpAIXAd4q9muBGukIhk4B/iViFwYfe7q6Pm7RPt4E1AqInHAv4CzjDEJwHFY6VwVGGN6YaWKnWeMiTfG+Ms/Hz3P74GLgXRgLjC10mEujL7WgdF9PhaRe6p5HUdjAtAPOAW4T0QGRNtvi573BKATkAc8U26/GUAfrPd+CfDfSse9EutnkgDMAxYAz4jI5SLStfyGxpjvgN1Y78EBPwf+F00BHAe4gffr9EqVUqqV06BIKaWat38ZY3YZY3KBj4Dh0fYbgBeMMd8bY8LGmFcBPzAWwBjzdnS/iDHmLayRkjHljrvLGPPv6MhDaTXn/QXwR2PMOmNZZozJqbyRMWaOMWZF9DzLsYKSE6JPB7GCod7RPi42xhRGn4sAg0XEY4zZbYw5mhS5XwJ/NcasiQYAjwDDy48WRZ/PPfAajTHnGmMePYpzVecBY0ypMWYZsAwYVq5ffzDGZEUDufuBSw6k8BljXjHGFJV7blh0ROeAD40x30bfUx8wCSvg+xOwJTo6OLrc9q8RTaETkUSstLhXo8+lAtnNaY6UUko1RxoUKaVU87an3PdeID76fTfgd9G0tHwRyccakekEICJXlUutywcGA2nljrXjCOftgjXadFgicqyIzBaR/SJSgDUadOA8rwOzgDdFZJeI/E1EnMaYEuCy6La7ReQTEel/pHNVoxvwVLnXmAsI0LncNkd6nXVxuJ/N++X6tQYIA+2jaYmPRlPrCoGt0X0O+bMxxuQZY+4xxgzCmhO0FPhARCS6yWvASSLSGbgE2GiM+TH6XA6QJi10TpVSSjUWDYqUUqpl2oFVPSy53FesMWZqdKTkReBWINUYkwysxAoYDjhS6dEdQK8a9ON/wHSsSmdJwPMHzhOdu/KAMWYgVorcuURHNIwxs4wxpwEdgbXR/tbWDuCXld4DTzSl7ICmKLG6Ays1sHy/3MaYnVipcRcAp2KlFnaP7lOjn40xJhv4O1bw2y7ath1rJOmnWKlzr5XbZT7gw0rnU0opdQgaFCmlVNNwRgsRHPiq7Z38F4GboiM1IiJx0aIHCUAc1oX1fgARuRZrpKg2XgIeEpE+0eMPFZHUarZLAHKNMT4RGYN10U/0vCeJyBCxqqEVYqXThUWkvYicH51b5AeKsUZSaut54N4DhQpEJElEJh3FcSqLqfSzqe1n5fPAwwfS+EQkXUQOVHpLwHrNOUAsVsrfYYnIYyIyWEQc0Z/vr7BGg8qnM76KFQSPp9wcJWNMAXAf1pykC0UkVkScInKWiPytlq9LKaVaLQ2KlFKqaXwKlJb7ur82OxtjFmHNK3oaayL/RqJFGIwxq7HWsZkP7AWGAN/Wsn9PANOAz7ACmpcBTzXb3Qw8KCJFWBff08o91wF4J7r/GuBr4A2sz57fAbuwUt5OiB6nVowx7wOPYaXnFWKNhp11uH3EWvz190c4dDEVfzYn17JrT2GNnn0WfV8WYBV7AGsUZxuwE1gdfe5IYrEKJeRjFcfoBpxfaZt3gBTgS2PM7vJPGGOewCqc8UesQHkHVgD1QS1fl1JKtVq6eKtSSimllFKqTdORIqWUUkoppVSbVq9BkYi8IiL7RGTlIZ4XEfmXiGwUazHCEfV5fqWUUkoppZSqrfoeKZqCtcjgoZyFtWBdH+BG4Ll6Pr9SSimllFJK1Uq9BkXGmG+wJs0eygXAa9GFABcAyZVWWFdKKaWUUkqpRtXYi7l1puKidFnRtt2VNxSRG7FGk0hNTR3ZvXv3xuifUkoppZRSqgVavHixMcYc1aBPgwdF0fUpFmGVHxWgo4h8j7XoXCJgr24/Y8xkYDLAqFGjzKJFixq6q0oppZRSSqkWSkRKj3bfxqg+9xus9SnAGhm6A3jSGNMHiAFObIQ+KKWUUkoppVS1GjQoEpFM4BysldHBWsxuJPCOiIzFWrivtoviKaWUUkoppVS9qdf0ORGZijXykyYiWcAerNXQz41u8j3gBdZF/70LazXy6o5VNqeoa9eu9dlNpZRSSimllCpTr0GRMeaKA9+LyLnA2caY34vIicCdWHOKso0xvaPbdAHMIY5VYU5RffZTKaVUy1HgDbBhXzHvLdnJkMwkThvQnrSEmKbullJKNbhgMEhWVhY+n6+pu9KsuN1uMjMzcTqd9XbMhiy0MB44X0TOBtxYRRX+iVWG22GMCQGZWCl0SimlVBXhcIRZq/dy9zvLrYaFMK3rDl66ahSp8RoYKaVat6ysLBISEujevTsi0tTdaRaMMeTk5JCVlUWPHj3q7bgNNqfIGHOvMSbTGNMduBz4yhjzU2A2cEl0s6uBDxuqD0oppVq2XG+Af325oULbj9vzKSgNNlGPlFKq8fh8PlJTUzUgKkdESE1NrffRs8aoPlfZ/wF3iMhGIBV4uQn6oJRSqoXQawGlVFumAVFVDfGeNEpQZIyZY4w5N/r9ZmPMGGNMb2PMJGOMvzH6oJRSquVpFxfDb07pW6FtRLdkkjz1l0eulFJKNcVIkVJKKVUjdptw2oD2vH/zcVw1rhuPXzKUyT/X+URKKdVY7HY7w4cPZ/DgwUyaNAmv13vUx5ozZw7nnmsVpZ4+fTqPPvroIbfNz8/n2WefPepz1ZYGRUoppZq1pFgnx3RN4cELBjNpVBfSNCBSSqlG4/F4WLp0KStXrsTlcvH8889XeN4YQyQSqfVxzz//fO65555DPq9BkVJKKaWUUqrZOf7449m4cSNbt25lwIAB3HzzzYwYMYIdO3bw2WefMW7cOEaMGMGkSZMoLi4GYObMmfTv358JEybw3nvvlR1rypQp3HrrrQDs3buXiy66iGHDhjFs2DC+++477rnnHjZt2sTw4cO56667Gvy1aVCklFJKKaWUOqxQKMSMGTMYMmQIAOvWreOqq67ixx9/JC4ujr/85S988cUXLFmyhFGjRvHEE0/g8/m44YYb+Oijj5g7dy579uyp9ti33XYbJ5xwAsuWLWPJkiUMGjSIRx99lF69erF06VIef/zxBn99GhQppZRSSimlqlVaWsrw4cMZNWoUXbt25frrrwegW7dujB07FoAFCxawevVqxo8fz/Dhw3n11VfZtm0ba9eupUePHvTp0wcR4Wc/+1m15/jqq6/41a9+BVhzmJKSkhrnxZXTkIu3KqWUUkoppVqwA3OKKouLiyv73hjDaaedxtSpUytss3Tp0hZTUlxHipRSSimllFJHbezYsXz77bds3LgRAK/Xy/r16+nfvz9btmxh06ZNAFWCpgNOOeUUnnvuOQDC4TCFhYUkJCRQVFTUOC8ADYqUUkoppZRSdZCens6UKVO44oorGDp0KGPHjmXt2rW43W4mT57MOeecw4QJE+jWrVu1+z/11FPMnj2bIUOGMHLkSFatWkVqairjx49n8ODBjVJoQYwxDX6Suho1apRZtGhRU3dDKaWUUkqpRrNmzRoGDBjQ1N1olqp7b0TEa4yJO8Quh6UjRUoppZRSSqk2TYMipZRSSimlVJumQZFSSimllFKqTdOgSCmllFJKKdWmaVCklFJKKaWUatM0KFJKKaWUUkq1aRoUKaWUUkoppQ5p5syZ9OvXj969e/Poo482dXcaRIMFRSLiFpGFIrJMRFaJyAPR9ikiskVElka/hjdUH5RSSimllFJHLxwOc8sttzBjxgxWr17N1KlTWb16dVN3q945GvDYfuBkY0yxiDiBeSIyI/rcXcaYdxrw3EoppZRSSrUpH/y4k8dnrWNXfimdkj3cdUY/Ljymc52OuXDhQnr37k3Pnj0BuPzyy/nwww8ZOHBgfXS52WiwkSJjKY4+dEa/TEOdTymllFJKqbbqgx93cu97K9iZX4oBduaXcu97K/jgx511Ou7OnTvp0qVL2ePMzEx27qzbMZujBp1TJCJ2EVkK7AM+N8Z8H33qYRFZLiJPikjMIfa9UUQWicii/fv3N2Q3lVJKKaWUatEen7WO0mC4QltpMMzjs9bV6bjGVB3TEJE6HbM5qvegSETOFJF1IrIRK01uOJAJjBGRwcDTwC4gAlwNvFTdcYwxk40xo4wxo9LT0+u7m0oppZRSSrUau/JLa9VeU5mZmezYsaPscVZWFp06darTMZujeg2KRMQOPAOcBQwErhCRgcaYfGAOcCZwIzAtGiz9FvhJffZBKaWUUkqptqZTsqdW7TU1evRoNmzYwJYtWwgEArz55pucf/75dTpmc1TfI0VjgI3GmM1AEvABcIGIeIBTgbWAB0gUa9ztLCC3nvugVPPizYH87ZC3DUqym7o3SimllGqF7jqjHx6nvUKbx2nnrjP61em4DoeDp59+mjPOOIMBAwZw6aWXMmjQoDodszmq7+pznYED42sdsdLj4oGfYo0OfSwi9wCTgL9gpdCdUt2BRORGrFElRo4cWc/dVKqRlGTDh7fA+pnW4x4T4ZJXIE5TQlXNlQbCFPmDCEJqnAubrfXlciullKqbA1Xm6rv6HMDZZ5/N2WefXefjNGf1HRSVfVIbY5aLyJ+AMcaYX5fb5j3gfWPMP0RkHPCyiAw2xkTKH8gYMxmYDDBq1CitWqdapq3zDgZEAFu+gXUzYMRVTdcn1aLkFPt5bs4mpi7cTkqciwcvGMyxPVKIi3E2ddeUUko1Mxce07legqC2qL7T57KALuUeZ2IVVSjvemAagDFmPuAG0uq5H0o1D1kLq7Ztnw+RSNV2pSoJhyN8uHQXL83bQkkgTFZeKde/+gO5JcGm7ppSSinVqtR3UPQD0EdEeoiIC7gcmF5pm+1EU+ZEZABWUKQ1t1XrNPCCqm1DJoGtQavhq1aiyB/ikxW7K7QZA4u35TVRj5RSSqnWqV6vzIwxIeBWYBawBmse0SoReVBEDpSp+B1wg4gsA6YC15jqCqAr1Rqk9YWzHofYduBOhlPvh47Dm7pXqoVwO+0M6pRYpb1P+/gm6I1SSinVetX3nCKMMZ8Cn1Zqu6/c96uB8fV9XqWaJU8KjLzm4IiRJxkc1a5XrFQVbqedm0/szbcbc9i0vxiAnx3blY5JdSuvqpRSSqmK6j0oUkpV4nBBQvum7oVqoTokuXnrl2Mp9oVwOWzExdhJ8riauluqGcgu8rN4ex5ZuV5OHdie9IQYYl36sa6UUkdD/3oqpVQzlxYfQ1q8jjCqg7KL/VwzZSErdxYC8NcZa3nnpnEM75rSxD1TSrU21113HR9//DEZGRmsXLmyqbvTYHS2t1JKKdXCZOWVlgVEAKGI4bGZ68j3BpqwV0qp1uiaa65h5syZR96whdOgSCmllGphfMFwlbaSQIiI1i1Sqm1bPg2eHAz3J1v/Lp9W50NOnDiRdu3a1UPnmjcNipRSSqkWpld6HBkJFVMqbzqhF+3iNM1SqTZr+TT46DYo2AEY69+PbquXwKgt0DlFSimlVAuTnuDmw1vH859vt7I918tVY7sxqHNSU3dLKdWUvnwQgqUV24KlVvvQS5umTy2IBkVKKaVUC9QxycPdZ/QjGDF4nPam7k61QuEIJYEwsS47TrsmpyjVoAqyateuKtCgSCmllGqhHHYbjuYZD5FT7GfaoizmrNvH6B7tuHpcd9ITNL1PqQaTlBlNnaumXR2R3rZRSjW5cMRQUBokEIo0dVeUUvWg0BfkgY9W8djMtXy/JZenv9rIr6cuIa9Eq+Mp1WBOuQ+clRb3dnqs9jq44oorGDduHOvWrSMzM5OXX365TsdrrnSkSCnVpHJLAny4dCczV+5heNdkrh/fg4xEd1N3q8F5/SEKfSGK/UES3U5S4pw47c30lr9StVQaCPPx8t0V2hZszsUbDKMrKSnVQA7MG/ryQStlLinTCojqOJ9o6tSp9dC55k+DIqVUk/EGQjzx+TreWLAdgO+35PLdxhymXDua1Fa8WGlpMMQXa/Zy59vLCYQjJMQ4eO36MQzvkoyINHX3lKoXcS4HRf5Q2WOnXbDr77dSDWvopVpU4SjVKH1ORDwi0q+hO6OUaluK/SHeXlRxAuiKnQWUBKquwdKaFHpD3P2uFRABFPlD/PatpWQXa2qRah1SYl3ce3b/Cm03n9ibBLfei1VKNU9H/OskIucBfwdcQA8RGQ48aIw5/wj7uYFvgJjoed4xxvxZRHoAbwLtgCXAz40xeiWgVCMwxpBTHCCCVa0qwe1s0v4IQoLbgb9cMGATcNha991kXyiML1hx/tTWHK8uvKlaDZfDxjlDO3Fsj1SWbM9jcOckOia5iYvRoEip2jLGaBZBJaYBPi9rMlJ0PzAGyI92YinQvQb7+YGTjTHDgOHAmSIyFngMeNIY0wfIA66vfbeVUrXlD4ZZsj2PSS/MZ9xfv+Lud5azv8jfpH1KiXVy37mDKrRdc1x34lvphZMvGGZvoQ+7TeiUVHHe1ITeqcQ4tPaNaj2SPE56ZcQzaVQXBnRMJDnW1dRdUqrFcbvd5OTkNEgQ0FIZY8jJycHtrt/5xzW58ggZYwpqG6Ea66dXHH3ojH4Z4GTgymj7q1hB13O1OrhSqtbyS4P89KXvy0YoZqzcQ7zbwQPnDSK2iYIQh93GSf3TmX3nCSzamseAjol0TvaQ6GnaEayG4AuGmbNuH799axl92sfzryuO4a8z1rJ6VyHje6fylwuH6EWjUkqpCjIzM8nKymL//v1N3ZVmxe12k5lZv6XGa3IltFJErgTsItIHuA34riYHFxE7sBjoDTwDbALyjTEHZl5mAZ0Pse+NwI0AXbt2rcnplGqeiveDiYAjBjzJTdaNvYW+Kilbc9bup/j0UK2CotySAAWlQYLhCO1iXaTVcd2RBLeTBLeTHmnxdTpOc1dQGuT2t5biC0ZYnlXA3e8s59cn9+bYnqnExzhaZSCo2p5if5Bg2JCiAb5S9cLpdNKjR4+m7kabUJNcjV8Dg7DS4f4HFAC31+TgxpiwMWY4kImVgjegus0Ose9kY8woY8yo9PT0mpxOqeYlHIRdy+DVc+GJ/vD+TVC0p2b7+oth31qY9Qf4fjIU7a1zd9LiY6g84DugUwIxzpqXgc4p9vO7aUs56e9zOP3Jb7j0hfnsLfTVuW9tQWmg4jyizdkl3PH2Mhw20YBItXjBcJhN+4r53bRl/OLVRXy0bBf5Xp0urJRqOQ4bFEVHeh4wxvzBGDM6+vVHY0ytroKMMfnAHGAskCwiB25LZwK7jqLfSjV/3hx47TzYv9YaKVo/Az69C/xFR953zwp4bizMfxpm3AWvnAHF++rUnUS3gz+fOwin3YqMOiW5eeiCwSTV4oJ89e5CZq87OIS/ObuEz1bvocAbwB9s3RXj6io2xk67uIp3z8f3SsWl84hUK5BTHOS8p+cxa9VeFm/L49dTf+TbjdlN3S2llKqxw+bMGGPCIjLyaA4sIulA0BiTLyIe4FSsIguzgUuwKtBdDXx4NMdXqtnzFVhf5W36EgIlEJNw6P1K82H2w1B+UmXeFiu4is846u7Eu51MGpXJmYM74AuGiYuxk1bLtYA27C2u8PiB8weR6HZy25tL6ZDk5tcn9aZTsgdbK68edzRSY128fv0Ybn9zKRv2FTOuVyqPXzJM5xGpOvEFwxT5goBVBtthb5og+8cdeXgrldJ/df42xvdO099xpVSLUJOJBD+KyHTgbaDkQKMx5r0j7NcReDU62mQDphljPhaR1cCbIvIX4Efg5aPrulLNXEwC2BwQObh4IRkDwHakkRlD9Vmlda88ExfjqFNJ3BP7pfPQJ1a8NrZnO5x2G795c2nZ87NW7eGz2yeSkVi/FWFaA7vdxqBOSUy9cSyRiMHlsOnFoqqT3JIAL36zmVfnbyXO5eDes/tz6sD2JDZBqf3qbrCkJ8TgbKIgTSmlaqsmf63aATlYVePOi36de6SdjDHLjTHHGGOGGmMGG2MejLZvNsaMMcb0NsZMMsY0bU1gpRqKOwnO+xfYoxe+8e3hgmchLvXw+3lS4IR7qDABKLkrpPc/9D6NJCPBzStXj6ZPRjznDe3EO4t3VHg+3xtkze7CJupdy5AWH0NGolsDIlVns9ft47mvN+ENhNlf7OeOacvYU9A0c/x6psUxuntK2eP4GAd3nt5P1yVSSrUYR/xrZYy5tjE6olS1SnIg6LVGXNxJ4Ipt6h7VnCsOBl0IvU6CYCm44iEurWb7dhwOv5wHi/4DKd1g6KVWUHU4pfnWfCUTAnGApx3ExNX9dZQT73ZwYr90hmQmEY4YPl9TtQBEXYoGeAMhCktD+ENhYl120hN0xEmp6pT4Q3yyfHeV9rkbsunb/jDpuYeR7w2QUxJgW04J/Tskkuxx1rgyZWp8DM/9bCTbckrILQkwNDOZ1DgN/JVSLccR/9qJyH+oJm/HGHNdg/RIqQOK9sDbV8P2BeBwwyl/huFXNmlZ61pzxVlfteVOgA6D4dx/1Gx7by7M+yf0OxNWvgtb50KnEXDKfZDYqfbnPwwRKUuVuefM/szflIM/ZFVVO6ZrMl3bVR+4hiOG7GI/S3fkk+h20Kd9QoWUm2JfkA9+3MmDH68hEI7QIy2O168fQ2ZKCwqE2wCvP8S+Ij8zV+6hc4qHcT1T61yWvb6U+EMU+YLklARIi48h2eOsVXXFlsTttHFMl2S+WluxAMuQzolHdbwiX5CX5m7h6dkbAbDbhP9cM5oJvdNqPEcwLT6m1vMUlVKquajJLaCPy33vBi7iMBXjRORM4CnADrxkjHm0mm0uxVq01QDLjDFXVt5GtVK+AijYAetmQsdh0Gk4xFVTcj3osy7yty+wHod8MOte6HN6ywqKGktJNsTEw4LnYM10q23/Oti9DK6aDvENU9a+R1ocs+88ke82ZtMhyU3/jomkHuKiaHd+KWf/ey6FpdYcq/4dEnj9+mNJj15QF/hC/Gn6qrL6EluyS3jgo9U8cekwEupxjkQ4Ysgp9rN+bxHJsS46JrkP2WdV1dq9RUx6fj7hiPWDGtAxgdevO7bJA6PSYIgZK3bzf++tIBwxeJx2XrtuDKO6p1DbxcdbArvNxuVjuvDFmr0sy7IKulw8ojO9M45uva9if4hn52wsexyOGH7//grev3l82f/R6hT5ghT7Q4TChliXXf8vKaVarJqkz71b/rGITAW+qG7baFGFZ4DTsBZm/UFEphtjVpfbpg9wLzDeGJMnIkdfTku1LJEwrJ8F791wsK3f2XDBMxDbruK2gWLYXs0awfvXQFrv2p+7eD8ES6z5PTGJVgDRmhRkQbfjYM5fK7bvW229bhomKIpx2umU7OGSUV0Ou10gFObZOZvKAiKAtXuKWJaVz6kDrLTAvQW+CgX3AFZkFVAaCNdrULQjz8v5T88r68uE3mk8dfnwQ17M+YNhivwh4lx2PK62PT+ioDTA4zPXlQVEAGt2F7Ejz9vkQVGBN8QfPlhZ1rfSYJjfTlt6xIv6liw9wc0r14ymJBDGbhPiXPajnqvmD0aIVPr/t6/Qz+EKvOR5Azw/ZxMvzt1MxMDwLslMvmokGZr2qpRqgY6mLEwfoOshnhsDbIwWUwhgld2+oNI2NwDPGGPyAIwxdVt8RbUc3mz48oGKbes+tQKgymISoOdJVdvbD679eQt3wesXwFPD4KmhsHCyNf+mNcnob80nqlyy2+48WOihCQXDhn1FVSeA7y86WGelU7IHV6VKVRP7phFfjxO1vYEQ/5i1rkJwNm9jNttzvdVuv7/Izz8+W88Vkxdw3/RV7Ckorbe+tESRiFUCurLyi9I2FX8oXJbGecDO/FIilSPtViY1Poau7WLpnOypU/GOuBgHPdIqpvpeNKIzsYe5EbArv5QXvtlcFkwt3ZHPf+ZtIRBq+t8HpZSqrSMGRSJSJCKFB76Aj4D/O8TmnYHy5aiyom3l9QX6isi3IrIgmm6n2gKDlQZXWfmS1Qc4YmDcLdD3LKsKmzvJqtwWe4TKbZUFSuCrh2HvKutxOGgFZt6cWne/WfO0g5QecNpDIOX+W5/8J7Ofh6wAACAASURBVGtkrInFxTi4bkKPCm0xDhsT+x4cwUqOdTLl2tF0SnIjAqcOyOCuM/rVeKL3oeSU+Mku8hOOGPyhCLuqqc61t7BqW6EvyH3TVzJ57mY27Cvm7UVZXDvlB7KL227BzJQ4FzefVHGktkOim14ZtZs3d2B+WU49vpexLgdd2nkqtE3sm47b0TrnFNW39IQY/vuLY7l4RGf6d0jg1yf35u4zDl89bvWuqpUmF2/PpzSgCzkrpVqemqTP1aaMTXWJ25Vv0zmwRptOBDKBuSIy2BhT4da9iNwI3AgwcuRRrR+rmhtPCoy9Fb68/2Bbx+GHXsg0PgMuet6qPic268LfUcs7oQEv7FpctT1nE6T2qt2x6kNJNuxZAbt+hD6nQVKX+pkj5XRbo0Wx7eC2pZC93np9ntRmkyo4uFMSU64dzQvfbCbR7eB3p/cjrVx1KrfTztieqXx463iMsR7XpZJdiT/Eip0FPPLpGkr8Ia6f0JOzBnfgp8d2ZfG2vHLntTG8i1VKuLA0iDcQRgRsArNW7qlwzDW7i9r8Bd+xPdox7ZfjeH3+Vrq0i+Wqcd1rlS6V7w3w2eo9vPD1FmJddu49uz/DMpPrXLo5Ld7FG9cfyx/eX8HKXYUc3yeNP54zkKTYxl+zp6XqlOzhLxcMpjRopay6HNYNlnxvgH2FftbtLWJI5yRS410kuJ2M7JZS5RinD2xPfIwGog3BFwxT6AsiCO3iXNh1kWyl6pWYI6QWiMiXxphTjtQWbR8H3G+MOSP6+F4AY8xfy23zPLDAGDPlwLGAe4wxPxyqD6NGjTKLFi2q8YtSzZg3F7bPh+VvWdXRhl9ZNeWrPoX81kjRd08dbBMb/GY5JB9+Hky98+bBp7+zqsMdcMHTMPRyK82tMQVKrNGyrEWQ2huSMqvO62ogBaVB7Dap17S46mzNKeHkv8+pME9i8s9HMrZXKjNW7Oa1+dtIS4jh92f1p0daHEW+EPdPX8UnK3bjcdq54/S+OGw2/jx9Vdn+Trsw9+6T6ZCkcyYCIWsei91Wuyzs2Wv3ce2Ug3/ubQJf/u7EKqlbRyvfGyAQihDrshPfBIuYtgaR6EhenjdIXIydzftLuHbKD2XztZ66fDhnD+mILxjmi9V7eeiTNRT5glw8IpO7z+inxRYaQG5JgBe+3sR/v99OotvBn84byPG90/R3XKlKRMRrjDmqD5RDXpWIiBuIBdJEJIWDo0CJwKFq/P4A9BGRHsBO4HKgcmW5D4ArgCkikoaVTrf5aDqvWqDYdtD/HOh9CthcUMsLqlpzxMBxt0L+dljzoVXp7twnrVGrxhYorhgQAXzxgFVR70hrENUnY2DHQvjvT6ziFwAjrobTHmiU9yWpDqM/tTFn3b4qE8ffWrSD8b3TmDSyC6cOaI/TYSPR7SQcjvDukiw+iq77UhII89DHa5h+63hS45zklAQBuPOMfiS423axhQNcR5GWVhoI8+YP2yu0RQx8sWYvNxzfs1761ZIXxc0t8eMLRrDbhESPE08TlRPfnutl0vPz2R9Nb7zmuO7cfUY//jpjLQAPfLSacT1TyUh0c+6wTozvkwbGSpOt64hfoS+IL1o4QoMrSyRimLVqDy98Y10qFftD/OqNJXx62wSMMXRKjiVF14RSqs4O99frl8DtWAHQYg4GRYVYFeaqMMaERORWYBZWSe5XjDGrRORBYJExZnr0udNFZDUQBu4yxrSyCR7qiByNeKc9PgPO/xec9SggEJsG9ia42DDVTD6ubo5VQyvZD5/eeTAgAljyKky8q2mCxQbSM61q2mDv9HhcDhu2ShdcJYEwc9btr7L9iqwCZt5+Ait3FdAjNY6UOFedL/raMqdD6JUeD1Rc9LdXPY0StWT7Cn3cOvVHFm7JxeO0c89Z/ZnYN53vNmUzomsKHZPcjRLwFZYGuf+jVWUBEcCU77Yy7ZfjiHHY8IciFJQGy/LinXZbvVWb21fo408frmT22v30aR/P45OG0TcjHoe9gW+eNXPF/hAfL6+6EsrX6/fz+ep9jOmRwq0n9dZRI6Xq6JB/aYwxTxljegB3GmN6GmN6RL+GGWOePsx+nxpj+hpjehljHo623RcNiDCWO4wxA40xQ4wxb9b7q1KqMnciJHSAhPZNExCBtYhr5piKbcfeDDFJjdsPE6m+0ERTBGgNaFCnRMb2PJgS2DnZw7Xje+Cs5gIrNsbOcb2qFvE4pmsy6QkxnNQvg+5pcY02ytVaOWw2rj6uO5kpBwsijOmewtAubXftsWJ/iKy8Ev791QYWbskFrHLif56+in1FPh7+ZA1nPTWXt37Y0Sjz2fyhMJv3l1Rp31fkIzF60X3+sI7Euur372iRL8h9H65i1qq9BMIRVu0q5MoXF5BbEqjX87REbqedIZ2rfk70zohnd0EpL87dQrG/moJFqs3LKfazcEsuUxduZ1tOCSX6e3JYNbnlmSEidmNMGEBEEoGnjDHXNmzXlGpl4tLg8v9a86l2fA+DL4Eex1tFEhqTOwmOuariPKt2Pa32ViQ1PoZnfjqCnOIAvmCYjkmeQ65X47DZuHxMV37YmsvX67Nx2W3cfFIvOiV7qt1eHb32iW7ev3k8ewpKcTnspMW72nSa1KqdBazeXcjibVWXCdi0r4QOiW42Z5fw5BfrufCYznjqORipLNHj5KzBHcpStcAqRtI3I4EuKR6uGteNK4/tWq9rh4EVCM5eV3GFjnxvkCJ/iLa+mKHLYeO68T34ev1+1uwuAuDC4Z0p8oXYHa2mGdYq6KqSvJIAf3h/JTNXWQWDbAKvXjeG4/s0zLqFrUFNgiI7sFBErgU6AP+Ofimlais+A8beAqN/Ac4muuB2emD8bdbI2ar3rLWfJt7VsAUvmkhqXAypcTW74E6Lj+Gpy4/BGwhjEyHR7ahzOfDyQmEr7SjGaSM+pm2POKUnxLTaBVVrI88b4O+fraNnejwju6WwenfFEtd92sezK7o2lj8U4UiFkepDjMPOjRN74gtGmL5sJ51TPDx80RA6p7h5+ZrRJLgdDZLO5rAJfdsnsGJnQVmb0y7EtfEFkw/ISHTz+vXHUuwLURoMM29jNve+twKAsT3bNXiwrFqeQl+wLCACa/7mQx+v5n83jCWtDd+IOpyalOT+vYh8BXwP5AETjTEbG7xnSrVWNhvYmngEIi4NxvwShl1uBUlNFaA1M8mxLpJj6/+4uSUB3l2SxQc/7qRraiz3nNmfLimx2LSkbo0cqCiX4HbgaU0Xyca6wz996S5ev34M23O9fL1+PwkxDu4+sx+z1+4rWxj3jIEdDruQan1KjY/hnrP6c8tJvXDYhXbRGws1vL9wVNrFxfD3SUO54sXvyS0J4LQLD104WAublJMWH0NafAw5xX4cNmFU9xSO7ZHKlWO60k4LLahKKi9mDVBYGmqUmystVU1Kck8EngPeAIYA7YDrjDFVZ/01kDZRkttfDL48yM+yKrQV74P0fq3y7r1SrUGxP0SxL4QvGCY2xk56fAwiVYOcQCjC819v5InPN5S1pca5mPGb48lI1NLe5RX7QxT5gviDEeJiHCR7HGzN8fKHD1ayaV8xZwzuwB2n9iWtFY0yzVm3j2v+8wOpcS5+dWIvRnRNoUOSG7fTxps/7ODbjdkc3yedSSMzW32aYSgcIbckQLE/RKzLUe+jta1JOGLwBkJ4nPY2X4hCVW9/kZ+fPPcd23O9ZW3/d2Y/fnF8z2rn1rYWdSnJXZOgaCFwjTFmdfTxxcAjxpj+R3PCo9Hqg6JgKaz6AD682ZoEb3fChc9ZZZMn3g3xmv/Z6Er2g7/E+lm44upngdW2pDQf7C5wlRt2McYK9nM3We9pYierRHoLVOQLMm3RDv766VpCEUPnZA//u+FYuqVW/DucU+ynNBDm8hcXkJVXWuG5D28Zz7BogYHsIj/Ls/Ip8oU4tmcq6fEu7K34Q6s6Rb4gby/O4pFP1pS9p2/8Ygy3/HcJq6PzKAAuG92FP587sNldLIfCERBrflptFJYG2ZpTwhsLttE9NY5LRmaWBcuhcARvIEycy16n34fS6ILE7iYq8a2Uahp7Cny8OHcz6/YUcfGIzpzYL6PVjyo2dFBUVmShXFvqkcpoi0gX4DWseUgRYLIx5ikRuR+4AThQ//b3xphPD3esVh8UFe6Gf4+A4MFonvj2cN5T1qKaHYY0Xd/aoqK98L9LYfdS6/GIa+CU+yCuanUyVUlpPmz7Fr5/HuIy4KTfQ3I3sDugIAtePBmKo+WYuxwLl/33iEG/MYac4gARY3A77SQ2QgW4QChMvjdIxIDHaSOpUinknXleJvxtNuX/fJ7YL51/XX5MWf925Zdyw2uLuGRkJh8t28WS7RUn0s++01qwdH+Rn8snz2dTtOJXotvBJ7cdT5d2DZDH14ztzC9lwmNfVXhPT+iTxpieqTw+a11ZW5LHyee/ndhsRtn8oTC78ny8NG8zNhGun9CDTsnuWq/jFImYo06n9AfD5JcGCUes/yMHLnq8/hBbc7w8O2cjTruNW07qTZd2HmKOYo2p+hQIhdlX5OfDpTuJczk4a0hHMhKqH2lV6lCMMQTDBpejbd1Aqq1gKIIvFK734ijNVYMs3lpOmog8AnQ2xpwpIgOBccDLR9gvBPzOGLNERBKAxSLyefS5J40xfz+aDrdKkWDFgAisC0d3YsW1ZFTDCwdh4eSDARHAkikw4mfNOygK+qzfmeXTrFGtAedZgXVjX2Rs/RbeKrde84ZZcMsPEJsK3/7rYEAEVgW+PcuthXwPIRAKs2JnAZOjlbBiXXbuOWsA7RvwgrjYF2L2un386cOVFJQGOaV/Bn+9eGiFwgB7i/xUvp+0dncRvlCYRJzR8sIrWbWrkIjZwT1n9ufG1xeX5XhfPKIzybHWB9SirbllARFAoS/E819v4s/nDWpTH/b7Cn1V39O9RfxkZGaFtu6psTjszefieXe+jzP++Q2BaPmvaYt28MUdJ9Q4qM0p9uMNhHHabXicNnyhCBFj8DjtNVqXqNgXZMbKPdw/fRUlgTCjuqXwzE9H0D7RTVZ+Kef+e27ZIsafLN/Nl7+red8ayq7oe3bg/8PTszfyyW3HN+j/a9W6ZBf7+WT5bhZuyeW8YR0Z0yO11Y+AHC2nw4azDX2W1EVN3qUpWAuudow+Xo+1qOthGWN2G2OWRL8vAtYAnY+um62cwwMZA63vRaDPafCTl0Hs1kiRajzBUti5uGr77hWN35faKNgBz4yG2X+xFmadfKKVqtaYSvPg+2crtvmLIOsHiIQgb0vVffK2HvaQBaVBfMEIE/ukk5kSy0XHZLJwSw7F/mD99btyl7wBbnvzR/K9QYyBL9bsY/I3m/AHD96g6JzsIabSh8zJ/dNJiFaVKw2Ey0aG1uwuYuoPO3jzxrG8eNVIZt5+PH86ZyAp0QvePG/VdViyiwOEI21rMmzHJA9uZ6X3tF8GiW5nWWyfEOPg/vMHYQzN5v15Y8G2soAIrMnNby3accT9fMEwO/O8bM/1Mm3RDk5/8mum/rCdtxftYNxfv+LOt5eTXW4B1UPJLw1y97vLKYmuYbRoWx5Pfr6eEn+QKd9uofzbFAhHeP/HnbV/kfUoGI7w4tzNFSaBZxcH+GptI/+9Ui1WbkmAX/9vCX+evopPVuzmpjeW8J9vt+AL6k1kVTc1CYrSjDHTsFLgMMaEgFr95olId+AYrAp2ALeKyHIReUVEUg6xz40iskhEFu3fX3Wl+VYlPh1++jb0Pw8ufR16ngLzn4Hv/mWlI4X1P3qjccXDwAuqtveY0Hh9CJRA9gaY/VdY+ykU7oTdyyBnE3hzq24f9MHcf0Co3AVU0W7Y8k3j9RmsOUSxaVXbY1OtuUWjrqvYbnNA71MPe8jSQJh/fbmBP3ywkpfnbeGqVxZS5AsRjF5Q5RT7+Xz1Xv42cy3LduSTX02AUVsb9hZVGbH4Zn12hcURkz1O/vuLY+mRFofDJpwztCO/Pa1fWVlcj8vO6O4H/7TNXLmHK15cwPAuKfTvkEhKuTuaJ/bLqBIM3HB8jzZTYtfrD7FqZwHTl+5k8s9HVXhP7zi9HyO6pfDNXSfx2nVjeOXa0Tzx+XpOeeJr9hXVfLHhvJIAS7bl8cLXm1iRVT+/JwdU93OKPcLcnXxvgNfmb+W0J79h0vPz2V3g499XHMNjM9dxbM9U3E4bX6zZy7RFOwgfYQGaLdklVX5fF27JxRsIV0n7BOt3t6kFqqmKVV2bUtXxBkLM31zxs/DleVso9DXczTLVNtQkfa5ERFIBAyAiY4GCw+9ykIjEA+8CtxtjCkXkOeCh6PEeAv4BXFd5P2PMZGAyWHOKanq+FispEy56Hpa9CbPusdp2AVvmwq0/WGvKqIZns8GA8yFnAyx6BWIS4YxHrFS0SAS8+63RJIcbPO3A0QDD9XtWwn/OBE8KXPmWNQ+nKLrWwKCfwNmPV0rlMxCu5iKvuraG5IqDk/8IGz+3AjuATiMgva/1fdexcNELMP9piEmA0x464nyiYNjw/ZaKH34vfLOZk/plkOcN8Pv3VzBrlZWS9+ycTTx84WAuG92lTtWYemXEV2kb1T2lQjnkGKedkd1SePumcUSMIdbpIL5c6eAEt5P7zxvE3kI/S3fkkxLr5PFLhhHvrnqxnBbv4tPbjuefX2ygyBfiphN70q9DwlH3v6XZnuvlvKfnETEwslsKvz21D6O6tyPB7SjLgZ+6cDtPfbkBb+DgDaK3ftjB7af2PeLxi/1Bnv96U4XFSO85qz/XHNe9XgoPXDGmK69+t5VCnxU0J3mcXDTi8EkRO/JKeeTTtWWP31mcRd/2CYzvlca2nBLS4mPIyitl3oZsfj62GwmH+X3ukRaHCBUCo7E92xEf4+TnY7vxv++3U1BqXSy2T4zhzMFN+1nitNu4cWJP3v9xJ6HoMFZCjIPTB7Vv0n61FpGIYX+xn8Vb83A5bQzLTCI9oXWlJVY396w1V1NTjacmQdEdwHSgl4h8C6QDk2pycBFxYgVE/zXGvAdgjNlb7vkXgY9r2+lWK1RqzV8pz18I+9ZoUNSY4lLhpD/C+N9YoXtsGtjtsG8tvHGxNXLjToZJ/4Fu48FRj2Vyi/da6XueZGsNoe9fOBgQAax611p4tXxQ5PTAhDtg1ftW9UKwAqpeJ9f8vOEgeHOgcJe1hlFMotWHcBhKs633wZNy5CAwpTvcugi2L7Aqy6X3P1hhzpMCQy+z5hCJA2KrHSSuwFD1fkgobHDYhRJ/qCwgOuCJz9dz+qAOdVoYNCXWxX3nDeSxGWvxhyIM75LMbaf0IRwx7Cnw4Q+FiXXZSU9wkxYfU7Yoqz0gFUYNOiZ7eOWa0fiCYRw2ISXOidNe9SLc5bDTMz2ex34ylHAkQny5ybBef4iSQJj4GEeNR458wTBFvhAel534ZlahrTQQpsgfBEPZaNnL8w6meC3elsfibXnce1Z/fnlCr7L9CkuDFQIioOxC/0iKfWFenlcxdfOpLzZw0TGd6yUoap8Qw2e/ncjMlXsA4czBR/79+25jdpW2hVtyGNAxgV7p8ewrtEZ9J/ZNP+KoU7LHxZOXDue+D1dS6Asxrmcqt5/aF4/Ljsvh5rPfTmTuhmycdmFcz9QaFagIhyPkeoMYY0iOddX73LbMFA8zb5/IlG+3EOtycPVx3Ulv5eXGG8veQh/n/HseuSXWTbHMFA/v3XwcGa0oMIpz2Tl/WCemLzu4MszvTutLskfnFKm6qckn5irgBKAfIMA6apB2J1Yo/zKwxhjzRLn2jsaY3dGHFwEra9vpVsvuskYkqDR/pYWWLW7RXLEVy0mXZMO711kBEYAvH6ZdDbcuhISO1R+jNry5sHkOLJ5ilaq+4i3I3QI/TK66bf426DS8YltKD/jVd7DgOSv4GHND7da4yl4Hr5xlBeEAE++CMTfCptnw1YMQ8sG4W2HQxVYQdqhj251W/wdfXP3zIrX6fU6JdTGoUyKrdhWWtf3qxF4kup3sKayaPhWMRKCaQKq8nBKrTLbDZiPB7SCuUuCQ6HFyxeiunD24I6FIBI/Tjsth443vt/H3WesIRQzdUmP57y+OJdZlZ+rC7Xy6Yg8DOiZyx2l96ZR8cCHc2kz8tYKegxfAewp9/H3WOhZtzWVsz1TuOK3vES9os4v8PD17I3PW7WNI5yTuPXtAhf40pdySAM/O3sjrC7YRF+Pg3rP6c+aQDiRVk85VuW3S6C68OHdL2dwdh034+dhuNTpvxJiyEYkDAuHIkX5Nasxut9EhycM143vUeJ+R3areEBiamczo7il8tGwXwUiEMwd1YNLIzCOW4o53Ozh7SEfG9UolEq0+dyDgtNuE9oluLhl55Lmp+4v8bNpfTDAcITPZw58+XMma3UXcMLEnl43qUiHls648Lge9M+J58ILBALqIcT2JRAyvzd9WFhABZOWVMmftfi4d3aUJe1a/kmNd/Pm8gfxkRGeWbM/nlAEZdGsX26YK06iGUZOgaL4xZgRWcASAiCwBRhxhv/HAz4EVInKglNfvgStEZDjWR9JW4Je17XSr5U6C0x+G7fMPph/1OaN+LrpV3URCsHdVxTZ/oZVKV+djR2DdJ/DhrQfbNnwGP3sP+p0DWeXK0dud0Hlk1WPExEHGADj3SUCsNMCa8ubCR7cfDIgAlrwG/c+F92882PbF/VYwtO5TOPsfjTJ6mRofw5RrxzB92S5WZBVwycjO9G2fwAdLdxLrcjC6ewo/bM0r2/7G43uSdJi7hfsKfdz0xmKWbM/HZbfx29P6cOWYrlXmXnhc9gojMztyvTw642C607YcL498uobzhnXi8VnrAVi1q5BFW3N5+6bj6jRSBZBb7Oem1xezdIdVrGFrjpdtuV6e/emIsgINlRX6gvxp+kpmrNhTts/q3UW8dePYJl/s1BjDl2v28lJ0xMYfCnDXO8s5pmsy147vwbRFO8rSzzomuTm5f8Wgu0Oim09/M4Hn52wibODmE3vRMalmd75jXXZOGZDBl2sOTuS/6JjOVYLhxtQzPZ7rJ/RgyndbCUcMJ/fL4LLRXUiIcdAzPZ4bJ/bC47Id9ne5PJfDVqfKbfuL/Fz2wnw2Z1ufOx0S3Tz/sxFcNnkBj85YS++MeE4dUP/pbb5QmGJ/CLejcUrtt3YRY9hfXPVm0f4aFOxoaVLjYzihXwYn9NMF7lX9OeSngoh0wKoW5xGRY7BGiQASgSPW8zTGzCu3T3mHXZOozUvtBbcutkoVx7e35ho151LQbYXdCZmjrUpqB8SlgbMeStuW5sL3lUaEvDnWqFTfM62AbMlr1vybMx+zChcciu0o0oHCwapV4DoNt4KfyjZ8bgXpi1+FiXce3flqKT0hhusn9CAUjuCw21i2I5//e3cFqXEunv3ZCBZvzWPtniJO7p/O8C4ph7xb6A+GeW7OprKqcIFwhMdmruO0gR2qnZBeXlael87JHgZ2SmRbTgnr9xazalchp/SveKG4NcdLiT9U56CoNBgpC4gOmL8p57DVlXyBMLNW7qnQtml/cZW0s6bgDYT5ZMXuKu3frM/m6nHd+Oy3J/DNhv3EOGyM65VaJdXH7bTTOyOBRy4egjHWnC6wJueXBq30QvshRhuSY1387SdDmb5sF/M2ZnNK/wzOHNyhwhywxtYuzsXtp/bhF8f3wBgrcDtQfvtQi9J6/SF2F/iYunA76QkxXHhM53pb22f22n1lARFYo5QzV+3hpP4ZzFy5h/eX7GRin7Rar710OPuKfPxt5jq+Xr+fgR0TeOiCwXRpF6trFdWBw27jmuN68O6SnWVzzJx24byhnZq2Y0q1EIf7VDgDuAbIxCqGcOAvVSHWiI9qCHYnJHa0vlTzEZtqlUl/+xrYtQTa9YRL/lN9tbXasjms+TuVJWVaoz+pvWHE1VYAElcP56ssJgEGXgg/vHiwzVdYNUUPIL0f7FpqLXAbDjZKUEQ4BN5sHL5CiImnoMC665lTEuCKyQuY0DuNc4d2ZGuOl7kbsnnskqE4qhkpKwmEWbw9r0r7+r1F9K6muEJ53dPieOD8QSzYksOZgzsQ53KweFsuW3MOXkheOLwzl4+xUlSyi/2k1WGOhMMuxLnsZWWWwUops0cvGH3BMAWlwQrr2YhYqVK7Cw7eKXbaBZdDKCgNUuQLkucN0j4hhtQ41yHTsnKKreIQS3fkc9rA9nRLjas2xa023E4bI7ulMGddxUqiQzOToulnbi4ddeT0nvIX5XsLfbw8dwvLd+Zz9uCOnDusI+3iqn/PU+NjuHpcdy4b1QWPy94sLrwT3M5aLaa4JbuE85/5tqwU+cvztvDJbybgEBveYBi7QHyMo8KctJramV91xDu7OFD2cx/WJana/1NHq7A0yB/fX8lnq605gV8X+bnype95/+bxdb6h0NZ1T43j3V8dx7+/3IjbaeP2U/uQkajvqVI1ccigyBjzKvCqiPzEGPNuI/ZJqcZVvNcaASnaY82Fie8IrmrmYaR0s0qnhwNWIBOXXj+Lo3qS4fS/wEunHqwY130CJHa2ju9wQUIDVmZyxcKJ/2cFOKs/tEYrz/kHeFKh7xmwfpa1XadjoOdJ8M3jcMWb4Gykibs5G2DKOdbomc3OuFMf4fbjx/DPubuJGPhmQzbjeqWyaGsex/VKLQscKouPcXBC33SWZ1Usntm/QwKRiDnkvIZAKMKnK3bz0MdrytrOH9aRP5wzkI37inh2jnDZqC4M7pzI9VN+oCQQpld6PFOuHX3Ui2QmeZzcf/4g7n53OcaATeDhCweTHOuisDTIx8t38fAnaygJhJnQO5UnLxtOu1gXr1wzmlv/u4RN0bv+d5/ZH6fdxvNfb+K5OZsASPQ4eOem4+jbvmqFu3xvgD9+sJIZ0RGnf3+1kUcuGsykUV3qVN3JbrNx+eiuzF63jyXb8hGBy0Z1oWf6oRcd31/kY8O+Ymwi9EqPr3Cx9GFD/QAAIABJREFUnF3s5+pXFrJ2TxEACzZbAepdZ/Q/ZEEKm00OOQrT3JX4Qzz11YYKazPllATw+sPc9+Ey/p+98w6Pqk6/+OdOz8ykF5IAISGU0HvvCKJIs6Jg733Rta66q+6uuupa197FjoqigoCCIE167y0QEtLLlEy/vz/eZCaTRgLo6v5ynoeHzJ1779yWyfd8z/ues2xvEVqNwtXD0rl5dIdm9/9M7Z3Ki0v2hWUandMjhfdWH+azG4YQZ9GTb3NhMeqIOgnSVRsun58fdoWbpOSUVoaprMV2NyUOD4oivYXxLUYMTYLVpKNvWiwvzuiNRlHCXDNb0IIWNA5FrR1w8DtE//791fXr1594xRa0oLmwF8DbE6Ckyq5Xo4PrlkJKz9/2OHwuMXM4vBJi2kJCx1Mz2PC6QNE0zzLcWykKkc4gZg0gRMRtk/2VHYblz4grXrdzm+Qed8pwFMPHF4X3VWm0lFy/kb7PSY9X37QY7j07i3s/38pnNwxp1IygyO7moa+2s3DHcaIi9Nw5vhMldg8zBqU1uF2BzcW4fy8jKcpEvMXAtmPlOD1+Vt03lpgIPaVOL15/gHHPLAtr6B/ZKYEXL+nbbJXF5vKKEYRWg9Pj40ixk3YJFmIidFiMeg4XORj99E9h21w7IoOB6XEs3HGcSwamEWnSEWHQEWPWU+70MuLJpWHrD8qI49XL+tXpTzpWWsmwfy0JWxZvMfD9rBGnxda32OHG6RY3PotR12AfSUGFi/NeWUVOqSgY6fFmPrtxSLCsLrvYwainfgrbJkKvZfk9o//n7IdBSNEdn21mUQ23xTO7tqJ32xieXLgnbN25Nw+lT1rzfjedHh+7j9v496I9+Pwqt47tQIdEK25fgEveWENeuQtFkV6u60a0D5b6nSyKbG7Oe2UVR0qcwWUGrYbl94wmOTqCIpubK99dy/Zj0ufYq200b10+4L/eG9eCFrTg9w9FUZyqqjY849YIWqYQWvD/G8e3hQgRSP/O0sfg/DekrOy3gs4k5XK9pp/aftx2KDkAK54TW+3hs2S/2iYMzPUR8q8mzPHyT1Xl/4tnQ0SVRXlT4fOIiYMxsvn25QEvFO6ttcxPjOJk+V0j8aOgURQqKr1NMjjQazSckZXElcPS8foCHCurpFW0ifwKV4OkSFHgxRl9KLJ5yC2v5O4JnflsfY5cEqMOs1HHztxyfAEVRYHhHRLo1y6WMqcHj9cPzSBFx8oqeWTeDjYfLWNIZjx/mdiFoR3CSyar1ZGaWH2gmJRoE19sPMYXG4/x5uX9GddV1MXDNXpFqnG42BEMwK2JQD2TZKczVDPeYiS+CX+qvth4LEiIQHq1Fu/IZ2aV41x9qlWM+X+3Ud9i1HH72I78uKsgqBb1aB0dZjJSjQ3Zpc0mRWaDqAuvzOyHqqpEmw3YXV4enrMlWI6pqvDS0gNc2K/tKZOieKuBf1/Yi0vf+gW3L4BGgQcndQmWEy7ceTxIiAC2HC1nyZ6CJpVYtqAFLWjByaKFFLXg/zd89bjy+N3UiYhvLhyF4uoGYI777WzVSw7A66NCx799DtyyDqJbCzmpLJEyweosIlNU0/arKKGgVXuBBMz6vdJ3pI9oeD/2AljzstiNtxsmGUvWZpQCGqziwLh9TmhZRCwaVxlpn02GrMkw6l6Ib1oPnlYD87cfZ2duBa9c2pd1hyUXZ2B6HH8+01Q/MVLh+R/2s7GqH0mrUXjriv5E1mjUj7casRi0PDO9N0dKnCzZXUCHJCu+JjxHXn+AUocHp9fP0RInhTY3BTY3X2/OpcDm5pWZfcMGoVn1BLv2SYtlX749+PrFJfvo2y6GOIuR5CgTUSZd0N0NYFKPlHpVGotRx8CMWNYeCg22rxuZ8Zs6g6mqytEaCkI1aqoKFqOWSwel8cEvRwB5PP86uWuDPUV/FJQ4POw+XsGag8WM7JhIZqI1WArXPsHCwlkj+XhtNomRJi7q34Z4q4GlewrC9jEk8+SNeWre50qvP+yZqkZuWSXpCSc1CRuEoij0bBPN8nvGcLzcRWKkkaga9vg7ahCiauzMrbusPhTa3PgDKgad8od/HlrQghb8tmhS+ZyiKEOBdGqQKFVV3//1DiscLeVzLfjVYDsOrw4XElONK+dD+rCT36e9AD6aLoYMAKl9YcanzcsNOhn4XPDVzbC9VgvgOf+GAddKKOx7k8XuXVHE/r3LZNDoISK6aU569gJ4b5KEtA6/A9a+ISrQ0D9BSi8hR64K8NjEanz+XbD3+9D27YbBRbMbd1S0F8g2+Tug90whlIsehL0LIL4jjH8ESg5DXAYcWAIJHaDD+CZbhO/Kq2DTkTLmbsoJm2kfmBHHq5f2q5MttDO3nIkvrAhb1q9dLG9d0T9IVlxeP4eK7Hy9OZdXl4WUx4wEC5/eMLjB4ESv38+G7DJu+mADpU4vqdEmnpnem0e/2cnOPBkErrn/DJJr2E9XVHqZtyWXx+bvwunxMywznj+f2ZmZb/5CZZU7Xf92sbxxRX9izQZ8/gAHCu08MHc7R0qcTOqZwi1jOjTYo1Fkd/PdllzWZ5cypXdr+reLPa0ZNU1BdpGdD9ceZf62PHJKK1EUWDRrJB1r9EGVODzklDrZfdzGwPQ44q2GZhkX/N5gc3l5euEe3ludHVw2a1xHbhiZ2WCfVIndzb8W7uGLDTmY9FruGN+R8/u2qaPkeHwBKlxeTHoNVmPTrpHHF+CZxXvCnmejTsOyu6XEraFt7G4fVqPulDJjNmaXct4rq8KWzbtlGD3b1mNIUwWfP8DefBu3frSJg0UOeraJ5ukLehFj0RNrNpxST1wLWtCCPw5+1fI5RVFmA5nAZqDaCkkFfjNS1IL/AQR84CqXgXftEq3/Jqyt4PplsO4tsOXCoBvE7a0+eCuFAKiI+tNQSdqeBSFCBPLzngXQ74rTfvjh0Ij6UxvGSLAXwte3hPKvVBUWPyQ24+9NhikvSC6R4QTfI0dWS6js1JdlO2/V7P2+xXDVAkjqBj//G1a/CFd+B/sWhm+fvRJ8jWQ7OQrhwwshryra7JdX4eKPYNJz4P2n9Dat+DekDYH3p4S2azcMLnq/Se58GQkWrEYdf5kbHpK89lBJvZbXlfUsc7h9Yf1DJr2WOIuRzzfkhK13qMjBsdJKvtmSy+ReqSiAw+3HbNASbzVS6vByw+wNlFd6Acgtd/HQV9u5aXQmd362hcRII7X9H6Ii9FzQrw3ju7bCX2UQMevjTcHjVBS4e0LnYL+QTquhc3IUb1zeH68/QFSEHpO+4fLHBKuRy4emM2Nwu99kIGlzeSl2eNiYXUqnVpFYjToeX7AbRVH490W9WHtQwmtrh9DGWQzEWQz0bNPwQPnXQKDqvjc1cLTU4cHrD2A2ahslJHa3L6h8VePVZQe4ZGBag6QozmrkoXO6cOf4TiiIQYex1r0ttrt5a8UhFu7IJys5kvsnZtEm9sQTIAadhutGtMfm8vH15lxSok08fl6PBkvnCm1u3lxxkFX7ixmaGc+1I9qftJNcZqKVZy/qxfM/7kOjKMwa1/GE6lSJ08MV76yj0Cbq/9accu7+fAszB6UxqH087ZpSt/kHQaFNTCiMOg1REfpmhUS3oAUtaBhNKZ/rD3RV/wiODC34fcJRBBtnw+55kNwLRt0DUb+T3ARFkdKysQ+C6m+Y6DiLYdV/YO1rQuzGPQJZ59RvpZ23tWnLTjd0Bhg2C7Z9FiI/0W0hYzSogfDeKYCAX3p2fC4hTOkjTkyKHIXiQpe9KkSIqrHqRZjwGKx6Xl773GCIDA+F1ZkAVWy2tfV8/TiKQoQIoMMZQlxL9otipDNC2lBY+Vz4dtkrpTSwCaTIqNPg9km2jd0dKimLbCDrJi3OQnKUieMVIavra0dkEFdrcKhVFKIj9BTZPWHLVRX+8d0uPt+Qw53jO3Hd+xtIijTywbWDMOo0QUJUjX0FdlrHRKDXKjx1QU/i6xnwmPTaMGLz4oy+/LyvkMPFTqb0Sq032LQxtafE4WZ/gZ2deRWM6JBIUpTxN1Fd/P4AK/YVcfNHG4MVnzMHpdEtNZpnFu/lh535LL5zJBkJjVumnwwqvT7KnT4K7W4SrQaiIvSNOnVVeiQn6J2Vh4nQa7l8aDuSo0zoGiCO/oDKoSI793y+jX35NsZkJfLgpK4NqoaohLnLAfj8J/6zazXpG7Thdnp8PLVoD5+sPQpIbtWWnDLm3jy0SYYU8VYjD0zswp/GdUSjKGE28w63D6fHBygY9Qp/nrOZ5XuLANh2rJydeRW8eEmfk+o/ijbrmdK7NcM7JqIgBPhEJLTS4w8SompsySnnLxMtvLz0AI9O7VaHMNZEqcPDjtwKFu08zvAOCfRPj/1dlt/lV7iY/tpqDhfL9++4Lkn86/yeLe58/49hd3kpqppYykqOJCUmosGQ7xY0jqaQou1AMlA3ea8FLTgRPE746XFY96a8PrZRBrDnviYOZ1Gtm+eQ9mtBowEamRXfvwRWPCM/+1yw4R1IG1w/Kep9Cax/s+6yU4XXBa4yITh6s3x2Zak45qGRc4huLT1Ee78X1aj9SCEVLpsoQTVL6yKTQz1Vfi9Ulp2YrHacAJs+BFN03ffMCVKOWI2tn8Do+2BhjVizEX+WoNqsSVJu5yoXYmpOkONXazT1J/eEIbfC7HOFWCmKkNGu02D5k3U/3++ru6welFd6+W5rHndN6Mwj3+xAVWXXD03qUm+zfmKkkbm3DOWtFYc4VORg5qA0+rSNpcjuRgVMOi3RZj3xVgMPTerK1e+uC1obT+yRzPbcclQVduXZsBh1GHUaCmxu7vh0M29e3p8EqyGMSPVoHU1ipJGf7xkj2URNUGsSI42c17dNk86/Jioqvbh9fv7+7S7mbckNLn95Zl8mdEtuMBC1PhTZ3fgCKnqN0uQBWonTw9/m7Qhr4fto7RG+vGkozyzeiy+g8vXmXGaN69Tk42gKvH4/q/YXc9MHG/H4A+i1Ci/N6MvozokNBpTmlrmY8NzyoEL40dojLL5jJCkx9SvfxQ43F7++Jnhv523JwxtQeer8XvUGx5oNOib2SGb+ttDv0PQBbbEYm5cFVmx3szO3gkPFDkZ2TKRVpJG/TOxCUqSRtYdK+GJjDna3n8Qm+shUm4lUwx8IUOb08vSiPXy58RgJViN/n9qNtrXUp5/3FVHp9XOyOp5WozRLaTLptXV65zokWcktd1FWlenVECo9ft5acZD/LBXb+vdXZ3Nu39Y8PLnbKWd0nU54fAHeXnEoSIgAfthVwL4C+x+CFBXZ3Xh88vsWZzE26/ulBfXD5w+wbG8ht3y0KbjsuhEZ3H5Gxz90OfF/C00hRQnATkVR1gLBaRhVVac0vEkLWlAFtw02fxS+rGivmBm8MgRuWiVBqL9neJ2w40v5OX0EjHtYysiO/gJGK2gMgColdSDld+e9Dj89Ia9H3Qsxaad2DJXlogD98Dc5ngvfE8vtNS+DKQaG/QmOroWsiRDTDgZcE769KRLOelzI1N7vJRR29P1SQgdSYuf3CEmpj/BUw5IkobUajZCWtgMhc4z0EbUfLYpaNbZ8AlFt4MaVkLdFcp6OrIFVL0DrfnBkFax5RdSp8Y9Caj8heck9xBVwwDXww8MhpUlV5XX3C6SH6ds/hT4rsXOTzSyMOg2HihwkRvr54sahHC52kB5vwWrUYqwaENvdPkodHvbk22ifYCGgqiRHmeiSHEWX5Ci2HZPSnAKbm5GdEnnq/J4kRZkYkB7LT3eNZtWBYhIijTjdPu79IlSmp1WUIAHYlVeBXqfw7lUDufnDjRwpcdI1JYoXZ/Qh/Vcu9XG4few6XsFzi/dx/8SsMEIE8Nj8XQxIjz2hmlDi8IAaoNjh5daPNrEn30bXlChemtmXjCY046tQRylTaykmCdbTP2lS4vBy15wtePxCwr1+lbs/38riO0aSFFWXhPj8Ad5ccTCsZNLu9jF/ex7XDK/7/RUIqFRU+uqohkt2FeD0+ogwaNDWCkONNuv5+9TujOqUyPK9RYzrmsSoTklN7gGS83Jzy0cbWXNQTF60GoXZ1wzkuy15vLvyEOO7JfP2lQMw6ZtfFllsd7N0TwF2l58yp4ePq9SnY2WVXPv+en788yj2F9jZfLQMf0BFr9Wg+Q1DcmPNel65tB83fbiBikofraKMPDq1G//8bhf/mNadiEZUQJvLyxs/Hwpb9tWmY9xzZuffFyny+9lTj/vkvnwbg9ufvMHGb4HDRQ6ue389+wrspESbeHlmX7q3jm7p9TpFlDq9PPzNzrBlb604xNXDMlpI0UmgKaTo4ebsUFGUs4DnAS3wpqqqTzSw3gXAHGCAqqotLgr/q1AUGayWZYcv0+ikR2fNazJYP5W0dFs+HF4hg/r2o8XQQNO82dVGoTXK4D97pRCiD84T8gBCdi6aDQvuhTMegpTeouB0OBOsyaKc7PhC3NfO/IeUd9kLpC/H74HETk1zY3Pki2kBiHGD1wlzbwy9f2AJXP09vD4Wbl4tilFtWFvB2U9KqWDAC0sfF/OF+Ew46wlY+bzci8ZIkdchKtnu7+DSz+GX12DebXKuselCjiY/D0v/KQTHlgsRcbDmJSg7IiS5zQBRvH54OLTfTy+FqxfB/Lth0jOQvRpada9b8qcGwGOHrlOFZG2aLev1nhlyx6uGq0I+p+woxKWDKRYMZrx+lWuGZ3D522t5b9VhEqwGOray8tCkrnKK/gDL9hRw68ebggTmjnEdKXV6eWz+Lr64aSjXvLcOb1Vp07I9hTy9aA8PT+6GxajHYtTTJtbM0j353P5JqBSwX7tY8itcwYH4sA4J6DVauqVG8cVNQ/EFAhi0mt9kxjentJILX12NqsoseW3YXL5GDRhVVeVwsZM7Pt3MDaPa8/j83UF3uJ15FVz73no+vWFwWLlVfbAadFzUvw2z14R6abqkRHK8ygY6NdrEmV2bZqDRHPgDKqXOcDJWXukN3tM6UEBXz3eUoYEB3eFiBw63D51GCSNS7RMtHC938fj83UzqmUKftNiwfpB4q5HpA9I4t0+bkzIqKLR5goQI5Dyf+n4PU3qn8uHaI7y36jAaBWaldmzWfsucHv7y5TYW7sznr5O6srhW8GqgSgl9+sJeHClxYtRp0GkUoiN+O4Nbg07LgPRYFt8xCofbR0Wll4U78vnHtO50TGq8/LKhR/331jNgNeo5v18bftobMgZSFBjR8TdyNz1JFNvd3PrxRvYViJthXrmLq99dx8JZIxvNlWvBiaGqKuW1vssCKngDpy9K4f8TTviNparqsqbuTFEULfASMB7IAdYpijJPVdWdtdaLBG4Hfmne4bbgV4HXVVXGBETE19/rcbIwJ8A5T4sbW3VpVL+rhSSA9PF4naK4nAxsx+GNMVBRNdMdEQs3rpBsntMFjVYG3T4vbPk4RIhABvrZKwBVXNluWQvGTqKCfDIjfD+dzxal6f0pULBLlkW1hmt/ENVHo21Y7cit1WezbU74+z6X2GR3PAMOLoU+l9a/H4NZ/tnyoVU3uOJbuYbLnpRrpzuBCUbJAenn6X6+EJI1L8tyZ4mc140rRBmc/IIoQAeWyj1WA0KIANoOgr0L6+77wA9CaN+ZCBmjpB8qa5Jc82pYEkQZM8eKQpU+DBRdXVLtcYiyNv8ukR40OrjkE2g/Fo0C327N5Y3L+3O83EVUhJ4yp4ciu4cOSVDq9PDQ1+ElXS//dIAPrh3EvC25HK9w1Rk8/7yvCLvHFywz0mgUBmTEM//24Xy7NY8uKVH0SYvh9o/lPg7JjOfJ83sSXVWu11CZkNvrp9jhYfneQhIjjfRqE3NaAiw/WXckeH4FNjdZyZFh+UdXDE0PHlt9KLK7ueLttRwpcRJnNoTZZYP0rjSUb+TxBShzevCrKhF6LXee2Yl28Ra+336cXm1juHZ4BrvyKnjtsn70SYtpuAenGSiyu6n0+NFrFawmKWHs3TaGzUfLgut0S41qUEHRaTRcOyKDORuO4vLKecVZDJzZrS5hK3N6eGDudrJSIrnrzM48tWgP/oBKlEnHXyd15f4vt7Ejt4K5m44xa1xHbhyVWcf44mSd2yq9dUtIbW5fmFHDgm3HuWlUZrP26/T4WbhTiNDRUidZyZHsqGGRHRWho3tqFHd/voVNR8pw+wJM7pnKI1O7YtL/tsSoVZXS5/b66ZwcGVSI7C4fDo8PBemvq6lQRBp1XDk0ndeWhyZhJvdMxdKAwcV/E8M7JPCXiV14d+UhrCYdD57TlcTI30EJeiPwBdSw3CkQhcNZz4RMC5oHi1HHBf3a8NHa0MRSt9QoLI0ooy1oGE1xnxsMvAh0AQyIAuRQVbW+YJKBwH5VVQ9WbfsJMBXYWWu9vwNPAned/KG34LTAWSIOX2telib4M/4mNs319cqcDDQacQb70xbIWScBoMX7RVnRGWHgtTD/Hjjz0SY1ydfB7m9DhAhEnVj3Fox96NTUp9qwJsHA6+D7++q+57YJAVBV2PY5jPmLKDe1sf8HUVSqCRFAxTGxtbbnS8nYpGehVQ/Q1xr4pvQK/ewqr19d0kfA4FtFiToRTJEQmyEKTWWpqC0XvCPW3LXhKhfibIqWEj0Q5WzTB+Hr+b2i7PS6WMiV2w6ZY0UpmvE5HPhRngGQErk988O3T+wCO+YKgTq4VCy5b1gGWgPs+Q4SOsv1UbTyDOnN0jdlrGdA4KqQXqbqkX/AB/NuheuXY41sxbQ+bZj6n5XEWQw4vT6SIk18fN1gQDYpdYaXPbmrBvgVlV6So0woSniUVc820UTUGthGmfR0TY2ma2romr5+WT8CqopBp2lSA3p2sZPJ/1kR/PwuKZHMvmbQCRWYE6F1jT6Yx+bv4sVL+rB4Zz47cyuY0juVMZ2TgqWE9cHlDQSJkMPjJ9FqpNAeanJPjTah19YtnbK7fPy4O5+Hvt5ORaWPYR3iefai3lw1NJ0L+rUhwiAljA316TQGm8tLQKVOudPxchdXvbuWXXk2dBqFO8Z34vLB7XhlZl8e/mYH6w6X0q9dLI9M6daoSpcSbeLHO0fz1Waxvz6nRyqJ9azv8QXYV2Bj9cFirhmewec3DsHh9tMu3syj3+wIIxNvLD/IzEHtGnUDbA5aRZlIiTYFA1cBLurflh92hpSdtnERzSZdCgSf+S83HuPdqwaw+Wg5h4sddG5l5V/n98Tm8jGtT2vuOrMzP+4q4JVlB7hmRMZ/zaygpqlCsd3No9/u5NuteURH6HlkSjfGdE4MGlSYjTpuGJXJoIw4vt9xnBEdExmaGU/077BZPdZi4Kph6ZzbJxWllvnF7xU6jULXlKhgzADI72lDrootaDosRh1/PrMT6QlmFu3Ip09aDNeNaP+H6DH7PaIpVPI/wMVIqVt/4HKgIe29NXC0xuscYFDNFRRF6QO0VVX1W0VRGiRFiqJcD1wP0K9fvyYcZgsAUQB2fyMlQ71nSE+HsZHa/kM/w7J/yc9umwwcU3ufPlIEQhgMFpnhdxbB/h9h4PXQ/yrYMBu2fAjtBkPfy5u/b2fdRHfpa/kVCh/MsTDkZtj2aWhErDNJRs7KKse1uKoZ2M5nh8wlqtH5HCjcRR1U5IhL2/Gt8O45cPtm0NcKI7W2kvK7Jf8Qs4SrF8Hu+VIeBuIIFxErphWt+9T9jIBfSIu+atZdb4YO4+DmNaHl9alUpdlCYPO3QbcLoNvUqmPOhYROQuRqIqad9BKte1N6rCY9L+Vu278EnR66TpHyP1WFXfNCBLHrVFF9ukwRFal4H4y5H/YvhjP+KkRTaxSy8+pQIZEanWQt9Zkpz+7Wz0R17D1TVLfawbz2/KBa2TY2gmV3j+aXQyXotAqDMuKDak2EXsuZXVuxcEdoINmjdTRHS5z4AiqrDhTzz2ndeeSbnbh9ATITrfx1Utcm1W83R+Wxu6WZ3V1DcdmVZ2N/gf2UBkKqqnJOzxTeWXmYY2WV5JRWcqDAztTeqWQlR6LXasJKvuqDUachOkJPeaWXN38+yOPn9+DuOVsodXqJtxh4+dJ+xNczGC6r9DDr083BX5+V+4t5ccl+/jKxy0m5lIG4wh0sdPBU1bW6dUwHeraJJtKkp9Lj54Uf97IrT1SwG0dnMrpzIkdLnVhNev51fk88vgAmg5aoWvdPVdWqniAVs0GCRVvHRnDLmMZLz6xGHWOzkvhsfQ5vrTjEWysOEW3SsWDWSBbvCp+w0GoU1NP4XWXQanj10n58viGHnNJKzuvbmgSrgccXyO9ZpFHHP6Z1b/a1Nht1nN+3DZ9vyKG80sudn23h9cv7YdRpOV5eydacch74antw/b9O6sp5fVtzqMhO70ayhRqCt6rE9HT0m3j9AWavyebrzTJ5VuLwcNvHm1h29+gw1744i4GxXVoxtkszwqX/S9BrNU1yD/y9IN5q5D8z+nDVu+vILnaSaDXy8sy+xFlael5OB+KtRq4ZlsFF/dsGJ5ZacHJokr6mqup+RVG0qqr6gXcURVnVwKr1dVUGv/EVRdEAzwJXNuEzXwdeBwlvbcpx/r+HvQDeOSvUh7HqBekzaTuo/vV9Lul3qY0938tM/umGKUr+dT9fbJffP1cIAYiy0vPi5jvR9bxQnMj8VTP7igYG33T6eoo8jqqyL0VIR1wmXLsEVjwrxKL/1eJK562UcrTMMbJdah8xP/jlVSEAA6+v6qUplWOs6bLW7VxY+ID87HMJIYiqRYoiYqD/NWIyoPolcPWyuZC/XRQcfYQobpOfhUPLYeCNoK26BrbjsP5tKNwNfa8QUmKuIlCNBZ7aCySLqLofbNVz0HYAjP+7uOud96aYTZRX3cMB14o6tOoFeV3uFDJ1dI2U/K15FXZ+Jfe580S4fJ6QHH2EfHOsfUMUoDP+Ktd55XNSojcjBTqdKQR43s1CbkDUn8V/hS6TJIC3soogr3xeDDzaDISctaHz6XAmPr2FY8UOXlzKspfiAAAgAElEQVSyj2K7l+tGZNCtdXSYuhAVoeef03qQHm9h2d5C+qbFcOvYjmw/Vs4bl/end9toLEYdY7Na4fEHMBu0v8psrd8vvT21UVHLmCBQlVXUVORXuLn94008M70XuWUuUqKMHClxMuG5n4PrnEiRijHref7i3tz84UZWHSgm0qjjq1sk8DjCoCXOXL+F8sFCR51epVUHirDXKvFqDgptbqa+tDJI5FYfKGbuzUPpkxaL0+NjS46Uu04f0JaeraPIK3fxnyX7KXN6uGRgGhf0b1OHEFV6fGw6Usb9c7dxvNzF1N6p3HtWVpNmX81GHXdPyMLlDbBo53HS4y08eUFPIgwazumRwnfbQkaut5/RkdiI06dGGHQa3l99GI2ikJUcybsrD3Fe3zYs/fNoSp0eWsdEnFSmTXSEnvvPzuKcHimsOVjM2T1SUFWY8Oxy3rqyP4/ND5/seWbxXl67rB/t4psQCF0DlR4fOWWVvLbsIHqthutHtic12tSolfaJYHP5WLq7rnq+/Vj5/1R20e8dGQkWPr9xKG6fH4NWQ5zF0KCdfQuaD622adUHLWgcTSFFTkVRDMBmRVGeRKy5G/omyQHa1njdBqhpaxQJdAd+UsSVJhmYpyjKlBazhdOAwl3hjelqAJY+Bhe+X39ZlMYgA8edX4cvb/0rK3M+F3zzp/Blnc8+OWvuyGTpY1n+lBCjEX9uvtOb3yvqkqoK4Qj4RdlSNKLMbJpdlU30N+h2HrTuK5biikZUkKG3w/Cqz61u9jfHw6j7hKCBlHkZLKLIXPU9LHlUlIxBN0ovUM371pgtdrV1eESc3O+1b8ixOwrFoGD9O0Isek4PmTq8c3Zo/3sXwsSnRUU8EXH02MMNMgDmXAF37hIyqujgmsVCbAxmKXP7/Orw9dsOFAL3wfkhF7kja6R0su0QsWhPHwrvnAOlh+X9nV/D2f8KkZ8jq4UU+d3hpYcgtug7vwkRIpDna80rEvo6/y7I3SRlfGPup8hj4JwXlgXziZbuKeDDawcxrEOodNPnDxBQVS4ZmMYVQ9OJMumwmvRh4aEeXwCrUYvVFD5bW2Rz4/L50Ws1xJr1Ddo7NwXRZj3Xj2zP6oMhR7/oCD29qmbeSxweNmaXoNNqSIo04fT4SIszE29t3Or28w1HWXe4lOmvraFdvJn7zsripZ8OhK2zK89GqcMTRopUVaXqexuDTsuQzHh+uns0Hm8ARQGtViHObGywNMvh9pJWzyB5QHocVuPJ178v2H68jrL17qrDdEsVtWhsVhI7cis4r29rjFoNF7y6Orj+4wt2E28xcH6/NsFzAyhzern87bXB9T5bn0OC1ciscZ3qnF+Z00N5pZdCm5u2cWbiLHoSI408dm53HpzUJSzf59Gp3ZjWJ5X1h0s5s1srMhOt6E+yf6g+RJr03H92F15Yso9vtubSLTWKUZ0TaRNrJh0LpU6PBAqXVZKVHEWsRd/kWeV4q5ExWUmMyUrC7hK1qNIrz7qjVm+I3e0TAtbMQVpeuYuzn/s5eN2/3JjDD3eOom1c88hVTZgNWvqkxQbJcTU6tWqiJ3kL6kW500ul14eiKMSYT/wcKUrzLNZb0IL/Bpryl+gyJMDlVuAOhPSc38C664COiqJkIHO/DwD5iqJcCryuqurziqJ0Aj4F0gEnMLOFEJ0m1FfyEvADDbiQaDTQ8yIpYzpa5XnR7TxI6fmrHSIgZVej7xclwO+FPpdD5hmNb1NZJuVStQ0ZdCaxY57yIqAKeWkOXBViBuB1QMFO6a0K+MVF7oK3YOunQrb8Hvj2DmhblU1kqPocvanhXqhqU4Oan+WrlOt74XvSM2OOD8/xGXKrLKu5jccOPo+oavNuk2s28SlIGwIXfygkyBgJG94T6/AuU4V0gJS5lRyEjmfCiDslN8ocLySqMZWo+tpqdKLIVCO6as4jsoaSVU3ivC5Ry7JXht5TNFC0PzzAFaS8zhgF8RlQtC9EiKqx/h0YfDPsWySEGeQcO50Fmz8Mrac3U+/zHfCLsjf1P1JSZ4gEg5m1m3PDAlsBXl9+MFhupaoqu47buPLttRQ7PESZdLx6aT8GZMSir1Le8soreX3ZQQ4WOZg+oC1DMuOJNRs4WuLk6nfXsa/ATlSEjn9f2JvhHeIbtQI+Efq1i+WDawbxzqpDtIo0cfPoTBKsRpweHy8t2Uen5Ch+3lfIt1tFfYgx6/nq5mGkN2KHXewI9UtlFztxeMQlrTYURcHnD1Bgc/PhL9nY3X6uGNKOlGgTEQYdRp0WDT7+Nm8HP+4uINKo46FJXTm7R3KdUkKvP8DyfUVsPVrOg+d04ZnFe3F6/PRNi+WO8Z1OqbegVT3uVSnRJrQa0Go0XDE0naMlTqxGHb8cLKlDoD7fmMP4rslBYwlVVdmTb6uz3sId+Vw9LCOsBLK80ssrPx0INuibDVrm3DCEbq2jsZr0GPVaypxeCmwuYiIMxFuNjO+azPhfwVGvGgmRRu6f2IXbxnbApNcG70WZ08Mzi/YEnf4MWg2f3DCYvmmxzf4Mr18N2o3vOW5jUEYcvxwKud4NzYwnOkIflm90Iqiqynurs8Ouu9sX4IuNOaeUU2XSa7lpdCYbj5SyNaccnUbhtrEdWgbop4BCm5v7vtjKkj0FWA06HpzUhYk9UlosoFvwh0dT3OeyFUWJAFJUVX3kBOv6FEW5FViImDK8q6rqrYqiPAHcoyjKYqR07kdVVZ9QFOVg1eulp3geLQDJnoluC+U12rpG3SuDw4ZgTZIZdY9DBrAGSyhv59eCOU7UlX5XSHGlMbJh97nKMmnuX/WClN6N/SvEZYQG/dXQN78xG6jK5YmE2DT46qbQ8rzNsOol6HGhWFBX49ByaNW1eZ9hLxASojOJOmQvkv6dRQ+K0995rwNKqPeq+n45S6RMb/V/RPVrM0AUqvcmwyeXSO+RMRK2zoEtVVlQ5ngY/7AsB1HfUvvCoBvgwwulFFDRiBLTa0boursqwJYnVttJXaFNPyEt4/8Oi6oMC3RGmPpSww55ehMMv1OuUeFu6cwuz5VrWxuWBDi+Bb59Fy6dU/d9vVnOefzfIb6qh8NgEbXOWynGC3GZ8nxbkyQTqpp4aQ0w5Ba5ttrI0LWgbhN+9bJqUlBs9/D99jymD2jL8n2FbD9Wwc0fbWThrJG0itJSaHNx/suryK1qZF+2t5B/TO3GOT1Tue/LrUHL2YpKH7d+tJGld43G4fFj0CpUVNlcW4y6Jpcw2VxeFu/Mo0fraGLNerRaBa1Gweby8dXmXJ67OClIiEAUjsfm7+KZi3qF9UvUxOWD2/HlxmPBfKDvtuYxa1wnbvs4FP7XJy2GWLOeIruHs55fTkWlEMkP12Tz/awRdEiKxOsL8NaKg/xYVZpkc/u454utDGofV2dwVOrw8ODc7RQ7PFzYvw1vXTEAvVYhNSaiXlLTHAzrkEBmooUDhQ5Aco2uGJoezAFKsBp5cFIX3F613nKujAQLxirXOafHx+YjpfUqV11TI+uQN5vLG+ZY5vT4efCr7bx15YAql8M8nq0Kob1pVCbTB7Ql9iTK15qLCL0Wl9dPRaUXm8uHxajF5vKFWZ97/AEe+mo77189sNlN2dXN/huPlPLCj/t47bJ+fLruKJuOlDGkfRy3jO3Q7PNUFAVrPeTYcgoqYjVaRZl458oBOIMOhPpTUid/KxTZ3TjcPvRaDRaj7neRmeT1BXhn5aGw3/t7v9jG4PbxLaSoBX94NMV9bjLwNEJyMhRF6Q082lB4q6qq84H5tZbdpyhKF8SIYSowuuqtYcBPJ3vwLaiFyFZi77z5I7GKHnANxKSfeDtLwsk5v50KaqsoDSF3E3x0Yej1/h/htg0ntty2F4haoDM2TPIchZL1U1kivUG1cXwzdD03fFlzSwvt+eKGFxEr/S9+j1zriz+S8rpPZ8D7U2UgH/DCbaGBKWVHQ/05IM5tO+aKWcHWz+DoOiljm/BPKRt0lcl1sSSFtrEkwci7hIBVW2KrAVGnsiYJKVJVyXn65JLQdu3HwPlvibV3l0lQkQcxbaVsr3Ygo88tpNoYKb1QV3wj6pbWAAarlLO1G15lXY4QnqG3wVe3gKNAiHGbASFnOkWRvqKU3vKM1CTA1lZi933WE6J0WhLlmt64Aja8K4Rp4HVyLKWH5RiM0UGzkW6pUXRqZWVvvpCXCL2WWWMziPCUEtDG4/D4KLR5KLS5uWZ4e8qcnqChAkBumStIiKrx9srDjO3Sis1HysKWu30BjpY4eXjeDq4ZnkG+zc1TC/cwMCOWl2f0O6HpQrHdzXXvbwhzbPpy4zHevnIAIKpQQYW7znZHS524fQHqm2Yosrtxevx8cO0gXB4hVpcPaUdipJGf7xnDxiOl6DQwKCOBeKuR2auzg4QIxFr3tWUHeey8HtjcXn7eX1TnM3bmVtTp1VCBkipHvznrc5izXvrQVtw7ptFr0BQkRhr59Poh7M23Uen106N1dB0VoMDm4ap31vLZDUMYm5XIkt2S89IqysitYzsG3d+kbG4dd03ozHUj2vPWioMEVEiLM3PfWV3qDNAr6un5OlrqJBBQyS518mAN84Envt9NVkokozsn1dnmdKPY7uauOVtYuqcQRYHp/dty+ZD0OusVVLjx12ryKnd6qHAJmYoxG4i16Imox1Z7RMcEXp7Zh/dWZfPxL9nMGt8ZvVYh0qQ/aTe9mYPbMfuX0DMXbzEwuWcj5cTNQLzVyKnGm5Y43BwtqSSn1BnMmDpdzoG1cbzCxWVv/sK+AjuKApcNascd4zv9JqS6MdjcXn7eV/f3fkc9v/ctaMEfDU0Nbx1IFXlRVXWzoijpzfmQqvX7ILlErVRVzavaV56iKL/+X4j/T4hMljIpVa07eP0joTo76dh66X0J+EW5GHa7DMBtx8XNTl9rltnvh8Kd0ttStFd6Ts57Uwb0tVG0TwbqerMYS9T2We44QUqvQNSVAddBXN30+kaxe4G4vL07UcreABxFYoow/QPpQyo7IiVqo/8Sruod31p3f8e3iUsbSNkgCOlriPhZEoRcFO8PX+73ynWsPp4f/hr+/sGlQrLiM0Wha6hPy54Pq1+WkrkO48QMQmeU61VdBqjEwIXvShlfyQFI6Cg9YNX9SgU7xQ786C/SJ5U5Fg78JIqguR6V0xQp/0DKCnM3wte3QnJ3iOsgJX9f3SgEWmuAcY+IQ50pmoRIIx9dO5itOaWUlJYyrK2RhMU3Qv4miq7ZwLSXVgVDPZfuKeDZ6b3413k9MGgVVFWtt8wrqkppGpgRx9I9oVBFk16DTqth13Ebd32+lTev6E+b2AjWHiplwfY8LqtnkFoTTo8/jBABbMkpp9LrR6fR8Pep3Yk26zHpNcHsHIDz+rSpd0a50OZixhu/BNWsbqlRvHPlAGItBvLLXXz4SzY+v8rlQ9OJqgrdrM9Wu7o52mLUMSgjvk7+SOfkSAorXOwrtBNt0pMcbarX0a9balQdG/OmIhBQ8QYCwT6GhEhjoyRzy9Ey8ivcXPTaap6f3oc7xnXG4fGRHm+hVVRou93HK/AFVJ78fjc3j+nAFzcNBSA52kRKdF01OsFqIM5ioKRGSeLkXqlERehYuOJ4nfW/3pzLiI4JQRXrZOEPqFR6fETotWjraVZfsP148FlUVfhk3VFuHJVJUqSRAluISJ/XtzXRNWb3bS4vP+8vJDrCwDsrD+P2+blhZCa928YQVeuZijEbmNgjlaGZCRi0mmaVyjWEpEgji2aN4odd+eg0CmOykuq1Pf9voNQh+VMLtst91WsVPrthCH1OovzwRHB7/bz604Hg76qqwvtrspk+8LdRGhuDxahjYEYc246F92hlJbf0aLXgj4+mfIv5VFUtV05ygK0oihX4ApilqmpFU/dT05I7La2ZjfMt+GMTooo8cXTL2yw9JNcthe//AqPvFdVl6WNSLjfmIeh9cTiRcBbB7Gky0Adp6p97PUz/sC5xqM438jph1zcw6TkxVqgsEfvpAdcAGjElULSiqpjqMaxoDKUHIaFDiBBVo3CXEIdrfxDHNn2EqCqmGvFfafW4BmaMFPVs4PUQ3bppx1Ddi7Prm9CyyGSxuAZRjryu+rdtDM5imHMlZFeZUeasE4LTeaK47vW/Wso5XeWQPlzOJ7oNvDI0ZCUenynEVfVLj5klCda+Ke8f3yqlhTWvubdS/q8ul6wsgY8uAhToOF5K6uwFMO5hKNwrpaQL74esicH9JEQaGRtTCCtnwY9b5N7EtWfXkfwgIQLp58lMtPL2ikN8vjGHGYPSGJaZwMiOCSyvminVahQemNiFpCgT/zy3Bzd/uJHNR8tIjDTy6JRurD9cTN+0GLYdK2dbTjlnZCXx3ups1meXcsnAtAbdlxxuHzaXN2h7XY14i4HcMhcz31xD77Yx/Ov8niy4fQQ2tw+fX0WjQHqCpd79ztuSFxxkgczsrjxQxMD0eM58bnkwSHH2mmwW3TGSdvEWxmQlEW8xBPuQjDpxBKu2Sr5xVHu2Hyvnl0MlmPQa7p7QGaNOw5nPLQ9ey8Ht43hpRl/+eW4P0uLM/LyvkHN6pnLJgLSTytIosrn5YmMOm4+WMa1Pawamx51woNivnXxH5Fe4ufiNNZj0Gu49K4sB7WLDDBbaxclMd0CF/yzZz3+W7OfcPq3557Tu9e433mJkzo1DeOSbHRwsdHBOjxSuH9keg05brxV1v3axp0yIiu1u5m3JZcnuAoa0j+eiAW3DDDG8/gBraphzVOPnfYV8cdNQnliwmwOFdib1TGHGwLQwZzeH20dKtJnpr4XMKFbuD7n51YfT6Xil02pIjjZx6eB2p22fpwulTk+QEIH0VT36zU7erppYOJ2o9PrZXot0AOzNt9EttZl/g04zjDptvb/3f4S8pBa04ERoCinarijKDECrKEpH4HagIUvuMCiKokcI0Yeqqn5ZtThfUZSUKpUoBag3abLFkvv/KewF8MG5IZexo2uhLAfOeEgUgN3fyCDe44CF90HmqHBS5HGECFE1sleFLLtrIm2wqBo+t/TtZE2CK+dL74pWDxHxVW5vp1B00esSKdMzx0mPUDUyx8lnWxLCg1hVVUrKnKVCwqa+DIurSt96TJc+oD4zwRAlRMLjkONtDAazGFtoDWJ9ntQFJv5b3NzsBaLoDL0NFtwj68e1h2mvSEZRyUFI7il9O7WJttcZIkTV2PWNOOrlbhJTiEnPiVnF/h9gwmNyrjevhoM/ifLXpr8QtCO/hGceafUSABuocrXyOKH0ECx/Wl6P/LMcp8cupGvmHFGsDla1J7bqDhe8Lc57AR+UHIbY9ND+C3dDTg1/F28lVkP4+d1/dhaXv72WsqrB/brDpTx+Xg9evKQPO/MqOFTkZETHBOKtMiBKjYng7SsG4Pb7cXsDlDo9rD1cwq1jO9A+wcqGI6X0T4+ld1oscWZ9o3a0NpePl5ce4K+TunL/l9vw+AMYdRoentKN15YfwOtXWXe4lBX7i3B6/Px70R68fpUuKZG8c+XAOvsLBFT2HK+os9znV/lyU05YsrzbF2D26mweOKcLiVYj828fwTdbxaDi/L5tSKqhyCRGmnjl0n64vH60GgWzXsuj3+4MI5drDpZwoNDOwIx47hzfiauGZbDmYDGbjpbRu21Msxrei+1urnlvXdBJbMH249x1ZieuH5nZaCBpqygjf5vclacX7qHS6+eMrFZM6ZVaR2WJtxq4e0JnvtlyjH0FDtrERnD3hM4NqiBajUJmopUXL+mLxxcgKkIXVK8GpMdxRlZSsPdiUEYcZ3U/NYMFm8vLP77bxdxNxwBYsb+I0koPs87oiMUoSo5eq+Hs7ilhvWYA3VtH0zbOzL8u6Inb65deulrnrygKS/cU1DGZeG/VYbq3jj4tuUF/VNQ2aAEocrhPmOl1Mog06Tm7Rwrrs0OumooC/X4FVepkUPv3PsrUEsTagv8NNIUU3Ya4yLmBjxEThb+faCNFpt/eAnapqvpMjbfmAVcAT1T9/3U9m7fgjwCvU1SdLZ/KoLnLpBM7mp0IHkdd2+WtH0sfTfZKIQWbZofeO/KLGANUw2AWklBdGgbyfn320xo9zPgMVjwnikPPi+ScFj0gZKH/1dBlcvOMJ9wOcJeLomGwilLic8FFH8D398pgvMN4OPsJ2PUtBDwS6mptJcYAZdnwzkSokEEPk18QouYsEpe8lwfB5V+D9wAse1IIzZgHpNRMW1XeYi+Q0NOi/XJOUa3F/CCmnZyvGoAvrhFVJ649XPaVWHjHpks/2pi/wMcXh2y8I5NFrYtKFdJmLxALbINFiFZNwmmMlPOtxo4vpRzup8dlv6Yo2U/vGeHXLSZNjCgiYmHkPZAxHAr3wa7vxI7bbYPXRgrBMVjAlgvTXgO9BVr3lzK+akIEkt+0byF0mgB7vxe1ribSBsv1qlbwbHm0izPSs3U0W4+VkxptIresMkiIqjF7dTZndm3FkMwEhmTWvf1xVgOBgMo3W3P50yeb6d46iuEdEhj/7DK8fhk8TeyRwt8mNW7Woaoq327LI8Kg5dMbBlNR6SUj0cqzi/fyY1UAaIReS1ZyFBe9tjq43a48G88s3sMjU7qFud5pNArTB6TxWVUvTzUGZcTz7dZcakOnVVAUBUWBVtEmrh3RcNloTdOIQpuLy4a0Y0rvVOZuOsaXG+U5zi2TZ6LI7mHi8z9jqxpgpsebmXPj0CYTI7vbV8da+c0Vh7hoQFuSGgmzjI4wcMnANCZW5euYDdo65WAgZWlD2sfTPsFCjzbRROi1TVKz6itXjLcaefrCXjg8dQ02iu1ulu0tZPXBYs7pkUKvNjFNUhucHj+JkUY+v3EIGkUh1qxn9cESXlp6gHP7tCYlJgKrUceQzHiuH9me91YdRq/VcPsZHcmociS0GnUNmgwYtBoS6jmO5GgTzYjC+p9EcrSJxEgjhTXKD2cOakes+fSbC2g1CtP6pJJT6uSTtUeJsxh4ZEo34n5HaszJ5F21oAW/dzTFfc6JkKIHmrnvYYid9zZFUTZXLfsLQoY+UxTlGuAIcGED27fgt4LbJiVcClV9Ok10cis+AK+PDlk2r3wOrvsxXPloLrT6ur095nhxFlv3Jpz7ajgpqm18EBEj/SlfXCPnZW0F579Zv2Oa6oeNs6XUSquXAfa82+Dwcnn/m9tFneo9o+FyRGepKC6KRrbf+omQH79XbKuv+FaCXCvLJS+qskRKxByFkNRZyvveHAtXL4RAAH58JESIqo/h8nnw6aUhd7XlT0KrHnC4Kmxz3yIxn4hKFcIye5rYfQOsfBYunSsq09tnShnZOxNDCkzJQbEav+BtKc1rMwh2zwvPTbIdh/Xvwuj7oPwIvH2WONUNvlnc5pY9EVp31L2w5RPpGxpyG6T2FiUnsYt85v4fpcTNHBdeKhgRK6WEfo+Q1A3vQNY5kNJLnOWMVnnOBlwLPS4QMly8V/qlJj8H2z6ve2+KD0BilgTWmmrNsFoS4MoFojY6S2DAtSRYzbx5ZX+2H6ug2OYODiJrItaiR3eC8qciu5tnFu8F4KL+bXn+x31BQgQwf1se90zo3Og+IgxaxmYlMmdDDnM25GDUafjw2kGsrGFskBgpoau1sfloGQ6Pv44VeMckKy9e0ocXl+xDq1G4c3xnYi16pvZO5dVlB4KmAWaDlpmDml++VGR389BXO1i48zhWg47bx3Vk1jgzr/x0gIEZcXh9AV5ddiBIiAAOFztZe6iYc5rYTF9f/pJRp6k3Nbw2THpto03xxXYJtV15QErPIvRavrplKCpyTcxV19MfUPEH1EaVqWrEWgx1yE6Z08N9X2xj8S7pr5qzPoc/ndGRm0ZnBo+votKLy+vHbNBhNYXuo6qq6LUaLnljDV6/SvfWUfx9ancen7+LV5Yd4JPrBjOofTxxFgN3jOvEtcMzAMm8akoeUazFwITuyby/OpuDRTKxFG8Jd/P7/4pEq5G5Nw/l2cX7OFTk4IJ+rTm7e8qvFkAabzFyz4QsbhqdiYJCnMXQaP5YC1rQglNHU9zn+iNkJr3m+qqqNhpmo6rqCmjwb9UJQmla8JvBUSTOZNs+k5n6UfdBn8vqb3CvCbcdlj4enmFTfhSObYLOZ534cwM+IT7aWrNsugjpl/nlNXmtKDD2Idj4vhyfroqwaQ0w/I5Qbk5wexO0HwW3rhO1Rm9pJEfIKmrQJzOEiMR3FEOA/T/CxneFGGx4W3Jy6lOLyo/B3BuEnCR0hHNfl8ynGuoD3/5JDBUiYmHV85JztHUOrH9TSFnXaVKqtuYVKTsr3i+qVtdpkDlGSJe7XM6hmhQpWlF79GaxDG/VTUrdolLlmKoJEcg1XvJ3KS+7agGUHQ4Romoc3yL9QZveh+KD9ZtJVBwFjw0WPSTnBfDLK2KZfeNK6ZFK6SX3Xx8h1+K7P8M3G4W4THsZ9i6A+XfLthOfht4za+U9JcErQ+RYQHqKht8pKpjPDe2GQrthQurUKmOBLpOlRK/HBULKa6LndAknNsWAttaAUB8BbQeIchbwCfHW6EgCxmaJ4lDicDO8QwIrqoiIUafhgYldg3k2DcHrD+CvKqmJMukpttct3ayvFKcmYswGnrygF5+tP8rK/UWM7pREZqKFFy7pwzXvrsPh8VPm9NA3LQaNEh5RNrpTEpGmul/tURF6JvVMYUhmPAoy0+vyBvhuWx7vXzOIxTvzCQRUzuqejEnfvIGe1x/ggzXZfL9Dei5sbh///G4XX948lAndWhFvMeBT1TBDgmqU1lLjGoPFqGNCt3DDhnsmZDU7JLQ+HC2pDBIikL6OJxbsoV+7GI6VVXLXmZ3xB1Q+XneUffk2LhmYRrfUqGb31DjcviAhqsYbPx9k5uA0THotx0qdPPT1djYdKWNQRjx/m9I1aPLgcPt5aWnINGX7sQo+XnuUaX1aM3tNNk8v2sPrl/Un1mIgwqA9qfqDkoAAACAASURBVJKmlOgIPrl+MLuOV+D1qfRsU9fN7/8jFEWhTayZf0zrjsvnJ9qkR/Mrk5STvYctaMFvgfJKLyV2NzvyKuiWGkW8xVivAv9HQlPK5z4E7ga20WAKaAv+kAgEYOdXsOVjee1xwOKHhFSciBShioV0nX2eYIDj9wkBWf2yDLKH3CplXVWWyTgKIKkbXPqFuMO1GSC9N3NvgGmvysD7jh1S+mawhrarCZ0pPFy0IXgrZb8Vx2TgPukZKR9zFEr/y7EN0qyvrWfQU1kGX98SUmuK9sEH58FF70u/TDUKdsqAHqS/qCwb1r4aen/HXCFK3S8Q0tN5YpUikwNoZOBuToT0EULSNFohChvfg8vmwrY58nObgRDbroF74hdyZE0UAqAzhZe4pY8QBWvFc0Ightwiapw1ST4zbah8pqtCSvGqlTxVhbWvi4lDm4FybCm9JGTWUQR9LxOzjLzN0rM18h648js5hrVvSA9XTVv2ipwQIarG9i9g7IOiOMW2E5VMrfE1tOsbIWYxaRKI++Mjcm5Dboe2g05c+hgIyHkEAhJRXQNxFiPPX9ybw8UO8spd9Kuy4G0Krhiazj+/28WyvYVM69M6bCCbFGkkKerEg8wEq5HrR7TnssHtMFe5jPVN07HkrtE43D4sRh0mvYZXL+3HA3O3U+xwM6F7MtePat+gKqAoSlhDtM3l5fXlB/n3or0M75iARlG4+PU1fH7TEBJrlKOVODzsy7ex6WgZIzom0CbGHEYOHW4fy/cWUhvZxU7O7RMyBLl+ZPuwZnWTXsPYrKYbkMaaDTx2bg9mDExj67FyxnVpRWpMRL0ObM1Fkb2uvXmxw43ZoOPjtUeJNRvwB9RgLtG3W/P494W9OLdP62YNjuszG6peIj1T69l9XOzzv99xnEK7mzcu70ecxci+QludbXfklnNeX7nGPr9KQD31HpekKBNJp5gf9b+KFqLSghaAy+vj603H+Ou80CTso1O6cdGAtr+aTf1vgaaQokJVVef96kfSgt8eXqf0W9TG4ZUyuG0MxkgYebf0rlT/EbYmCYlpDPZ8eHVYKDNny8dw48/SGO9xiLPcrnkycx+VCj8+KoGlN64QolPds1K0V4ibNQUsJ2mE4PeEgm7PfkL6aOxVvh/bPoML3pXSq/qCZX1uOLQsfFllad3epQ7jhbyBnNPG2dTB0V/AVykEYPqHkhmU2gd+eFjsptOGihoSlwkZI+DgMunTsedLSSGIOpS/XVSnuPah8rf04TDpeTk2n0vu1W0bYefXsPkDKS8cebf0hQF4HaJAXfqFGB+kDYWCHaKm+VyiZk1+QcoMjVFSqvjldWKsoNXDsD+BIVKypYbfIZlBxzZICeJ758j1jYiFKS/WvQ6Geq5zZHJV/1IkpA2RUrw698IlznJdpoiapKpyrbWNfL15nHJtF9wrhLDfVeI2aA5/luKtxmY7pGk0Ckathpdm9OWnPfmc3T2ZpEgjX28+RkailTvGdWyyzbBOqyGyxoDfoNPSKir8GRublcT8Pw0noMqALeoEAYrllV4qKr0UO9y0ijTRLt7ChuzSYK+Sogj5qEZFpZenFu7h47US/PnEAvnjd/HAtGAJmcUgNr0ba2U1dUuNCnvdIcnK5zcO4ZVlB4g06rj9jI4kWJuntMRbjYzqnMSo05z30yk5kiiTLix7aFrv1vy0R67Lop35XDU0PWybV5YdYFSnxBNmTtWE2aBlUo8Uvt0WMkK4eUwHok16Cu3uICGqxobsUty+ACUOD+3iLHWqiwe3j2dnrqjIVw1PZ93hEgZlxP/XrZtb0IIW/O+ivNLH4wt2hy174vvdTOie/D9Piv6mKMqbwI+I2QIANdzkWvBHhT4CMkbBvsXhy9vWda+qF0ld4YYVsO4NGVz3u/LE/UR7F4QIEf/H3nmHR1Vmf/zzTk0mvRE6ofeOiICAgFIVVLCCXdRVsayr+9O1r66ubXWta0MsSLMgioIUUUEE6SC9d5KQ3qbc3x9nhilJYAgJCfB+nicPmTt37rxz78vk/d5zzvcgd/1/fQ0u/q9ENJxeg4SCDH/UwO2EH5+UhXTWTni3vyyUAZpfJEKgIs1nLTaJUpktIiJ8gsjHsvehSb+yX2syiyvb/pX+bdZIiaSktJR6lpZDJYphj5ZF+KLXoH4ZzV8bdBcheGCNiNSkpvD1X+QYIAYCX9wMAx6XaJTvs494Q167+3d57CqWKNBVn0kEMKauRFg+uEjOpSUCRrwu6Xd7l0n/nqgkObfdboK106DbjbDiE/j9HREIoyfAlOv8Y/3hYbjiY2g6QETKyk9FEIFcp4UvSjTIHiMpgWOmibCaeb///BYegW/ugdsW+o/rcYtpR9vLxJwBZLwDHvOaVXiNK865VaJBPhIa+y27TSYR5uFQkA4TL/GnEs5/RtL3ulzndRysONF2C4VON6/8uImujRJ4Y/4WHhrSkks61iXCWvl3mS1mE0opVu86wq7MAga2SSUl2l6mY1p2oZN3F27jdW/kqn3dWJ4f1ZGr3l1MTqELpeDegS2C6ljyil18vnRX0HFenLORwe1rHzU3sFpM3Ny7MSt3Z/HbtkzsFhP3DGhOaoj5QUyElW5pibxaJxazUjXqjnuUzcyEm7rz3s/bOJhTzMUd6xJjtxxtUNuydgx7swqDXmO3mE64+0G8w8aTI9oyvGMdlmzLZFC72rRMjcFuNWM1m4ixW4LqrpKjbdgtJmat3c+2w/k8e2l7XvxhI1mFToa0q83V3Rvw/s/b+eCGc1i1O4tX527miYvbMLZHo0qJoJ0IGXnSDDY+0hZWzZVGozk98RgGhc7gVPyCEnelRKqrk3BE0Y1AK8CKP33OALQoOt0xmaHjVbD9Z3HqMlkknS3cBqX2aGmYOeyV8BeSVkfZ25SSNLVzxklNj4/IBKjTARb9V9Lt5j3rFwUgJgNZu0UUleTLMXx1Ss5iwFO+cYQjBa6eJHUu5jLu9FrsZbvWgbzfpe9ImlmroWK0EBEPUbXh+m+9NT+RfjOB4hwxIEhqJulpS9+TNLKOV0uU7Pu/y355B8Wm2ieIfOxdLuO98CmJlqz8TI7X5lK/KBryPLw/UEwdrp0iYuHL2/3i0lUkTU6v+0qiUmunSwpe/0ckmnPJaxKNetvbHLZeF3G8C2XtdBFXbhdMvrb08+mbJcKTsVUEWHQtsdMOpCAjpLbJgI3fQbP+Ikxy94uJhiVSLNoztsi1/ctvIrzXTBEThc5jYNbfYfhLZZtplMeuJaVrq9ZMhjYjwkgdDSaroISM/BIOZBfRtFY0iQ4r15zbkOEd6pBZ4KRWtJ3EaFuV2Rmn5xVz44dLjzZTfHbWBqbefh5dyrDvzStyHRVEAGv25TBpyU6+v6cPWQUlxDlsxERYgqJNHsMg9O9csdMjfwUCSImJ4M1ru1BY4vHa9FrKtbIuz/2sOkmKtuMxDK48pwHJUXZW783igWmrMAyonxDJQ4Nb8fjXa7GZTdJUNMbOyE51j0YSM/NLKHF5MJmkSP5YRfFJ0XYGt6vD4HbBab4JDhvPj+rA+EkrcHkMbGYTL43uiEkpZq7ez+KtGQxqm8oLozsSZTNjNStsFhNuAx77ei17joho++z3XQzvWPeU9Y4pKHGxZk82T36znsz8Eq49tyHX9mikHco0mjOUSKuZ85sn8/Nmv/lPnxbJFW7IXVMI5y9TR8Mw2lf5SDTVQ1SKLO6d+bKwt8fIT7i43d67+FHhNYxt2l/S4HzF+lYH9BovUZuSAhE8V38uvW0iEyXt6sAaiIgR04ScPSIsnAXSfFUpKdL/8xsRKMktoccdUluz4HnpY+OrW4oJiWKZTBLtGj1BohzJzWVBDyIQ+z8a7JAWSmxdWZh/crnUJ6W0hGunSX1LKNZISUmc9RDcNFvEkLNA0t4Mj0S8Ns8WsdPlOhE0galioz+CbfPgjwkiyAY9I9blaT3hrmUijEoKxCmu+zjYOEvE2uEQe3NXkb8mJ6231EZ9crlss0VBv0ckEjT1eonctB5R+rMkNZXPcd6dEjE6sNr/nFKQ2kaEartREm2y2EX4HVzr3y+uvlzzo9fCIql2b50n19mRCL3uExe6DO8i/tzbpAZr+0JpBFuYLT8Zm8VB7kREUVIZwj+5lcylEyCroISXZm/k498kkhJhNTH1tp7EOaw8NH0VuzMLOL95Cvdf2LLKitX3ZRUGdZd3ewyen7WBd8Z2LWUCkFNUuubsu7UHuKJ7A9rXK91sFMBhs9CzaRKLAkwIrjm3YZlmDolRdjhO26yaTEpMBH1jIvB4DBomOejbohbFLg/RdjMpMRG8dEVHcotcfLF8L9vT8yl2ecgqKKHQ6eauz1bwx84j1I6N4D9XdaJzg/igxqjhYLOY6NcihV8euoCMvBKSY+zERliwmEy0rxvH4q0Z/LDu4FGjia/u7InTZTBl2e6g46TGRmA7hVGizPwSrn1vCS6PQaTVzJ6sQran5xFpjatR0UCNJpD8YidZBS62peeRlhRFvMNKzHHSjzVCvMPGy1d04v1ftrFoawY9myZxS+8mldrMuToIRxT9ppRqYxjG+iofjaZ6cCQAFWgKl3dIXOF2/yaL55ZDj1/fE50K4xbAph8kja7tCIjyihWbQxqLTr8Fmg2Q56fdBFd8JGlUkUliyb3rNxENZqscZ8fPflezTT9IvczFr0pqF0hq2tivZf/Qwnul/ClXN3wr9TrZe6DtpaVFVCjFOWKZ7RMZhzdK1GLkGxI1ChSJEXEw5N8ialZMhCUBZgu2aBj7hYgisxUsUfI5p94oIqbFECjKktQ1kHqqz64Uh701U2HxG3DdN9LzCMTKetJVItqaXCANW31EpYDLu1+na6V/kOERsXrBIyI68g/BmC/gl5fF+a1xHxEiICKw5RBJBdy3XCzHM7fChplybi96VoTe4H/Jfphk+5Ufw9QbYP8qEY9DXxLHvMhEEU0gQumO3+TcWCKhaT/44f/8Y28zUlIBPW5/PdfepSKmDEOEmCVCDCUCKcgU0Wuxi2U7QHwatL0c1k33vncD6PNA+Hb0XnKKXEcFEUCR08NjX6/lynMasHirNOud9PtunC6DJ0e0JaqcCInT7SYjr4Q1e7OpFRNB/YTIsGuZQlMYAPJLXEcd8AJJirKR4LAGOb5d1DaV3ZkF5YqixCgbr13dmS+X7+X3HZkMblubC1rVKmX5fSZhMiliIkovkNweuPHDpUftqmes2scLozqw70gh29PzGd2tPgD3TV7JV3f2IrUCd00ddomw1Y4Lnos3n9+Y+RsPsflQHgCju9WnYaIo0EFta/OD1/nPYTPzj2GtT6kL1B87j+DyGCRF2XhnbFe+XrmPR79aR/fGifylX9NqNW3IL3aRU+TkQHYRdeIiiI20HrVX15y9ON1uFmw8zN2TVhx173z20nZc2qUekVY9P8IhJcbO/Re2ZFwfF9F2yxmRMhvOle8NXK+U2o7UFCnAOJ4lt+YMJz8DJo8VQQRSl3TuHSJebGWkyPlQSlKrul5f9vPJzWUBveRt2e+GmbKYVVbI2w/vDfSnz9XtLBGUj0cGHyNrp6Sm2WNFuBiGOLQNePzYbmTRqdLsNFxy9gc7oYEIhf2rRBi0Hx1c45LQSGp3JgwLfk1JntQDjfkCkltATIqImfErxPHNGikueYG4S0REJaSJ+9vPL0Kfv4oLnMclqWaL35BziZK6pNS2Iszm/VOOYYsWsWWNFEE0cYSMBaSm6Ja50oy253i5riZvD6nJY0Vk5B6AvANQuz30fVBeF9dAIkCWyGBRaI+FnveI0MzZJw1yj+wUA42IOInIedwiWgY/J1FLZ4EIwrVTJY3RWVA65S19s1ipF6TDqs8k8thpDLgKwFDybTXjbqn9SjtfDCvi6ol4H/YiDHhUjhuVEn49UgC5ZURe9mUXUi8hknZ1Yxnavg4mpZi/8dBRx7iy2H64gBFv/HpU4PRtkcLLV3YkKer4wqhxchSpsXYO5vjd027v27TM1KWkaDufj+vBE9+sZ0d6PgNa1WJ4x7qkHieKlRxt5+bejRnTo1GV3/nPyCtme3o+29Pz6dEkiaQoW7lpeKeaw7lFRwWRj7d/2srjw9vQs3kyXyyX5rj/vbozhSWlxerJkBobwaRbe5BX7MJqNhFlNx+9K/uvy9pxz4BmHMwppnXdWJKiTu3d7rQkEWd/uaAp/523hZ+8ToTr9+ewfn8Ob4/pIlHEU0yR082Pfx7k/imrcHsMrGbFO2O6cn6LlCpLZ9WcHhzJd/LIV2uD2hk8NXM9A1qnalF0AtgsJhItp3d0KJBwrnwYTWc0NYKSfFlEF2XL4jIyMThFKVycRbJYLjwix4lIKJ1WVJLnF0Q+/vhAHMeOJYqORd4hGXtEHFz0jKRzZe2WxqW1O0iKWmA90b4VsqAtK93PYg+2p/a51lUmsXUksuMOeJ+03hKZ+fVVaSh67dRgEwh7jNRsZe0sPd4vboWmA+HiV0SoZO+B9waItXVc/TLevy7MeUKsxOc+KSl0oyeIpXifB0V4TB4r6YQDHpP6LEuERFbSzhcx0+V6SWvb8K1fEIGc65WfSY3TmqkispQJRn8owq12OxFAW+bCwhekJmnEG/5ITCjuEph+U+ntWbtERLYYBHOflj5KHa+B9pdL6t3gZ+R9N82Sc+JIlMiPj+aDRRhuXyiRun5/h69ul+jhlZ9ID64jO2TfzbOlqe9Vn8lxHInyuYpzZW7kpx/fsCPvkJxfkwUcSdSKjSYpykZGQP+dyzqk0FltYuLVzRn/1U7MZnh4SGs8hoHHY5Syb84pcvLMrD+DIj4/bTrMweyisERRrZgIvrqzFxN+3cGOjAKu69GIdvViy7R+NpsUDRMdPHtpe/YcKWBnej5xkVZS445/J99kqnpjhCP5JTz85Zqj6WFmk+LTW86lR5MKOkyWw+HcIg7lit12fKQ1bKe2shqY2iwm6ic6GPLqzxS75CbJF8v38sO9fSp1zADJMfYyne4So+wkRtlpE14P3EqnQWIkF3esS/t68Tw9Mzhl9/ftmRQ5q6ebR3ahk4e/WHM0aup0Gzw4fTXf3XP+UZMQzdmJx4CskB5pRU4PLrfuPHM2c1xRZBjGzuPto6kBOAuljuSr22WRbouWIvr654RX6+PD7YSdv8Dn18pC0RIBV30qLnWBjVZNFkp5w9pOopgga7dEUHxiofttIrCmeHvdNO5TulgfZFF94dMSLfJFbRr3k1oZZ6FEDrqPk8hUWf2GTgaTVeqxfnhEaqSa9pf3+swbbdq3XMZhsvjFQmQ8DH3B6wjnXdyfc4sImtwD3mulZKH+4xMiVFZPgWsmS7Qn31vU2GyAGB1kbJbr0mYkbJ4LLYf5e/o06inphKntJAqmlIiytpdCW2SB37CH7L9vJaUwDP85dZd4jSPipeZpzzJocZHXTEFBt5uPLSjMdjFu2Lvcvy2+kYjvup3g/Qv9hhD7VkidWo87ZdzDX4aSp+T6Xf8tzLhLIkQtBsOFT0rq3ux/eIV0tER/9q2U8fgEkY9di/3iuPCINAn++UWZ9w26wxWfiBgryZVjBc753APw0XB/3Vmj3iSPnsD0v/TkmW/Xs+1wASPaxDOmWTHRn19KYY/76FhvOAPb1Wfq8j1sPpjL0PZ16NMimY0HcuncMIGUaDtOl4f03LJ65JRudFoedeIi+duglji9NR3HItJmoXGyhVoxdro0TCg3elUdZBU6gxqzuj0GT89cz8Sbup+wNXp57D1SyOVvLeJAjsyD4R3q8OSItmEJ0ORoG10axbN8p996/MFBrVi0Jf2oIAIodnmYsmw3Dw5uVSljrukkRtl5akRb8otdpdzzIq3mY5pOVCVOt4f8kIhdel4JnjJSSzVnFxFWE31aJLNwk98ooEP9uNPaTlpz8tScv4aak6MwSxaLvqhFSR58MQ5unn1iaUEFGfI638LRVSSP71gk6Ww+bFHQ5QYphPcx8KnjN8ssi5ICmP/P4OjJ7+/I4tu3qN0yTwrtA53pLHZJCYuIh7v/kBS+5BYiAjxuuOxdMTf4/X/wTl+JrAx7WZrDOsqJaJwIZov0GBr2khg87FgoUa3AaFZhJvz0vNTY+ERDYhOpncndJ+Pc8YsIILNN+vyYrSKK8ryLw4IMMTa4YZZYh1sjJW1txt3SoBQln63VkADxlQD1EkSIhFKQKZbcWxfIOd3kNX5Y8ra8rzJJ2lqPv0j0ykffv8v1Xj1FHi96Ffr9nwiVWm0kaqesYCkjdScqSVIdv7wddi2SZrmDnoGf/i2iMLRp6/KPxBkxOlVcDu3RkmIY3wiunixjtNihyCtsRrwp0aJZD/qNK1oMlv5GJQEW8PENRaSCiJwF//I/d2iDjGPlJ7DlR2jUS0RudC25Tssn+gURwM5fUHt+J63VMF4e3pDibb8St3MS1s+ng7uEyFUTGDXmdsZ9uvpoHciS7Zlc3zMNwzB4+Mu1zLy7N7VjI7j23IY8/KXfiCI2wkKL1BMwPEGsucvp2VomNUEM5Re7yCt2oYDYSGuZ9VHZhc5Ks3ktLHHz6txNRwURSBPWcX2ahCWKkqLt/G9sN37fnsnmQ3kMbVebOnERrNydVWrf092F6URJcNiIsll47OI2/G2a33zl70NaVVuX+0irmdZ1Yvhzv/87oHvjxBM2wNCcecQ7bLw0uiOvzd3Cr1vS6dIogQcuallpN180pyfV/1dRUzm4iiQyEsiR7WCcYF67x1l6gVqQEZyKBrL47v+oLFz3rZBIUmzd4Dvr4eIsECe1UI7sEFGz/Sdv1OUIXPK6uMxFxMPAx8Wm2mqXRfO5IXU3bUZK3xxfg9PDOfDxCLh1vtSgJKQdu8Hn8XAkSUTrk8vFca1JP7+QAYnmHN4g9tGth4vdM0h9TEyqiKS8g3KNeo4XERjrteiNTBCxkLVLegcltxTb9HaXw6//EXHYZoSkixXlQr06IkiPZxTgKpE+RHMelcdxdSEuTUTWdTPkuK2Hw7YF8ONj0PU6ibJ9dYek3M19Ivh4i1+XGp6CdIkmOQtFyMTWK23THt9Qapzy0yViM/M+iRD2eaD0OKNTJRLnI2ef1CBlbJHIUO32cn4sDhHB9mgRUj42zxaDjdETYPI1Iqhs0SKUHV5xGuiGB+KC+NPz0uMJYOcif0qiLUrqxEI59Ce0GkaMkUfMzBuDn4tMwOkxHRVEPqb/sYfXr+nMxMU7mbh4Jw8OasmQ9nWwmE1MWrKL2vERPDioFclnuJ1xZn4JL8/ZyOSlu7GaTYwf0JyRnepSLz4yqB/Q2B6NKs3RqNjlZuvh/FLbd2YU0KF+eDdKkqPtDG0fbKV95TkN+PDX7Ucbv8ZGWhjVtYyU1zMcm8XE4Ha1ObdxIhsO5NIiNYbEaFu1CcSkaDvvX38OT36zjhW7sujRJJFHhrUJak6sOXtJiYng4WGtyStyEWUz15jaRU31oWfAmYLNIYvOrIAmi036ScH7iWCJkAXngTX+bbU7yPZQopLkp2GPiozYT0S8CJj9q/zbTBaJJgx4HD69XATR/Gdk4X7VZxJVOZZdNkhq1p9fB29zO+WzLXodxkz3i5CKkthEonGFmeDxwE0/wEZvA9boWv5Iy9b5flF09DOaRUj2uFM+n7NALKYdFkkfa9JPjv3Dw7DsQ0mHa32JnJdabURwvdMHbvtZzAPCofCIRHjqdpbI36rJIlTe7AEouPJTaay6e4nsv3Y6XPAPGPez2KKH3rF3OyF7l0Qq96+AlZPEtGDwv0TQhoo0R5IcY98KiXpZIuRath7hv1aWCBj0L3/UMe+QXK+IOFjwrGzb9L24DN7wnaQj+oRvIHuWQuuL4a4/JNLjs5v3ibW6nYP3b9QT5j8bvG37T3JdHIlS2+UTTD5aXyz/WiPl2vw5Qx6bzOT0+yclZaSnxzus5HkXz4dzi3AbBgkOG6O71ufC1qlYLaZT0sfnSH4Jh3KL2JlRQLt6cSQ4rKfUUW7+hkN84nXuc7rdPDdrAxe0TGHaHefx9oKtbDqUx6gu9enfqlalFcXHRli5rEs9/tjpj+ZaTIpODU4uclwrxs7s+/ry3Zr9mBQMblfnpCzYcwqd2Cym0zKVx+fa1zCpZniz142P5MXRHSksceOwm4m2a8tljZ9Iq/msi+pqykeLojOFqFow9iv4+k7pG9O4n7hrlVf4Xu5xUvwL4z2/i5vZJa8F94Bxu0QEmO0QGXfyYy/KhrYjJZ1p9WSJogx9CaIS5fe7loqBhM0BEUlgDfMun2GI/fPhDcHb4xtIqt6hdScvinyW3iYLLH1f0tLOu0uspAOFZevhZb/eVSRRmek3iVGGIwlu+RGWfyz214tf9/cBWvel1C51uFKiLCCL9fIazJY33lEfSi1Q5jY493ZJp/NFGe1RfkHk47c3JIpltkLzQRKx8tHtJhGDhZmSCgeQvVtqb+5eHtyzyeOWKJGrEPo+JI53xbnyGVsNlahUzj4R5TEBFeOFWVLv42tw6yN9k5geRMRJqlsoLYdK5Gvx6yK8hv9H6pd8RNWStLvZj8gcNEdINKk4x7+Pz2ACoG5XGP6qiEpLBAx8QkQtSGTvvDslcnpkOzTogcmSgF0prjqnAZ8v3X309N83sAVTlu1GKbi+Z9rRBb9SKuyC/5Mlu9DJS7M38skSESUWr6HBuZVsaFAeRU43s9cfLLV99vqD3N2/OY8Ma02R00NMhKVMw4iKYjIpLmyTyqGcIqb9sZfEKBvjBzRnxqq9XHtuxSNSFrOJ2nER3NS78UmNL6ughN+3ZzJx8U5qx0YwfmBz6sVHVltNzplCWfbqGo1GE4oWRWcKSkl04qrPAoriKyBYCrPEsKFpf3Ety9kXnMZUmA2rJonTXGx9GPwsJDareBpaUQ7Me1qO2WWs9Oexx0DdLuKCl7dL+uDU7SIiZ9O3Yu9cu/3xa6VcxSJQ9i6XhbpSknJ1YI3UXDlOq6MssgAAIABJREFUoNlnIIYh0QtXoSyOI71OZj3vlsW14YFmF/rrT3r8pXRUwkfhEXFEK/Gm9JgsIlZ+eRlunBXcGBWkR9OAx+V3SwRc+j8RUgAFR6A4W8YQXVuEbCm3LAULnoOdv8rDRa9JPZY1UoSRKuOOvC8l0pEoAnntdHGba32xiJff35GeRz3Hy/FAIkg7foV6hRIBrNtZjj/pSplTjiRpEhtdC5Z9ID+ORDmXqe0kTdKHxS77lWXkUZIHHw6RaFf/R+W8uUug81ho2FOMKC56WubM9w9KY2CrN6oWESu26c0GyDW1OmDgk/Dtff7jn/9XsMfJjQBXoQjqKyaKCIqt5zcxsUZKU+GDa2V+pW8m+vwHaB4fy0ODW3FV94as3pPFeU2SWLojE7PJxAfXn0PtaurfklfkOiqIAFweg9V7somNtPL92gO0rB1D98aJJFdRfr3dYqJn06SjvXV8dE+T6KDNYsZ2IgVSJ4DbY7Azo5AHB7ckp9DFf+dtZvWebC7rUp9KqDQ8KX7Zks5dn604+njOnweZfV8fUquxz49Go9GcLWhRdKZREaODQAoy4PuHgrd1vR76PQLpG2DvCqjfTSIGi16TvkF3LQs2YTgRSvKkFsTwwO/vyo/ZCuNXS4Ri8euyAL12KnwySlLiQCJA1888tjAyW8UZbsQb3qalRbB1Lsx+FJoNlCafvkawUbWO33jWR8ZmqSPK2iWpf6M+gEa9xbbcZ13e52/+Gid7rPQOOvQnrPsaUlvLgj06RYRCoBV2YmN/GmFgryUfUckQ1xDu/F0W9RHx8jkLMsXS+o8PvPulwM1z5HiBFGX5BZGPpe+LCcJXd8D+1WJQsOl7//MXPOIXXjG1RQC1GSlOh76mrmuni+DYNMsvBmPrgDJLClpUCnz3VxFEIPNsyhhJh+z7EPz8knyGiHhxlIsIMBmwRcv1ueARiaj5UviaDRQb7qIsmHiJGD6M+ULq3+Ibea25vZ81tp6ImcOb5HcfFlvw3G13mdiq71kKdTtCTD2Jnh3ZCW/3ksgWiB35LXODG/xGJYv5SJuRIpLMdsjeTcKKT4m3RNC67Whe+HkrFqudbmkJpCVHnbKmllkFJWw6mMc3q/bRLS2e1rWDb5ic1zSJpGgbQ179+ei2c9ISeHtM1yopPFZKMbxDHRZuPszcPw9hUlI71Dw1utLfKxSTUsxef4CvVu49us1hM2OqxIhURTiSX8IHv+wI2pZd6GT9vhwtijQajeYUoEWRJpjMMmyv0/rAt3+FDd/IY6VEaDTtLz150jdVXBSVh+ESUQSyyPzjI78gAlkM717ir+koi8h4iXZ9Okrqc/o+JClpN88RMfXhEL+7XYshMOL1YFvp4jyJOkQm+CMC+ekw/RZ/7VZRFky5ToShNSAVz+bw92syDBEZk67yP9/wPCngdxXLucv13jFP3wT9H5Pf/5ggUY5v75fUM7NVbKdz9kO9TsGmFvmH/YLI93j2ozDyLREYRTkivsw2iej89qaILpAeRS0GwWX/EwGS1ltsu9M3QauLRVgFRgIj4+U1PkHkY8Unch7TN8s1s0VJj6OENKl5ytgavH9BpkS1SvLhxu/kM5bVd8rjhE8uhWuniUnG9oWQ2FQas355h/8cL/9Iomd7/xABtSNA/OXsldTMXvdwTCLj5ScqRd7XGiFRr8Wv+wURSORxy1zofE3w680W/xzK3gNv9oTiHBRg/+k5/u+O39htpOCwmcNyO6sMnG4PX63YxxPfiFHEx7/tZPod5wUZGozsVI+3FgRfn6U7jnCkoKTK3JiSou28NLojBSVuyUK1W05JilNcpJVHhrbmka/8RhuPDG1NXDU5pPmwmBXxjtJjqO5xaTQazdlClYkipdQHwHDgkGEY7bzbngBuBQ57d3vYMIzvqmoMmgpQq5XUqHi8rnXKJELCJ4hAFqALXxTns63z5C5+RbFFS6pToHNY15tELPgiAvbossVa/mH/70XZss/KSeIE13KICJ8Wg+CeVSIKIuPFNMLjghnjRRCl9YbOYyQiU5glC1q3S56b+5TYZne7WQSgfPhgQwgQseEs8P6eL2l/Fq8jHoiQ+vGJ4NfsWizRkhWfSm+cmfdK6lVKa+kxNPRFef/IBBi3UBbkZosIpR8eLm2R7iqBi18Vd7YVn0haXuYWb1PSYvjxcUlRVGY452ZJT9v4ndTqNO0PmKAwQ0TgzHslje+Kj8uvSbOXcUffHgsdrpD6oOJcSeHbNEv6Te1ZJmlxgY5vMXUkUrb4dfkBSQ1s3C/4uAUZcj2z94ihQqPecn4/HRW8X4MeEt3p/wis/aL0+LL3HN94pKRQnA6/vV+cATtdA+c/IHMjlLwDsr2sc+RxS2QwpaVEnQCchZiXvk/aRU+dWO+wkySrwMl/520O2vaPr9by+bhzee/n7SzfdYQWtaJxltG00FXF/VziHTbiK9DrObfISW6Ri4z8ElJj7MQ7rGGn20VYzVzcsS69miWz4UAurWrHkBhlq3ZTg5gIKw8NbsmvAT2POjeMp2FSBZthn6F4PAaH84qZve4AxS4PQ9uLqUVlmXFoNJqzl6qMFE0AXgcmhmx/xTCMF6vwfTUnQ2QCXD0Fvhkvi8J2o8q22S7JkxqM9qMlDayiRMTCgMekr8zmObL4rX+OGCEkNpH6ms1zoP8/xIrZhyVCXgMinrb/DJOv9T+/tD1c9p6IpeRmIvZ8FORB1g4RO2m9pFdNQSZ0vk7qgjwl8O4F/rS1PUthyL9hzx9S99Swh6TdBZ4zq0MiIQUZIiojk+T1MXUAQ8RGKB43xNWHjd/C5e9KT51D6+GX/4gBQqthYte9/BNYPgHw1o2ZLP4oD8h1WjFRmrvW6SSphtNvkWsXmSCpbSs+8e7slvqdv/wGOXtg3ReyeO92I3z3gNRKjZ4gkTDrMRZjDXtAQmN/Q12rA84dJ2Iotq70i8reI59h5WdyPS9+TSKOB9fK5xg1QWqIut4EO3+WXkldritdn+ZIglbDJUXOMETMXTM52O2tcV9IaQGTx0LDXnDB38VAwSfuAbreePwUycJMeR/f+V38BiQ0gZ53wdqpfqFujZSGwoc2QO12cvPAFxnMPSjidf9KEdzdx8GXt3kb4VZ/t3SLSXFZl/o43QZD29fhtr5NSXBYuaNfUx6a7jcHaVYruspqik6GvCIXU//Yw9Mz12MYkvr22a09TshBLjbSSmyklbTkmuGQ5qNxchTzH+jHku0ZpMZE0KJ2TI28BtXJ4bxihr7689Hmxq/M2cQP9/ahfqIWjxqN5uRQRiU1xTt6QKUGA68CZmA6MCwkUtQFaAa4kIjRTYZh7Cz7aEK3bt2MZcuWVeo4NcfA45bFveEBa5REGz4aHuzi1v8fEhWwRfvrTSqT5ROhVmtpvHp4o9hCmy2w6L+SXnXBI5KWZbFD3mHpPxTaR2bsl5JC1aw//DlTFuKtLxaDhVWTRCx9MNi7WPUy7GVxKHu3f/Cx6naB9qNkPFdPgq/ulIhCfCOpKYquLdbU02+RVC1rJAx7RdL2fGlk397vP15KS3FD+3CIiM7bf5XolNkqi/4/PoKbZkth/6ejpI4noZFYWTc4F5JbQWxtSaX75p5gR7jaHcSmOr6RiJVv7xNh5OOcW8Q8Y8lb/m0JaSL8PrtCasau+OT4znx5B0WMFh6RiNuWudCkr4gle7QIzfTNsOw9afia0hJ63SuOdJGJsPpz6QM08El5f0dS2YYdriKY/ZgYOviwRUskK6mJCLnDG2DOYzIWkxnuXS+Cbc6jEr3rebek9jkSjv2ZNs4KTnP0nc9rpkLGJqm/skaIwDqwRuZozj4RgtsXiqGE1SFNfH2iuu+DUpO0/mu4c4l81lNIicvDJ7/t5KmZ6wH426CWpOcV8+GvOwDp7D7ltvNomOhg3b4cJi/dTes6sVzetR61YmpeLcuB7EJ6PT8fd0AUq0VqNJ/d2kMLiLOACb/uOJoK6uPm3o15ZGhrTNqlT6M561FKFRiGUaE7XpUaKVJKmYE3gAuBPcBKIDTM0B0RQ8uAdcC/gSsrcxyaClKcK2lmBenSPDMyUQrRiZF6jiXvyMKw+UVyl9xkk7St/PTgWpzKoNmF8PFISe3q2Flqcvr9n0QxTJbSTmRGGXfgbTHiUvfhUP+2JW9Lb5tWw6XnTOjr1k6TGqpQolOkfujIDpjzuNiWK0PEhSNZojQ/PSeCCCQt7Ju74e4V4p5neEQ8bfhWREOXsX5b7WEvSaPQNVMl1azTGDj3DnHNS2kNV02Cpf+TSI6P/o9KFCJ7N2yZHTzWA6tFlL3WScRj04HBoqjZAPjqL8GvObJDzqkyiRlBOOld0akiFEFsuZOaBUcVHV4nuT4PwobvRNx+dYcIicHPw6+vyn4ThkgvIXNq6fcoyJBzHCokSvLg8J+SLvf6OcGRuOQWYDZDo/PgmikSbYtMKsOJrwzKEiy1WosQ97ilNspVLBGvQc/Cb2/J/wVfPyqQ/x8XPiVpiCBRoys/k2tR2bV3YWCzmLisSz3a1I1lxsq9DG5XmwEv/XT0+SKnh0e+XMuEG8+hV7NkujdOxKxUjV1gFjrdQYIIpPmqp5Jv8GmCyS1yYjObsFdzmmGhs3RD8iKnGwMDKTTUaDSailHZSbjdgS2GYWwzDKME+AYIrJp+C6gHdAT2A+cDZbb9VkqNU0otU0otO3z4cFm7aCqT4jxY9Tn8p500BP1vF78ddEEmfP0XyNsvi/RDf0qEYuLF8HIr+HS037CgsoipLc5kDc8Tp6++D4owiYgrLYiikqFvSA+bWm3kjr7PrMFH+ma5ax8ZJ4IplFptZTHfuK9/my1KIg2rJstjk1UiIbH1vD2KTCKMDqwNPpbbCSW5sPZrETQLX5B0tsN/wk8vSMSmdkcxDZj/jLiuffcA/K8vvN5V0q+cXme6xSGfY+ELUlNVlFU6UmeJkOiIq0giJWk9ocNVkNRcFvARCWWLWEuEiLfmgyQScyKYTCKI3E4xjcjYJv9abCIC71oq6YzXTBWTjq/v9L/W44bNIcKuKAc2/SBRsk9HSxpefCP/8/ENod3lMuZhL4lQBqlrGvGWv6+WI7Eca/JyiE6F7rf5H8c1kKioPQrqdJDrvO5LiQCunSbR0l//E3yMzbMlpc6HLVqifAmNJLJZHsW5kLVbops5e/027ZVAvMNGjyZJPHtZB1zu0uJhz5GCo0LDajbVWEEEEGW3UCukMepFbVJx6AaMVUJWQQmz1uznL58u58lv1rP3SCGVnWFyIlzSsW5Qs02LSXFz78aYw/0/rtFoNOVQ2TVF9YDdAY8PEBApMgzjaLc+pdS7wB/AK8c7aErKSdSsaMKjOEeaY/oiJyX5IoSu/1butB9YI6lJIDUrX47zO6btWw7TbpQFb2VFjJQSu+M2l4S3b5ML4NZ5UjuT1BzqdZHi/rIiSL5t8Y2g4zWw6jN5nNgEzr9f6k5GfSDiKXe/bP/xMamLcSSJI1xEbPAxo5JFcARaWdtjxZa56xjI3SORoEN/ynMDnxDRc+lb8Oc3kh63+A2/uDQMMR/oeoOkMIbWJLmLpe7ljwlyrBnj/Z/rgv+DNdO8Y4gRwdv/HyIIM7fKQn/oi/DJZf6am85jxc2v7WUw6JmyjRTKI3e/GBtYoyG5KXx+rYi1yAS4erKk48XWhQ6jRTT9+IREuALxCR5nkcyz9E1iYND2MknRm/UQ3PCtN+qG2JpHeyNLbS8Te+6ibHnPk0nndCTCBQ9Dr7vFdCEqSa5F7gER5OfdJRE6ZZK6K5NFIkehBM67gU+KmDoWJQWwZjp8e6+8n8ks0aVmA4/bA6zY6cZkUmEXmidEWUmOtpGe559TIzvVI+Y0cTlLjrIz+bbzePjLNWw+mEv/VrX426BWROvmnJWOx2MwZ/1B/jbN3y9t9voDzLrnfFKqKbWyVqyNH+7rw/s/b6PE7eGW3k2oE1fz0jw1Gs3pR6XWFCmlRgODDMO4xfv4PuAfhmEkeR/XMQxjv/f3T4DBQD3DMMpYVfjRNUWngIytEh0KxGSB+9ZLpOS7v0okCWRxOmFY6WPcv0HuhBdkSHQpIU0Ey74VsG+l925/g4o1lT0RinJg4/ew53dofL5YZvtIbAI3fe9fUBcckWiOq0h65JTV96jgCBQdEaex2Lrithd6V9LjltqSb8ZLKl1iExjyIix5E7YtkHS7hf8WoVavi1hrTxgm0aqBT4pr3LL3/aLJx7XToH53iawEOgC2HgH9HoS3eknEqcOVYkpRr5uYJ8x/RvYb+aaYPfz6qowDZEE/bqGIjn3LJVLlSJJrZY0K7hEUSuEREQG2KBFcuQclspW7X1LVZtwlNT4+YurALT+KaLR4Fy45e+H9wRJNcSTJeR3+skR0di2WtEmf0Oj/D0hpI01pa7WReq9ThatI+jbNvE9cCLveJI14PU74/mHY+iOcd7ect3lP+19XrwuMfEciXS0uknMQKqJDydkP//U2uPURXQtu+yW4F1IAeUUutqfn8e4v20mItHLr+bI4NB9HHHk8BrsyC3hq5jq2Hs5naPs63NK7cZVZb1cVWQUllLg8REdYcNh0d4mqICOvmLHv/876/TlB26fc1oPujauglvQEcHk8YIBFu85pNJoAakxNEVJH1ABAKTUJGAZEKaX2AI8D/ZRSnYAoIAU473iCSHOKsEXL4i13v39bq+FSm2KPlhoJt1NMAEwWETZF2f59k5vL3fHZj8JKr9PZyLekbmeT1wRgwbOSQtXuMrkTXlVExELHK2RBanjgtoUSUUlqLilX0QGLTEfC8Yvvw9nHZBbBN/JtWTTv+k0+r8+O+ccnxKAh75C4sk27Uca2f5WIx8ztEhUIFEUmiwgBV7G4n9VuK8drcK43DS5RrsuSd8SwYMi/JTpVlCUCJDIBUtvLY58gAnnfGXfBmOnQZkR459QwxLhgxnhJq2xyAQx+TsbvmzO2qGBBBPJc1i6J/KSdLyl2sfXg5u9FZGduk95BFrukA864KzjysuBfcOP3MPkaMUoY+UbVGHuURUGmCNeENLj8A4nOZW6V6N/2BTL/FzwrUcUrP5V0unrdJKUuupa44YWLuyRYEIGcj7IinV42H8rlsrcWHTXE+2L5Xubc35fax7lrbjIp0pKj+M+VnSl2eYiLtGKznH4Ly3iHrbqHcMZjNiliI0svE6Lt1S9CLTpdTqPRVDKV/c22FGiulGoMXO99fI1hGD6rmPeVUp2BaUAXwzA2l3OcmofHLYsUZ6EsOB0J/jvfZwJRKRIBmnmv2EI3uwgufMJ/hzs6VfrgDPqXv4fNlOtkwR1TW+yVPS6/IFJKCu83/RD8PvOegiZ9goVJVeHrH+NIhOHHzdKsHGJSxVBg+s3B2/MOyHn78QnY+Wvwc4YhQtFZKGmLq6fIOR3+HxE2BRkwYajU+tTuIAYMPz0P41dJ5KLDVRL98Vmj93sYetwpZgSWiGD7bh/FOcdccJci/xBMHCEip93lUlOzaxHUaudt1OqQiE9SM4l6+UhpKRG0WQ/6eyvlHYIPh/ntvFd8Iml2dTtLTU0gHrd//JtmyfmpbFHk8cjnO7RBxH58ffn/cGiDiN2Rb8G0myR9EqQf0mXvSvqh4YGpN8C966D5hdIctyI9iKwOSG0b7KDYdIDclCiDghIXb/+0lcBAf26xi1+2pDOqa5llmqWIPU3S5TTVR7zDxv8Nbc2otxbh9Nainds4kdTYM+hvn0aj0XipVFFkGIZLKXUX8ANiyf2BYRjrlFJPAcsMw5gBvABEA1OVLB52GYYRRuFINZO+ET6+VGoLbNGyKGraX4r5zwRMJrGsHj1R7ojbY0obGthj5AfEAOHOJbKQtzokPWrnooCdldQiheIslJqQ4+EslAXxidS21BQi46X/UPYe/7aO10D2PjGMmHS1v9lrpzGyv+/nomfENEIpWZgrJeImroFE6TZ6ex0nNpHoitkanF5lGBKV+fhSb8TIDiPehB53iFOajx53iCNbuJQUiLi56jO5zvP/JdGiel0hsbGk1SV47clnjJd6qbqdJZo08z4Rdm6nHCtzu18Q+Vj4vAijNpfCmsn+7fENxYDAh7tEaqRMVmk2e3CdnOvoVBG/IOmTzkLvHA6jd0n2bni3n0SGABr2FNEfX1+ipeu+8AsigN2/STqdT8SYbfL/51gmCqF43OLa6HHK66JTpCZv9qOwd5mc2wseLrd5rkkpospIGYuyabOBQNLziikscWM1m4iJsBBVAyIcpxstU2OY/0A/Fm3NoEFCJM1TY067VEuNRqMJh0r/C2EYxnfAdyHbHgv4fWBlv2eVk58O02/1GwuU5MEXt4iNsPU4vVxqMh6P9JrZ+J3c8W41DKJSxc74eFhspe2Fk5uLYCzJk+PlHoQ6HSXFykfP8RL9KA+3SxapP/1bFr097pJjRFZxHVJFKMqRVK/IhOBi+OhUsf2e+5SI6daXiPjZOl+ant61VKIpjiRJJfMt5kEW8aEL+agUuPpz6X2TsUXO85Wf+B3WAsk/LHOzKEseu4phxt3SrNXjgSPboMPV0Lh3eNfZhyVCmsHu+V3c1pQJuoyRfk4FGbLP8olw+y8inHL3wcH1kg6XvllsrX2R1bJSJ5VZhM6gf0oUdtP3kjrY+16xvwbpFZWxBf6YCG0ultQ2X6pd5+vgon9K7dGshyTFr+lA6P/wsaOSzkKJuvkEEUgELH2DOBG2uliatoaStdtbW7ZBTCtOpE7O7ZQ6u6k3SH1ValtJv0tsDJe8KoLZFl36pkQAEVYzd/Vvxrdr9lPskohfg8RIuqUdJ83zLOJAdiE3fLiUDQdysZgU91/Ygmt7NCJOR8hOiAirmfoJDq7oppujajSaMxt92ywcPG44GGK3XJLvv9t/upJ3AN7u7V/UzntaUpziwku/KYUjCW6eI6lSOfvAUUt67KyeLMKow5UiCizHqAXIPwTvnO+PDmz6AcZ+BU0vqNiYqgKPW1ziZj8KWTug49USCYoKiLzk7Jfz2KA77P1D0tXy9sGUMbL47X0/YCq/AD/vkIhLs12iZbVaw42zZEFttpZtCAEiRjO2Bm9zFkhqW+O+IjR+fwcanlvOe+Z765HiJALoIzIOzr1NHAkB6nSSz+WbO773XvAviXZFp8KPT4qDX6NeYvjgS++Lbyifx1c/pZT0XfLVbQ18QlwAlUVqjhKbSopeWm8REuffL8InsPZoxUTo+zdJ8cvcJtuWT5CeWyPflH0PbxAhW7+rV9CYJfIUGNHzkb1X3q9pf0lh+zPA5EKZpD9T20tFDNljjylgSlGQIU1yfW6OB9eJkB34lPRBiqkdVmpu/YRI5j/Qj9nrDhDvsNGrWVK1OYLVNApLXLw8ZxMbDsj3iMtj8O8fNjKkfR0tijQajUZTJloUhYPZJgukHb/4tzmSTryXS01jzbTgRW1RNiz7EAY8WrHjma2Q2gau/Fiauq6ZAh9fDC0GSUTEFiULyGOxc1FwuhTAov9KmtbxHLxOFfmH4b0B/kXt7H/IorvXPXIO8g6LtbJv0d95jNhx//yiPD60Xuyvr5okYiXUxjx7L3w0XBb3Skl0rdd95QuhQMw2MWHYvtC/LbYe5B8UswIfoXVGR3bAxJGS1maJgGEviwmDL33R6pD0uPg0+VyG298bKBCTRUwd2o+WFDR3iZyTwGhYdC3pQbV5tgi4DleKGPDhLBIxtf5rsfMe/JwYGkz4l4zbkeSP2gbiLPQLIh8bv5N0u8+u8N/YiIgX842ERiJqut0M2/3NTLHYIa2Xd98YqH+OpCAuelXc+S58EmLqSe+iilCS7587PvYsAwxpRHv7r2GZNNgsZurGR3JDr8YVG8cZTEGJm1W7s0tt3344j8bJFbxuGo1Gozmj0fYt4eBIgEvfgUY95XFyC4lenCoXrKqirOaQxXlwsjbtkQmyaJ77lCxiN3wLv/9PzAcK0oPfP2cfpG+RRa7bVXYNRWRC2Qvw6iJrlwi3NiPETrvrjeKyV+hNwTI8knLpo0k/WDUp+Bj56ZLi5gkxOygpgHn/9C/uDUPstPNDXN3Kw+OWMTUbKGKkXldxvdsyz79Pnc5g89pp5x2W1LFv7vXX+biK4Ju7g90FQeb7oH/K9TiwWuzEYwLSR81W6HaT1BOB/L+JSQ0WRD6ia4lYHPg41Grlr1VzO2HddHj/QunTNPUGsTlvcoFfyG2dL8YUgUSliHAzh0Qh4+pLxC0w0luUBT+/JOILRERe+o7UQDXtD7fMA0dAaqIjQaKB188Ui/TGfSouiEBuDoSm29XpJNfcXQK/vAJObcp5MsREWOnXKji91KSgZe0acmNFo9FoNDWOGrTSrOHE1Ze8f3ex1D+Ec9e+ptPpGvj1FX8aktkK595aMfesUNzO0g1HCzL8gqskXyIB39wj+0Ulw3XfiLtaYGqV1QH9/h5ewXx55KdLFMFskShBOY5eYROZKIvjXYtgw0xIbSeRBLM3dSkyXpquLnxBHhdkQmwdqR8JJCoFrCEFy84COLim9HtmbBUnt+ORsQWm3QDn3i6NRjO3Sc1M77+KAUO9riJcdi0WQZOxWcRNmxGw42e/8PC4RcAGRnBcJSKmbv9VzBLMNrhljqRHFmZD6+Gw9H2JmFX0ehVmSgpeIJtnw+B/yfu5S+T9bp4jDVHXTIHEZhK9iUyQuqLvH5J5ZrbBiICGuIHkHfB/VkeCRKuaDZS6prLq10ymyvs/H5ko3yXTbpC5mdhEPt/Me+V5j4vw3Eg05WGzmLj1/CbsO1LId2sPkBRl45lL2xPv0KlzGo1GoymbSm3eWlXo5q1VhLMYcvZIeprHJWla8Q1OXjSApJh9fJlEFHy0ulgWqZFxEiF6tYPfkQzkbvnYL2Us+1bIojytj7fGJV5E24mSewCmjJU+PlaHWIq3u+zkUvHy0yUKtvwj/7bUtjD2a3/dTH6GuJatmSqL7WYD4MOhEoU+botPAAAgAElEQVQBiTwMeEyawQbidsLPL0u6mA+TGe5ZHV6t1/7VUpMVSKOesgg3WeXaHlgtRghTb/Cf/+7jpA7I14TUGgnjV/gjQfnpsPQ96S0UV19S2jbNEXvx4S9LSuCBtdD+MoiuA7YKzqHcg/DmuaXTy8avlLS2Q+vFiS8qRa5h4RGZH75IU1GORIJy9stc9lma/7er/9xD9depuZ0yLmeB3ABY8JxcF5NZzCpqtam+sZ1B5BY5KSxxo5Qi0WE9bmNbjUaj0ZzenEzzVi2KNOBySiTFXSxF5FGVlBaYsx/mPyMWw00HQq/x/rvt6Zvh9W7B+5ttcO9aSblyOSF7l9g5Z++GTtdKmtqJjK2kAH54GP74MHj7Pd6GqRUl9yC82j640B9k4Z4YUN/hccsi3Roh57XAayEdW1eiHDHluKLlp8t5WzUJomuL6GhwbnjF/Pnp0j/K1wvJZIGbfpDaHJAIyrYF8P3fxXggkNt/EUEV11B689TrKmN3O+GX/8D8f/r3tUWLi54yh299HQ6uEljyNswJqGtL6w2jPypdexX2MYslYjbvn5IS2HO8GGCUY3d9SvG4Rbj/MUHEXPdxEp2zOqDgiMz9PcugYXeIrV8zxqzRaDQaTQ3lZESRTp/TQMFhER9b50kq2Mi3xPa5LOvkEyG2Dgz5t6TKRcQG93Gxx0itSaAVcrML/X2fCtLFGc/n8DfvaRFN5/0l/PqikjxJcQslfcvJiSKF1Nfk7AvYpkpHskxmv6MaiBgKjQyVRVRy2f2KwiEqGa74CA6sE2e8pv2D62OUEmFallGB2Qb3/ykCzpEiKWMg0ZjA3kEg5zZzK6SdX/o4J4PFJrVGtdtLmlzD86Dl0IoLIpB5V6u11A15yqlbqy5MZhFB/R8Rweq7zsX5UocXGDEc9IyYQlRGJFej0Wg0Gk0QOpfgbKcwC76+S/rCuEtg33L4eESwUcDJYHNISlloY0uHr4aovYiJlkNh+Ev+AvTDf5a2PF81Se6eh4s9RtLvAlEqLGevY+JIhiEvBAuVHnf6U7gqA5tDIknRtU68xisqBZr2k7qm+IalU9miUksbFcTVl3qrmDqSRmcK+Gqw2CG+Uen3OVb/n5PBkSipbSPehK7X+1MSTxZ7dM0SRKEEXufiHL9boY95z5Q2v9BoNBqNRlMp6EjR2Y6rGLbNC96We0AiAVTRohfE9KB2O6nt8LglQhToyBXoauYjIa20uDoW1kjo8zcxH9g2Xxb9Q184dvPYcDCZoUlfSZfbsxRSWksE6EQaeFYn0cnQ9yGJBm2YASmt4MKnyk/ni4gTI4D3lvmbwnYeK+KwKjGdxfdsDE9poxJXkWwPpChH0jL3r5Q6pOjUmi38NBqNRqOpoWhRdLajTGIxfnijf5slIrhxZ1VSXlpUdC3ocBWs/lweRybAhU+fuEFCTCqM+kAWlMokzl/Hah4bLvYY+TmZNLzqJKY29HkAut8i19rXj6g8EprCnUukf1BUkpzHsqy2KxPDEHFuiRQRfTZhdUDzi8R5z0frEdInyYerRPowfXmbf1v/x6TJ7vGup0aj0Wg0miC00YIG9q+CiSO8Tl52uOQNaD3s1Amj8ijIlLvgBZnSaDMq5eTrnGoSbpfUTrmdct4rYvnsLILc/bB6ioiU1heL4DndKciATbNh7TTpH9T91qpL1yuPvMPidpe9R3oTRaX4a95O1fsvnwg7FoqDYcerZAw+cg/Amz2CnfrMVnEqDKd2TaPRaDSaMwztPqc5OXz2wMW5/saS4TidaSqOq0RS76ZeL/blSU1hzFeSnvbHh5DUDNqNKj+lzcehP+GdPv5Uq9i6cOuC47+uJuMsknoaX58nkNqzsV8Gi4KqJP8wTB4r/ZzA25PpR6jT8dS8vw+3C5z5YI0Gc8gNgZz98Eqb0il1966RWjKNRqPRaM4yTkYUncVJ+5qjmK0SXUhuLotqLYiqnsJM+PxqWXyDpAfuWy6W2Ms+ECvxDwdD3qHyj1FSCAtfDK49ydnnt+M+XSnKht/fDd52YI2I9lNF9l6/IAI5x3MeE2OSU4nZIjcpQgURiBlH6xHB2+qfU/0R3hpOTpGTQzlF5BY5j7+zRqPRaM4azrJEfY2mhlCSH+wk1mYk/PZG8D6Z2+Sn3LQ6I7j5rQ+Pq9KGWS0opCamKESAmCrQvLeiFOeU3laYVbPObUScGIektIAtc6BBD+h178nZl5/h7Msq5LGv17JiVxbnpCXy+CVtqBOnLc41Go1GU4WRIqXUB0qpQ0qptQHbEpVSc5RSm73/nqQNmEZzmmKLEje8IMqy3j6GHbfNAX3+KgYSPhyJ0LiSewedahzePk2BtL9CGsaeKpJbSC+qQHrcUXpbdROdIg6L10yDgU+c3mmTVUxGXjG3TlzGj38eIiO/hO/XHeDOT5eTmV9y/BdrNBqN5oynKtPnJgCDQ7b9HZhrGEZzYK73sUZz9uFIgmsm+63H962Afv8X3KsmqRkkNj72cZKawR2LpCfR+Q/Abb9IH6LTGZNZms7etVSa/944CwY/F9wIt6qJqgXjFsh5bToArvwUWgw68Z5RpwKzVRwBT8Su/iykyOlh3b7gCODyXVkUu9zVNCKNRqPR1CSq1GhBKZUGzDQMo5338Uagn2EY+5VSdYAFhmG0PN5xtNGCptpxFUPeQVgzTay4W18sbmgns0j2uIPd58wRkL0bVn4qYsj3HmEdyyNjqYmL9tMZZ5HUE52oFbymxnEwp4gLX/6JnCJ/CmRilI3v7zmfWrGn0FVQo9FoNFVGjXWfK0MUZRmGER/w/BHDMI57+1eLIk21k7EF3uol/Y5AxMptC88M+2uN5iygxOVh7oaD3P3ZClweA6tZ8faYrvRpkYLVrD2HNBqN5kzgZERRjTVaUEqNA8YBNGyo7WU11YirBH551S+IQKJGW+dCp2urb1wajSZsbBYTfZun8MtDF3A4t5iUmAjiHBYtiDQajUYDnHpRdFApVScgfa5cv2HDMP4H/A8kUnSqBqjRlMYAd3Hpza4ytmk0mhqLw27BYbdQWzvOaTQajSaEU32LbAZwvff364GvT/H7azQnjsUuVsemgF4xEXHQItRHRKPRaDQajUZzOlJlkSKl1CSgH5CslNoDPA48B0xRSt0M7AJGV9X7azSVSkKauLwtflMEUfdxp7/Lm0aj0Wg0Go0GqGKjhcpCGy1oagweF2ACk65D0Gg0Go1Go6lJnIzRQqWv7JRSg5VSG5VSW5RSpfoQKaXsSqnJ3ueXeB3qNJrTA5NFCyKNRqPRaDSaM4xKXd0ppczAG8AQoA1wtVKqTchuNwNHDMNoBrwCPF+ZY9BoNBqNRqPRaDSaE6Gyb3l3B7YYhrHNMIwS4HNgRMg+I4CPvL9PAwYopTtOajQajUaj0Wg0muqhskVRPWB3wOM93m1l7mMYhgvIBpIqeRwajUaj0Wg0Go1GExaV7T5XVsQn1MkhnH2Cmrd6Hxec3NA0ZzgWwFUDj6XRwLHnlJ5vmlNN6JzTc1BTlZzs/NLzU3MiVLgRXWWLoj1Ag4DH9YF95eyzRyllAeKAzNADBTZvVUotMwyjWyWPVXMGUZlzRM83TWVzrDml55vmVBM65/Qc1FQlJzu/9PzUnAhKqQrbVVd2+txSoLlSqrFSygZchTRsDSSwgesoYJ5xOviCazQajUaj0Wg0mjOSSo0UGYbhUkrdBfwAmIEPDMNYp5R6ClhmGMYM4H3gY6XUFiRCdFVljkGj0Wg0Go1Go9FoToTKTp/DMIzvgO9Ctj0W8HsRMPoED/u/Shia5symMueInm+ayuZYc0rPN82pJnTO6TmoqUpOdn7p+ak5ESo8X5TOXNNoNBqNRqPRaDRnM5VdU6TRaDQajUaj0Wg0pxU1ShQppQYrpTYqpbYopf5exvN2pdRk7/NLlFJpp36UmupGKfWBUuqQUmptwLZEpdQcpdRm778JYRznePPtfqXUeqXUaqXUXKVUo8r+LJozj3Lm5xNKqXSlVJFSqlgp9eExXj9KKWUopbTbkqbClPX9ppRqoJSar5T6Uym1Tin1ofc7boNSav+JfH9qNKGE8Te1oXf+rfD+XR0a8nzo/LzHu/0JpdRepdRK78/Q0GNrzi7K+jsb8rxSSr3mnYurlVJdwjlujRFFSikz8AYwBGgDXK2UahOy283AEcMwmgGvAM+f2lFqaggTgMEh2/4OzDUMozkw1/u4XMKcbyuAboZhdACmAf8++aFrzgImUHp++vqztQFigC5lzDeUUjHAeGBJVQ5Qc2ZzjO83F/BXwzBaA9cCVwM3Ia6w74X7/anRhBLm39R/AFMMw+iMmGy9GfJ84PzsAdwZcIxXDMPo5P35Ds3ZzgRK/50NZAjQ3PszDngrnIPWGFEEdAe2GIaxzTCMEuBzYETIPiOAj7y/TwMGKKXKagarOYMxDGMhpXtbBc6Nj4CRxznMceebYRjzDcPwNQ3+Dem7pdEck3LmZz0g4zjfbwBPI+K7qGpHqTnDKfP7zTCM/YZhLPfucw3wJyLSR+BfoIbz/anRhBLOGs4AYr2/xxHSxzJwfhqGkYvMz3pVOmrNaUk5f2cDGQFMNITfgHilVJ3jHbcmiaJ6wO6Ax3so/Z/h6D6GYbiAbCDplIxOU9NJNQxjP8gXK1DrOPuHM98CuRmYdVIj1JzNxAJ1vWH8D5Av86D5ppTqDDQwDGNmdQxQc0YRzvdbJ6ApIsSbAh0h7O9PjSaUcObcE8AYpdQexKX47vIO5i2P6Iw/an6X7/tTp3dqwuBE13hAzRJFZUV8Qq3xwtlHowmHsOeSUmoM0A14oUpHpDmTmQ1MQRai+5G79Efnm1LKhKQE/7VaRqc50zjm95tSKhq5s78eOB8oAN5TSsWfmuFpzkDC+Zt6NTDBMIz6wFCkZ2Wpdah3fk4H7jUMIwdJfWqK//vzpcocuOaMpEJ6oSaJoj1Ag4DH9QkJrQbuo5SyIOHXY4XPNGcPB32hUe+/h46zfzjzDaXUQOAR4BLDMIoraayas491QH3DMDzAu0BLgudbDNAOWKCU2oHk08/QZguaClLu95tSyoosONcDbxuG4UQWmtuB5mF+f2o0oYTzN/Vm5OYQhmEsBiKA5MAdAubnp4ZhfOHd96BhGO6A78/uVfIJNGcSYa3xQqlJomgp8oXcWCllQ4rwZoTsMwO43vv7KGCeoRstaYTAuXE98PVx9j/ufPOmM72DCCK9SNCcDLvxzjfku8tOwHwzDCPbMIxkwzDSDMNIQ2rYLjEMY1m1jFZzulPm95u3Bvd9pFbjKeAC7/5zgPbANsL7/tRoQglnDbcLGACglGqNiKLDvicD56dhGC8HbA+sBbkUKNNxTKMJYAZwndeFrgeQ7SuxOBaWqh9XeBiG4VJK3QX8AJiBDwzDWKeUegpYZhjGDOQ/y8dKqS1IhOiq6huxprpQSk0C+gHJ3tzkx4HngClKqZuRL97RxzpGmPPtBSAamOr189hlGMYlVfSxNGcI5czPfshNqA2Iw9JrZcw3jaZSOMb324fAWGANMifrKqV2AXnIndXfCOP7U6MJJcy/qX8F3lVK3YekMt0QcmO7F975qZRa6d32MOJk18n7mh3AbafkQ2lqLOX8nbUCGIbxNlKzNhTYgqQH3xjWcXWgRaPRaDQajUaj0ZzN1KT0OY1Go9FoNBqNRqM55WhRpNFoNBqNRqPRaM5qtCjSaDQajUaj0Wg0ZzVaFGk0Go1Go9FoNJqzGi2KNBqNRqPRaDQazVmNFkUajUajOatQSu1QSiV7f19U3ePRaDQaTfWjRZFGo9FoTnuUUhXqu2cYRs/KHotGo9FoTj+0KNJoNBpNhVBKpSmlNiil3lNKrVVKfaqUGqiU+lUptVkp1d27X5RS6gOl1FKl1Aql1IiA1/+slFru/enp3d5PKbVAKTXNe/xPvd3uQ99/gVLqWaXUT8A9SqmLlVJLvO/xo1Iq1btfklJqtnf7O4AKOEZewHvODNj+ulLqBu/vzyml1iulViulXqyyE6rRaDSaaqNCd9Y0Go1Go/HSDBgNjAOWAtcAvYFLkG70I4FHgHmGYdyklIoHfldK/QgcAi40DKNIKdUcmAR08x63M9AW2Af8inS7/6WM9483DKMvgFIqAehhGIahlLoFeBD4K9Lt/BfDMJ5SSg3zjjUslFKJwKVAK+9x48N9rUaj0WhOH7Qo0mg0Gs3JsN0wjDUASql1wFyveFgDpHn3uYj/Z+++w+MqrsaPf4+0Rb1LtmVZ7hUb94YNmN57TCjBmB5a6ASSvHkJaeTllwQIEGKqAwngEHoHY2OwDe42uBtXuaq3lbbO74+76t1a9fN5Hj3enXvv3NldaX3PnZkzcL6I3Bt8HgFkYgU8T4rIOMAPDKtW7wpjTFaw3nXBuuoLil6v9jgDeF1E+gAOYFew/ATgYgBjzAcikt+C11cElAPPicgHwPtN7K+UUqoL0uFzSimlWsNd7XGg2vMAVTfeBLjEGDMu+JNpjNkM3AUcBsZi9RA5GqjXT8M38UqrPf4b8KQxZgxwE1bwVcE08Tp81Pw/MQLAGOMDpgD/xer1+riJepRSSnVBGhQppZRqa58At1fMCxKR8cHyeOCgMSYAXAWEt/I88cD+4OOrq5UvAa4MnvssILGeY/cAo0TEKSLxwCnB/WOAeGPMh8CdwLhWtlEppVQnpMPnlFJKtbXfAo8BG4KB0W7gXOBp4L8iMhtYRM1en6PxEPAfEdkPfAMMDJb/BnhVRNYAXwJ7ax9ojNknIguADcB2YG1wUyzwjohEYPV43dXKNiqllOqExJimRhQopZRSSimlVPelw+eUUkoppZRSPZoGRUoppZRSSqkeTYMipZRSSimlVI+mQZFSSimllFKqR9OgSCmllFJKKdWjaVCklFJKKaWU6tE0KFJKKaWUUkr1aBoUKaWUUkoppXo0DYqUUkoppZRSPZoGRUoppZRSSqkeTYMipZRSSimlVI+mQZFSSimllFKqR9OgSCmllFJKKdWjaVCklFJKKaWU6tE0KFJKKaWUUkr1aBoUKaWUUkoppXo0DYqUUkoppZRSPZoGRUoppZRSSqkeTYMipZRSSimlVI+mQZFSSimllFKqR9OgSCmllFJKKdWjaVCklFJKKaWU6tE0KFJKKaWUUkr1aBoUKaWUUkoppXo0DYqUUkoppZRSPZoGRUoppZRSSqkeTYMipZRSSimlVI+mQZFSSimllFKqR9OgSCmllFJKKdWjaVCklFJKKaWU6tE0KFJKKaWUUkr1aBoUKaWUUkoppXo0DYqUUkoppZRSPZoGRUoppZRSSqkeTYMipZRSSimlVI+mQZFSSimllFKqR9OgSCmlmkFEjheRrR3djqaIiBGRIW1U95Ui8mm15zNEZLuIlIjIhSLykYhc3Rbnbisi8oyI/M9RHJcZfN3hbdGuzkRENorIrI5uh1JKtSUxxnR0G5RSqtMQkd3A9caYzzu6LUdDRAww1Bizox3OtRB41xjzeDucawCwC7AbY3xtfb56zr+bo/i9CAYTXwAuwAAHgEeMMS+Guo1KKaWOnvYUKaVUJyYito5uQyP6AxtbW0knf42hcMAYEwPEAXcBz4rI8FCfpAe8j0op1WY0KFJKqWYQkVkiklXt+W4RuVdENohIoYi8LiIR1bafKyLrRKRARJaJyLHVtj0gIj+ISLGIbBKRi6ptmysiS0XkryKSBzxUT1vCReQX1epYLSL96tnvHBFZKyJFIrJPRB6qti1CRF4RkdxgG1eKSK9qbdgZrHuXiFxZrfzr4OMfgEHAe8FhZE4RWSwi11c7x7UisllE8kXkExHpX22bEZFbRWQ7sL2ln0et1+kUkcdE5EDw5zERcVbbfr+IHAxuu776EEMReUlEfhd8nCIi7wffjzwR+UpEwkTkZSCz2mu9X0QGBOuxBY9NEpEXg+fIF5G3a7fTWD4E8oDqvw8jROSz4Dm3isil1bYli8h7wc9wpYj8ruIzaOh9bKK+s4O/c8Uisl9E7m3stQe37RaRU5t6ryv+RkTkHhE5EnzPr2nNZ6uUUu1FgyKllDp6lwJnAgOxLnLnAojIBOAF4CYgGfgH8G61C/UfgOOBeOA3wCsi0qdavVOBnUAa8Pt6zns3cDlwNlbvw7VYw7NqKwXmAAnAOcDNInJhcNvVwfP3C7bxp0CZiEQDTwBnGWNigeOAdbUrNsYMBvYC5xljYowx7urbg+f5BXAxkAp8Bbxaq5oLg691VPCY90XkgXpeR1N+CUwDxgFjgSnAr4J1non1fp0KDAFObKSee4CsYHt7BdtvjDFX1Xqt/1fPsS8DUcAxWJ/bX2vvEAywzgdSgB3BsmjgM+DfweMuB54WkWOChz2F9Tn2xvrM6puzVfk+NqO+54Gbgp/taKyhfQ2+9nrO1eB7HdQb6/eqL3Ad8JSIJNZTj1JKdSoaFCml1NF7whhzwBiTB7yHdaEIcAPwD2PMt8YYvzFmPuDGupjEGPOf4HEBY8zrWHf4p1Sr94Ax5m/GGJ8xpqye814P/MoYszXY+7DeGJNbeydjzGJjzHfB82zACkoqggIvVjA0JNjG1caYouC2ADBaRCKNMQeNMUczRO4m4I/GmM3BOUB/AMZV7y0Kbs+reI3GmHONMY8cxbmuBB42xhwxxmRjBZpXBbddCrxojNlojHEFtzXEC/QB+htjvMaYr0wzJt4GA9qzgJ8aY/KDx35ZbZd0ESkAyoC3gLuNMWuD284FdhtjXgx+3muA/wI/EiuJwyXA/xpjXMaYTcD8eppQ/X1ssL5qr3GUiMQF27qmha+9sfe6op6Hg3V8CJQAIR8qqJRSoaZBkVJKHb1D1R67gJjg4/7APcGhSAXBC+J+QDqAiMyRqqF1BVh37FOq1bWvifP2w+ptapSITBWRRSKSLSKFWL1BFed5GfgEeC04DOr/RMRujCkFfhzc96CIfCAiI5o6Vz36A49Xe415gGD1IFRo6nU2Vzqwp9rzPcGyim3Vz9PYOR/F6sH5VKzhg83tteoH5Blj8hvYfsAYk4DVq/cEcHK1bf2BqbV+V67E6nFJBWzNaH/1ssbqAyvIOhvYIyJfisj0YHlzX3tj7zVAbq1EGNX/LpRSqtPSoEgppUJvH/B7Y0xCtZ8oY8yrwZ6SZ4HbgOTgxfL3WAFDhaZ6J/YBg5vRjn8D7wL9jDHxwDMV5wneyf+NMWYU1hC5c7GG2mGM+cQYcxpWz8GWYHtbah/WMK3q70GkMWZZtX1Clf70AFYwUCEzWAZwEMiotq3O3KvKxhhTbIy5xxgzCDgPuFtETmlGW/cBSSKS0Fgjg0MMfw6MqTaMcR/wZa33KcYYczOQDfia0f7qbWusPowxK40xF2ANrXsbWNCM115dY++1Ukp1WRoUKaVUXXaxEhFU/LQ0q9ezwE+DPTUiItFiJT2IBaKxLmKzAYIT0Ue3sP7ngN+KyNBg/ceKSHI9+8Vi9WCUi8gU4IqKDSJykoiMCQ7RKsIa9uQXkV4icn5wbooba/iTv4XtAysAe7BiLouIxIvI7KOopzZnrc8mDGtY4K9EJFVEUoBfA68E918AXCMiI0UkKritXmIlxxgiIoL1nvipeu2HsRJL1GGMOQh8hDV3J1FE7CJyQgP7eoA/V2vH+8AwEbkqeJxdRCaLyEhjjB94E3hIRKKCPXZzmnh/GqxPRBxirTUVb4zxVnuNTb326hp7r5VSqsvSoEgpper6EGv+R8XPQy052BizCmte0ZNAPtawpLnBbZuwLoqXY11ojwGWtrB9f8G62P8U6wL2eSCynv1uAR4WkWKsi9cF1bb1Bt4IHr8Z+BLr4jYMa9L9AawhbycG62kRY8xbwJ+whucVYfWGndXYMWIt/vqLJqouoeZnczLwO2AVsAH4DlgTLMMY8xHWkLVFWJ/D8mA9NRJDBA0FPg+eYznwtDFmcXDbH7GCgQIJZmyr5SqswHILcAS4s5HX8AKQKSLnGWOKgdOBy7De80NY71tFUo7bsBIXHMIa8vhqA20n+Hqbqu8qYHfwM/kp8JNmvPbqGnyvlVKqK9PFW5VSSvUYIjISK0Bzmg5YBLa1RORPQG9jTH1Z6JRSSh0l7SlSSinVrYnIRcGhY4lYvSbvdZWASKw1h44NDpOcgpXm+q2ObpdSSnU3IQ2KROQFsRZs+76B7SIiT4jIDrEWPJwQyvMrpZRS9bgJaw7XD1jzZG7u2Oa0SCzWvKJSrOGPfwbe6dAWKaVUNxTS4XPBiaUlwD+NMXUmDovI2cDtWOlApwKPG2OmhqwBSimllFJKKdVCIe0pMsYswZqY25ALsAImY4z5BkiQmqu4K6WUUkoppVS7amma2dbqS81F5rKCZQdr7ygiNwI3AiQnJ08cMGBAe7RPKaWUUkop1QWtXr3aGGOOqtOnzYOi4BoYq4D9WIsG9hGRb4EkrNW9w+s7zhgzD5gHMGnSJLNq1aq2bqpSSimllFKqixKRsqM9tj2yz92BtQYGWD1DdwN/NcYMxVo3YVY7tEEppZRSSiml6tWmQZGIZADnYK2+DvAuMBF4Q0SmYS0sd3JbtkEppZRSSimlGhPS4XMi8ipWz0+KiGRhraT9KXBucJdvARewNfjvfVhrRtRXV+WcoszMzFA2UymlVBdTVO6l3OsnTISUGGdHN0cppVQ3E9KgyBhzecVjETkXONsY8wsRmQXcizWnKMcYMyS4Tz+g3pzgtecUhbKdSimluo4jxeX8+u2NfLb5MAOSo/nzpWMZ1ScWh63eKalKKdVteL1esrKyKC8v7+imdCoRERFkZGRgt9tDVmdbJlqYAZwfXJsoAiupwmNYabhtwdXEM7CG0CmllFJ1lLh9/OGDzXy88RAAP2SXcOWz37Do3lmkxWlQpJTq3rKysoiNjWXAgAGISEc3p1MwxpCbm0tWVhYDBw4MWb1tNqfIGPOgMSbDGDMAuAz4whhzJbAI+FFwtxsRqcUAACAASURBVKvRlbmVUko1wOX2sXhbdo2yUo+fnBJ3B7VIKaXaT3l5OcnJyRoQVSMiJCcnh7z3rD2yz9X2c+BuEdkBJAPPd0AblFJKdQEOWxjDe8XWKAsTSIx2dFCLlFKqfWlAVFdbvCftEhQZYxYbY84NPt5pjJlijBlijJltjNHbfUoppeqVEOXgjxePoVeclVzBHi789oLRxDpDN45cKaWU6oieIqWUUqrZBiRH8/7tM1l87yy+uv9kLhzfl5iINl97XCmlFBAeHs64ceMYPXo0s2fPxuVyHXVdixcv5txzraTU7777Lo888kiD+xYUFPD0008f9blaSoMipZRSnVpYmJAaG8GAlGh6x0cQ7dSASCml2ktkZCTr1q3j+++/x+Fw8Mwzz9TYbowhEAi0uN7zzz+fBx54oMHtGhQppZRSSimlOp3jjz+eHTt2sHv3bkaOHMktt9zChAkT2LdvH59++inTp09nwoQJzJ49m5KSEgA+/vhjRowYwcyZM3nzzTcr63rppZe47bbbADh8+DAXXXQRY8eOZezYsSxbtowHHniAH374gXHjxnHfffe1+WvToEgppZRSSinVKJ/Px0cffcSYMWMA2Lp1K3PmzGHt2rVER0fzu9/9js8//5w1a9YwadIk/vKXv1BeXs4NN9zAe++9x1dffcWhQ4fqrftnP/sZJ554IuvXr2fNmjUcc8wxPPLIIwwePJh169bx6KOPtvnr06BIKaWUUkopVa+ysjLGjRvHpEmTyMzM5LrrrgOgf//+TJs2DYBvvvmGTZs2MWPGDMaNG8f8+fPZs2cPW7ZsYeDAgQwdOhQR4Sc/+Um95/jiiy+4+eabAWsOU3x8fPu8uGp0YLZSSimllFKqXhVzimqLjo6ufGyM4bTTTuPVV1+tsc+6deu6TEpx7SlSSimllFJKHbVp06axdOlSduzYAYDL5WLbtm2MGDGCXbt28cMPPwDUCZoqnHLKKfz9738HwO/3U1RURGxsLMXFxe3zAtCgSCmllFJKKdUKqampvPTSS1x++eUce+yxTJs2jS1bthAREcG8efM455xzmDlzJv3796/3+Mcff5xFixYxZswYJk6cyMaNG0lOTmbGjBmMHj26XRItiDGmzU/SWpMmTTKrVq3q6GYopZRSSinVbjZv3szIkSM7uhmdUn3vjYi4jDHRDRzSKO0pUkoppZRSSvVoGhQppZRSSimlejQNipRSSimllFI9mgZFSimllFJKqR5NgyKllFJKKaVUj6ZBkVJKKaWUUqpH06BIKaWUUkop1aCPP/6Y4cOHM2TIEB555JGObk6bsLVVxSISASwBnMHzvGGM+V8ReQk4ESgM7jrXGLOurdqhlFJKKaVUT/D22v08+slWDhSUkZ4QyX1nDOfC8X1bVaff7+fWW2/ls88+IyMjg8mTJ3P++eczatSoELW6c2izoAhwAycbY0pExA58LSIfBbfdZ4x5ow3PrZRSSimlVI/x9tr9PPjmd5R5/QDsLyjjwTe/A2hVYLRixQqGDBnCoEGDALjssst45513ul1Q1GbD54ylJPjUHvwxbXU+pZRSSimleqpHP9laGRBVKPP6efSTra2qd//+/fTr16/yeUZGBvv3729VnZ1RyIMiETlTRLaKyA4ReVBE1gFHgM+MMd8C0cA/RaRMRLJF5PwG6rlRRFaJyKrs7OxQN1MppZRSSqlu40BBWYvKm8uYun0aItKqOjujkAZFIhIOPAWcBYwCLgOuADKAKSIyGigH7gESgKXA/PrqMsbMM8ZMMsZMSk1NDWUzlVJKKaWU6lbSEyJbVN5cGRkZ7Nu3r/J5VlYW6enpraqzMwp1T9EUYIcxZqcxxgO8BlxgjCkAFgNnAi4gzhjjBj5Fh9QppZRSSinVKvedMZxIe3iNskh7OPedMbxV9U6ePJnt27eza9cuPB4Pr732GuefX+9Ary4t1IkW+gL7AEQkFcgDxohIJHAq8CfgM+AVEbkdSAFeDXEblOo8/D4oOQRr/gkBP0yYA7F9wObo6JYppZRSqhupSKYQ6uxzNpuNJ598kjPOOAO/38+1117LMcccE4omdyqhDoqqDzDsAzwIxACzgAXGmPdFZHuwLBf4HpgmImHGmECNikRuBG4EmDhxYoibqVQ7KTkET08Dd7H1/Jun4JZvIbF/x7ZLdRmBgCGnxM2ePBdxETZSYyNIitagWimlVF0Xju/b6iCoPmeffTZnn312yOvtTEIdFGUB/QCMMRtE5B/Bx3+sto8HmGKMqehR2onVY3SkekXGmHnAPIBJkybpEDvVNa1/rSogAvCWwYrn4PSHoRtOUlSht7+gjAufWkpuqQeAWcNS+fOlY0mOcXZwy5RSSqnuI9RzilYCQ0VkoIg4sBItvFtrn73AKQAiMhKIADS9nFJK1VLm8fPY59srAyKAxduy2ZPn6sBWKaWUUt1PSIMiY4wPuA34BNiMNWRuo4g8XC319j3ADSKyHms+0VxTX64/pbqDsZeBM7bquT0SplynvUSqWdw+P3vzSuuU789vXXpVpZRSStUU6uFzGGM+BD6sVfbrao83ATNCfV6lOqWY3nDLclj9MgR8MPFqK9GCUs0QH2nnssmZrNydX1nmCA9jYv/EDmyVUkop1f2EPChSSlUTboP4fnDyLzq6JaoLEhFOHpnGby84hn8u30NStINfnTuK5BhNtKAs+aUefIEACZEO7LaQr8eulFI9hgZFSinViSVGObhiSiZnjemDLUxIiNKASIHH52fb4RJ+/c5GDheVM3tSBnOmD9DMhEopdZT0tpJSSnVy4eFhpMQ4NSBSlfJKvVzy92Ws2ZvP/oIyHvt8OwtW7cMXCDR9sFJKtcC1115LWloao0eP7uimtCkNipRSSqkuZuuhIty+mgHQ22v3U+DydlCLlFKdwoYF8NfR8FCC9e+GBa2ucu7cuXz88cchaFznpkGRUkop1cX0SYisUzYgOZoInVekVM+1YQG89zMo3AcY69/3ftbqwOiEE04gKSkpNG3sxPTbUymllOpiUmOczJ6YUfk8OdrBA2ePICbC3oGtUkp1qIUPW4vEV+cts8pVkzTRglJKKdXFJEY7+OU5I7n15CEUlXnpHRdBSoyzo5ullOpIhVktK1c1aFCklFJKdUEJUY5OnXwjEDDklnoo9/px2sJIinZgC9cBKkq1mfiM4NC5espVk/TbSSmllFIht+1IMRc8+TXH/98iznnia9ZnFeDza3Y8pdrMKb8Ge635hvZIq1w1SYMipVSHMsaQXVxOVr6LI0XleHvYRVMgYDq6CUqFXE6xm1teWcOBwnIAskvc3PjP1eSVejq4ZUp1Y8deCuc9YS0aj1j/nveEVd4Kl19+OdOnT2fr1q1kZGTw/PPPh6a9nYwOn1NKdahdOaXMfXEle/NcJEbZeeqKCUwakIjDFt7RTWtTuSVuFm05wrKduZwzpg8TMhNJ1IU3VTfhDQTYmVNaoyy31FMnjbhSKsSOvbTVQVBtr776akjr66ya1VMkIpEiMrytG6OU6llyS9zc8do69ua5AMh3ebnp5dXkd/O1VvJdHu5/YwP3vrGBN9fs57r5q3hx2W7Kvf6ObppSIWEPD2N4r9gaZb3inDjtOkBFKdU5NfntJCLnAeuAj4PPx4nIu23dMKVU9+cPGL7bX1ijrNjto8zTvYMDl8fPwi1HapQ9u2QnReXdOxhUPUdKjJNnfjKRoWkxAGQmRfHi3MkkR2uGPKVU59Sc4XMPAVOAxQDGmHUiMqCpg0QkAlgCOIPnecMY878iMhB4DUgC1gBXGWN0kLFS7cGVByVHoCgL0kZBZDLYO+4ixRYexoTMRNbsza8si4+0E+Xo3kPnpJ6y8DABnV6kupGBqdG8euM0vL4A9vAwkmMciNT326+UaowxRv92ajEm9P9hNqcf22eMKWx6tzrcwMnGmLHAOOBMEZkG/An4qzFmKJAPXHcUdSulWsqVD5//Bp6eCq9cAk+MhyMbO7RJSdEOHr9sHKP6xAGQHh/BS9dM7rZza3JL3Hz8/UF2HCnmnDF9amy77aQhxEfpwpuqe0mJcdInIZKUWKde1Cl1FCIiIsjNzW2TIKCrMsaQm5tLRERESOttTk/R9yJyBRAuIkOBnwHLmjrIWJ9eSfCpPfhjgJOBK4Ll87F6ov7esmYrpVqsvBDWvFT13FcOH94LV/wHopNbVJXPH8BgzRtorX5JUbx83RTcvgD2cCE52klYWPe7eCpwefjFW9/xycbDRDnCeeLy8Zw5ujfr9xVwxjG9GdorBmc3Ty6hlFKqZTIyMsjKyiI7O7ujm9KpREREkJER2vWXmhMU3Q78Eqvn59/AJ8DvmlO5iIQDq4EhwFPAD0CBMcYX3CUL6NvAsTcCNwJkZmY253RKdT6ufHBlQ8E+SBsJkYl11xBoiMcF7mIQgehU69/WcNfT4Vt8EAK+uuUN8PkDHCos5/mvd1FY7uX6mYPonxxFtLN1iSyTY7r/PINSj59PNh4GrDlF189fxdSBScybM5H4yO7ZM6Z6lhK3l5JyH16/IcoR3iP+rpVqa3a7nYEDB3Z0M3qERq9kgkHNb4wx92EFRi1ijPED40QkAXgLGFnfbg0cOw+YBzBp0iTtM1RdT1khfP1XWPa49TzcDnPehf7HNX1saQ4sfgTW/xtiesE5f4Z+U8ERffTtiellBVel1e42jbsCIhOaXUVOiYezHv+KYrcVSL21dj/v3TaT0X3jj75dPUR9Qx82HijSFMWqWyhweXhx6W6eWrQDX8AwNiOeZ+dMIi0utMNblFKqrTQ69iUY1Exs7UmMMQVYiRqmAQkiUhGMZQAHWlu/Up2SpxiWP1H13O+F9++Ckia6wP0+WP0SrHwWPKWQtxP+9SMrSUJrRKfBdZ/ByPOtJAun/C9MvRlszb+bu3jrkcqACCA1xsmRonL255dxuKicMm/ze516miiHjZlDag5TvOnEQcRH6jwi1fUdKXbz+MLt+IKLEa/PKmTekp24fd07k6RSqvtozpiXtcEU3P8BKldiM8a82dhBIpIKeI0xBSISCZyKlWRhEfAjrAx0VwPvHGXblercvGVQu3eg6ACYJi4Sygtgc62s9wE/HFwPCf2Ovj1hYZA0EC58Grzl1lC+8JYNe4u0V815iXKE88xPJvKnj7fw7a48Iu3hPHj2CC4c15c4vdCvw0oqMZ7PNx9mxa48zhubztiMBJ1HpI6aMYbsEje7c0qJtIeTnhDZYUPWthwsqlO2ek8+Lrdff8eVUl1Cc66IkoBcrAQJFQzQaFAE9AHmB4fghQELjDHvi8gm4DUR+R2wFni+5c1WqguIiIP4flC4r6rs2B+DM67x4+xR0GuMFQRVlzw4NO1yxlo/R2H6kGTS4yM4UFjOheP68uaaLL7dZfVglXn9/PqdjZwwNFWDogYkxzj58eRMZk/s1y2TSaj2daionAueXMqRYjcA4zMTeHbOJFI6IDAa26/uMNyTR6YRG9G6+YZKKdVemvy2MsZcczQVG2M2AOPrKd+Jte6RUt1bTC+45kP47NdwZDOMOh+m3ASOqMaPc0TBSQ/C3mXW0DkRmHqLVV9TAgEwPghvm4n7abERvH3rDBZvy2ZAchS/eW9TnX22Hi5mQEor5j71ABoQqdby+gI8/9WuyoAIYO3eAjbsK+Dkkc34rmiA2+enzOMnNsJurZ3VTBXp9X/z3iYKy7ycP7YPV0zJxBaCDJVKKdUemgyKRORF6kmGYIy5tk1apFQFTxmUHoatH0FcOmROh5i0jm5VyyRkwvlPWkPpIuLB1sxgJT4Drv3Eyj5niwBHDEQ2kcyg6CDsWAi9j7GOccZBVFLzs901U1pcBJdO6ofb5+e4wclsPFBz2MyI3o33QuWVerCFSb29STklbpZuz2HbkWLOG5tO34RIYiO016mzcfv8FJZ5CRfpdBnGjDF4/QaHrXtfjHsDAfbkueqU782vW9Zch4vKmbdkJxuyCjhrdB8uHJ9OUnTzPt/YCDtnj+nD9EHJGCDaEU6M/u0qpbqQ5vRrv1/tcQRwEZocQbWGxwXuImuCf2Riw/vlbIXnTqlKGd3rGLjq7a4XGDljrJ+Wiklr/mstOWIlcZhyA7x8EZTlW8PwLnkehpxsBUkh5rSFc+MJg9l2uJgvt+UQ67Txq3NHktTAwquFLg9Lf8jl2SU7iYmw8cCZIxicFkNEcJ5Sbomb6+evZN0+K3X4U4t+4Lk5kzhlZFqbLPpYVObFHh5GpEPnO7REXqmH57/eyRurs0iLjeC3FxzDyPS4TjFvJKfEzYcbDvLtrjzOHtOH4wYnd9uFgKMcNq6cmslnmw5XltnChJNHHF0vUU6JmznPr2Dr4WIAVu7OZ0+uiwfOGk6ko3lD4OzhYZptTinVZUlLV8gVkTDgc2PMyQ1sPxN4HAgHnjPGPFLPPpdiLdpqgPXGmCtq71PdpEmTzKpVq1rUTtVJlRyBRb+HLR9A6nA49zFIGgRhtS6oygvhP9fADwtrll/zMfSf3n7t7Sr2LIei/bD4D5D7Q1W5IwZuXwWxfdrs1AUuD2VeP2EiJETZG7w4/nJbNle/sKLyuT1cWHTvLDISreGEWw8Vc8ZjS2ocM6J3LK9cPzWkcyQKXB5W7MrjxWW7SYt1ctepw+iXGEm4DvNpki8Q4Nklu/jTx1sqyxzhYXx5/yz6xIe2R7Kl8ks93PHaWpZsz6ksu+mEQdx56rBuG/gWuDx8uS2beUt2Eu208eBZIxjRJ5ZIe8vn8ezJLeXERxfXKIuwh7Hk/pNIi2040DlSVM7nmw+TXezmgvF96RXrbHYQpZRSoSYiLmPMUY3hP5pvrqFAvaupBpMqPAWchrUw60oRedcYs6naPkOBB4EZxph8Eelit/3VUXOXwGf/A+tfs56XZsOLZ8FPv4bY3jX3DQTAW1q3jvrKmjxvqRUwfPcGJA2AIad2vd6mpoTbIa5PzYAIwFNiZZprQwlRDppa6ajU7WP+st01yrx+w5JtOVwx1fo68ddzg8brD/0SZct/yOXmf62pfP7F5iN8fs+J9KrnDrfPHyCv1EOpx0eUw0Z8pL2yZ6snKnR5eXf9/hplHn+ALQeLOzwocnl8NQIigJeW7ea6mQO7bVCUEOXg/LHpzBySQniYkBB19L1i9vAwRGomzEyMctBYH212sZuL/76MrPwyAP72xQ7eu30mI/s0kUxGKaU6oSZvjYpIsYgUVfwA7wE/b2D3KcAOY8xOY4wHK+32BbX2uQF4yhiTD2CMOXL0zVddiqcENr9fs6w0G8rrpnIlKhFm3FWzLDoVeo1u+XkPrYenp8KSP8HbN8P886weq+4koT8UZtVdGDYuvenEDu3AHh5GRkLdi+Y+8VWBSFqskyFpNYcZ3nbyYJJacaFXW4HLwwtLd9UoK3b7WL+voM6+xhg2Hyzm9MeWcNL/+5JZjy7m6+05eHrwYqtOeziDUuoOBe1bz2fb3kSE2qMsHeFhNHpV3w1IcF5XawIigBinjTnT+lerFx4675hG5xStzyqoDIgAfAHDXz/fRqlb1ytTSnU9zck+15LcvX2BavmHyQKm1tpnGICILMUaYveQMebj2hWJyI3AjQATJ7Z6/VjVGYTZrKFyhzZUlUkYOBvo5cycBnM/gBXzrMQD05qZga06Vx588Vsw1S5ks7dA/u6O6y0qKwBfuZUIIVQBS0wqDD4F0ifAB/fA7iXQ+1i4eB5EpYbmHK3gsIVx06zBfPDdQXJLPQAcmxHPmIyq5BEpMU5evWEqb63dz5ZDxVw2uR/De8e1KlNbvstDabkPb8AQG2Ejyh5e75yn+uad5JZ4uP3VNRS4vICVcvzO19exsIFepZ4gxmnj52eNYMXuPLKDWc8um9yP1NiWDW/MKXFTUu4jPEyIcdpCMu8n2hnOxeP78t81VT1Zd542lITI7jmnKNTiIu3ceeowLp3cj62HipnYP5HkaGdlBroyrx+X20dshL0yiYXXX/cGgddnaOmwfKWU6gyak31uoTHmlKbKKjbVU1b729GGNQRvFpABfCUio40xNW7VGmPmAfPAmlPUVDtVFxCdAuf/Deafa2VVE4FTf9Pwuj2RCTBgJvSdaAVU4UeTyciA31O3ONABdzKNsVJsf3A3HNkEQ06HU3/d8kCvIdEp1s+l88HnseZpRac0vH/AZwVo9qh26U3qExfBR3cez9ZDxcQ4bfRLiqozVyg1NoIbTxiMLxDAFta6OT65JW7+5+3v+fD7QwAM7xXLy9dN4f4zhrNkWw5lXmsR3XH94hmYEo3PHyCnxJpvlBBlZ1ivmDq9QiVuH+XeJhbf7eb6JUbywc9mklPiIcZpIy7C1qJeiuzicua8sILNB60J/Wcc04s/XDSm1Vns4iMd/PLskVw4vi8rd+dxyohe9E+O6vZZ6EIpMdpBYrSDY9KtmxVef4BAwFog9m8Lt7N2XwGzhqdyzYyBpMQ4mZiZSEqMg5wS6ztWBG4/ZYhmnWsDxhiyi93syXMR47SRFuvsdJkflerqGgyKRCQCiAJSRCSRqoAnDkhv4LAsoF+15xnUzVSXBXxjjPECu0RkK1aQtLLlzVddTq9j4LZVUHwIopKtNNVNLSTampTSUclwwv3w70uryuL7hW4h1JYoPWIN3SsK3sle94o1R+r8vx31Yqr1aiyjX2VbcmDNy7DpbUgbCSf9EhL6NX1cK4SFCWmxEY1O2q7Q2oAIYPuRksqACKz1k17+Zg+3njSYRfeeyMrd+aQGh+ylxDjZk1vKOU98TUlw6M/wXrE8ecUELv77sso6esdFdNv5Kc0l0vzPsTZ/IMCrK/ZVBkQAn2w8zFXTBjBzaOsv8JJinBw/NJXjh3Z872hXVljmZcvBIv69Yi9D0mI4aXgaX+/IYXeui40Hitib6+IPF48hNdbJ+7fP5F/f7uVwkZu5MwaQmdTxw3W7o4OF5Vzw1NLKHtqpA5N47LJxxEXYiXZqYgulQqGxv6SbgDuxAqDVVAVFRVjJFOqzEhgqIgOB/cBlQO3Mcm8DlwMviUgK1nC6nUfVetX1hNutpAq1Eyu0pcxpcP1CWPm8NXxvwlWh651pCXdJVUBUYcv7cOafQhsUNcVbBl//BZYH/4wProM9y+D6zzrmfWkjmw/Wnav2/f4i/AHoHR/JeWOrgu1yr58nFm6vDIjACqLyXR4umdCXN9fuZ1SfOB778ThSmrlui6rL4wvw3f7COuWbDhYxc2gjvZo9QLnXT3axmy+2HCE9IZLx/RKIdoZT4vYR47S3WzBujOHLbdn87NW1lWX/XZ3FwxeMZk4we+SH3x/iV+eOIjbCTu/4SO4+bRh+Y1p9M6Pc66fA5WVndgnpiZEkRtqJD+Gcwq7K7fXz9OIdlQERwLe78lizJ591ewu49viBHZ7oRKnuoMGgyBjzOPC4iNxujPlbcyozxvhE5DbgE6z5Qi8YYzaKyMPAKmPMu8Ftp4vIJsAP3GeMyW31K1GqIRHxkDEJ0seBhFNnNnZ7sUdawwCrD91LHGjNq2pP5UWw7t81ywr2WOXdKCg6oZ7eggvHp9d7V9UXCFTOdaqusMzLQ+cfw8/PGtEpFyrtaiIdNi4cl15jbR2Ak4b37J6dco+fbUeKueTvyyozLh6THsfvLxrNna+tY+qgZO4+bVi7zGXLK/Xw1Bc7apTtznXh9QeIj7RTWOYlMcpeY6y8iGALwffqd1mFXPnct3iCc5VuP3kINxw/qN6FnnsSjz/A3ty6i/Jm5Zexem8+X7+UwyvXTdXvJ1Wv4nIv5V7r71eHEzeuOe9OWjDVNgAiEiciLza0szHmQ2PMMGPMYGPM74Nlvw4GRBjL3caYUcaYMcaY11r9KpRqjjBbxwVEYM2dOv33VW2wR8EFT1lJEtqTiJXJrzZ790oekBbn5JmfTKBfUiRJ0Q7uOW1YvYESQIzTzg3HD6pRFuUIZ/rgZGIj7KTFRugFR4gcNziF+84YTnK0g4zESJ6+cgK947vX715L5Ja4+WpHNo9+srVGCvqNB4o4VOjG5fHz+sp93PHaWvLrCdxDTsBuq/s9aQsTjDGIwG8uGB3yRXFzStw88OZ3lQERwFOLdlDq0Ux2sRF2Lp9ScyUUe7gweUASGw8UsflgMS5Pz57rqOoKBAy7c0u56/V1XDZvOU8u2k5uibvpA3uw5gxEDQdWiMg1QG/gb8EfpVRLOGNg3BUw8lwrJXhcevPm/4RaTBqc8xd4+cKqXqvJN1gLvXYjsRF2Th/Vm4n9EzHGWtOlsbtkY/rG8/J1U3h2yU4SohzcdeowUmJ06E6oJUY7uPH4QcyemIGIkBTtqMxw1tN4fAFe+WYPkQ4bpe66F7Uuj69yXaxvduZR7mv7C9/kaCf3nzGCq19cUblm0Zi+8QxJi+HR2WMZ1SeOxGgH9hAvdhwIGA4WltUsM1CmF/sATB+czJ8uGcOLS3cTG2Hj5llDePmbPbh9AZy2MCv9vFLV5JS6+dHfl1UmQnli4Q7KvQHuPm1Yj15vrzHNScn9CxH5AvgWyAdOMMbsaOIwpVR9IuKsn/iMjm1HxkS4Yz0cXG8N4Yvt3TEBWhsLCxNSm5kQIC7SzvFDUxnXLwFbmBDpCO3k5exiNy6PD6ctnNgIW4+eHG23hZHWQ9OaV1dU7uWj7w8RG2Hjsin9WLM3v3JbSoyDfklR7M2zhk3FRdgIb6ee7gmZiXx65wm8v+EgQ9JimD44mZQYJ30T2y6JQkyEjfPGpvP6yqpVPdLjI4iJ6Ll/J9UlRDmYPbEfJ49II7vYzb1vbGDTAWve5C/PGdnjhxiqunJLPJUBUYW31uzn+pkDNShqQHNScp8APA48DIwBnhSRa40xtbPKqdYKBKxU1QEfYBpPp6xUa9ijID6q44OzTii2DdIJ78tzceVz37I3z4UjPIxfnjOSiyf0bZNzdTdF5V6Ky3zkuTz0inW2SS9FR4m0hzOsVwzv6BGXqwAAIABJREFUrj/IaaN68+Tl43l3/QHSEyKZM70/d72+DrBGvP72wtGtXqC1uWIibAyNiOWu09ovAUyUw8b9ZwwnIcrOpxsPM7xXLL88ZySpOmy1UsVNnminjefmTGJXTimZSVEkRLVfIg7VdcTWc0OhT0IEtvCe2TPfHNLUImsisgKYa4zZFHx+MfAHY8yIdmgfYK1TtGrVqvY6XccoyYbvXofdX0P/GdYinPZIK4W1Tf9TUN2Iu9haQ8netVP3WpnCDrPpYDE/mtCXzORo4uu5W1tU5uXO19fyxZbsyjIR+PrnJ9M3oSpjVIHLgz9gSIp2IB05960D5RS7WVjtPe0TH8lrK/fy58+2YQzEOm28ftN0RqU3sLZZF5SV7+LH//iG/QVljOgdyx2nDOW4IcmEiVBY5mVProsByVHERzmI6QG9i26fn6IyL5H2cF3vSKlWKHR5eHzhdl5YuhuACHsYC26azrEZCR3bsDYmIi5jTPRRHduMoCjcGOOvVZbcnhnjun1Q5MqHt26C7Z9UlY27AhL6w4SrIa5Px7WtJ/K6oPAArH3Z6q0b/SNreFkPvVBtMVeu9R6KzUou4Qx+N5UVwqENsOxxiEiAE39u/Y7but68ndwSN3NeWMHGA1Vpv5++cgJnje5dGdCUuH1kF7spLvdy4z9Xc6iovEYdb95yHBMyE3F5fGw5VMwfP9yMy+PnhuMHMWt4arv1CnQWuSVurn5xBd/vr3pP/3b5eP6zah9LtudUlo3NiOfFayaT1IlSo5d5/BSXewGIjbQT2cKhKdnF5RSV+6xAwGkL6VCo4nIvpW4/IhDj7DzDNj2+AAVlHoSePa9MqbZU4PKQV+rhUGE5g1JjSIq247B1717F1gRFzfl2TBGRPwB9jTFnisgoYDrwfBON6gf8Eys5QwCYZ4x5XEQeAm4AKm6b/sIY8+HRNL7b8JbWDIgANiyAOe9A/m4Nitpb3k74x4lVSQiW/Q1uWtK+aysdDZ8HyvKt4C0qBUKwAGqLlRyGBXNh7zIId8CJD8Dka635Skc2wvxzq/bd8gHctrLpIXyuPCg5BPl7ofcYiEpq3YK+zZBT4mZndimHCsuZNCCRlBhHjf9Icko8NQIigL9+to0pA5NIiXFijGH1njzmvriSa2cMZMaQZP67pmqNKqctrLKXKKfEw+xnluMPWDeo7nx9HS9eM5mThqe16WvsbHJLPTUCIoDHF27nxhMG1QiKdue68Pkbv5nXnvJLPTz71U6e/3oXInDTCYOZe9yAFmVnS42NILUVI9VyStx8v7+QfXkuZg1PIyXWQaTdRl6Jh0c/3cKCVVmEi3DNjAHcdOJgkkKcOa6l8l0e/rMqi2e/2kmEPYyfnzmCE4am6rwY1WzGGHJKPASMwR4uneomSWeSEOUgIcrBoNTulUiprTTnquklrLWFKq7Mt2Et6toUH3CPMWYkMA24NRhQAfzVGDMu+NOzAyKw1qkJqxW52yKsi/LOfiHe3Xhc8OWjNdcSKjlsLW7ambnyYPnf4B8z4YUzYOtH1rpD7cnnhuVPWwERgN8DXzwMxYfBU2oFl9V5XbDji8brLCuAFc/BnuVAAFY+B4c2tknzK+SWuLn1X2u49B/L+dlraznp/y1mZ3ZpjX0MdS/KA9WKcks9/O79zRgDC1bu44qp/Tl9VC/CBPolRTL/2imVQ+0WbTlSGRBV+Nc3e3D1sFTE9Q1aMMbgqDX+/azRvTtNbwfAun0FPL34B9y+AOXeAI8v3M6mehYOro/L4yMr38WTX2zn3XX7OVRYzqIth3ltxV4OFpTh9TedeS23xM1NL69m7osr+Z93NnLS/1vMloPFAHy9I4dXV+zDHzB4/AH+sWQnWw618/dCPVbtzucPH24mu9jNvrwybvv3Wg4Wljd9oFKAz28tAv2jZ5Yx9Q8LuX7+KvbnlzV9oFJNaE5QlGKMWYDV24Mxxoe16GqjjDEHjTFrgo+Lgc1A31a0tftyxMCUm6zHyYNh9ny49mPrDrpTo/t2V//VWfu2wVsGxYesuWYA3nLwN3KR/MMiWPiwleo7bye8foUVzLUnTynsWVq3/PB31lC6qHoSh0QnN16n1wWZU2HdK/DWzVCUZfWAlVb1HOS7PBwpKqckOHyptQ4UlPHtrrzK525fgD9+tJmisqr6U2KcjOxT89b+HacOJSk45M0YKHVbn1ex28f181dybEYCS+4/ibdunsHUgUmV2X/6JdXt9RqQHI29I3r6OkhxuZe4CBuj+tScK3THKUOZ1D+JqQOTSI1x8uNJ/bhscj++3JZd4/NojpJyL0eKyys/l1D56PuDdco+2XioyeOyi918szOXJduyOW5wCvOX7+Gal1ZgEB548ztO/vOXZOU3HSgcKipn9Z6qrHW+gOGPH20hr9San1Xbkm3Zdcrak9vn5801WXXKay/oq1RD8ko9XP3CCvYEF7Rds7eAuxaso8DVDut4qW6tObfbSkUkGaxboyIyDShsyUlEZAAwHiut9wzgNhGZA6zC6k3Kr+eYG4EbATIzM2tv7l4i4uD4e2H0JeCMhf9cDUc2W4uNnvQLmHQdRHbviXGdhiMKTrwPtr4PgWDsH50KA2a0XxtKc2Dp41YgMOuXkDoMVj4P8X1h2i0Qm15zaJy7BDbUswbyjoWQMrT92u2MhSGnQtbKmuXp48HuhBPugU1vWYkWAFKGQcbkxusM+GDBHCgvsJ5vWAASDqc9TCBg2JVTys//u4Fth4uZNTyVX50zqtWpngvqudjOK/XirbaoZEqMk39eO5VPNh5i88EiZk/MYGBqDGHBeRGJUXaunTmQ332wGYB8l5c3Vu/jx5P7kRJbc5jHsRkJjM9MYO1e6zX2inNy3fEDsfeQlcdzS9386aMtLN2Ry+OXjWN9VgE7j5Qye1IGg1JjiIu088glY9h0oJjVe/K48rlvKfX4eeuW4xif2bw08gcKyvjt+5tYu7eA6YOSeeDsEfQKUUrwmUNSWLCq5kX+jCGNZw7NLnZz2bxv+CG7BICEKDsvzZ3MVc+vwB8wpMQ4yCnx8MTC7fzx4jGNps911bO+UUm5D2PgpOFpvLOuZqLYmUPaebHoWuxhYYzpG89H39cMHEelt1+mu54gr9SNiJDYDecmlnr85Ltqfk+v2JVXY+FfpY5Gc4Kiu4F3gcEishRIBWY39wQiEgP8F7jTGFMkIn8HfosVZP0W+DNwbe3jjDHzgHlgJVpo7vm6rOhka57EB/dYARFYF4QLH4ZRF2pQ1J6SBsEt38DKF6xEC+OugJhe1nydvN2w/VPoNxV6jw592nS/D9a8DMuegL4TIDIe5p9XtX3D6/DTZRDbq6rMFgF9xlrtqq7XKFrMW2bNBao9nLM5wu1WAH9kC2x+xwqSTv+9FVQCxGXArSutDIsR8ZA+zlpItjFl+VUBUYXtn8Apvyan1M1lz35DdrG1Qve76w/i8RkenX1sq1JdD+8VS3ykncJqwdHc4wbUmYeRGuvkJ9P611uHLTyMSyZmkJ4QyX9WZTGidwxzZwwkNbbuuPeUGCfPzZnEwcJyyjx++qdEkdbMtZW6g8VbsiuDikv/sZzpg5P57QWja4yBf3n5nsoMShUWrNrXrKAot8TN9fNXVQ5pe2vdfg4VlfP0lRNaNO+nITOGpnDOmN588N0hROCCselM6t94u77dlVsZEAEUuLy8sTqLM8f0xusPVCYdKCr31hlaWduAlCjSYp0cKa5aqf764weSFO3g+GEpXDIxg7fWZBEmwlXT+nd45r6wMGH2pH68v+Fg5Wdy8vBUxnbzjFjtpajMyzc7c3ly0Q7s4WH8/MzhHJMe36mGnLZWlCOcKEc4rmoL+x6THtdu63ip7qs5fyUbgROB4YAAW2nesDtExI4VEP3LGPMmgDHmcLXtzwLvt7DN3ZenFA6sqVuet9MaVqfahyPa6sU465GqMp/H6qX46P6qsnFXwhl/CF3AWppj/Q4MnAkT50JCJqx+qe4+B9dB7BlVZeE2mHw9bH4PsrdYZSPOg7SRzT+3Kw/2fQPr/g29Rlvnj+0NpdnWMDy/1+qhikxsPFtcTCqc9zic+Ucr4UNkYlVK+XCblTTk2GbfU4GoZKue6sMXk4eCzUmpy1cZEFVYuOUwZV5/q4Ki5Bgn790+k8c+28aBwjJ+MrU/M4emkFPi4Ysth9lxpISLxmfQLymSaIeNnFI3Lo+fSHs48ZH2yrv6iVEOzh7ThxOHpeKwhTW6tk5yjJPkWuuxlHv9FJZ5KXX7iHbaSIi042wiq5nXHyC/1EOJ20e0w0ZspI2oEC9Ce7SMMWQXu9l+pIRoZzgZiVHERdj4YsuRyn0CBpbuyOXtdfu5+7ThleUjete9kB9ZT1l9yrz+OnN8lu/Mxe1rer5OcyRHO/n9RWP45TnWTYhoRzjxTdydz6n1ewuQ5/IwNC2GxCgHh4us7TedMLjJi9mUGCdv3zqD577aye5cFz+ZlsmEzEREhORoJ/977ijuO30YIMQ4G09zXVzuJWCsz+pgYTk+f4De8ZH1BvOtkRrr5OXrplBU7sMWJsQ4bSEJUBVsO1zMjS+vrnx+2bxv+OyuExmc1n2G4idE2Xnqignc8dpaisp9pMdH8Nhl4+p8hyrVUs3533K5MWYCVnAEgIisASY0dpBYeWmfBzYbY/5SrbyPMaZiEPZFwPctbnV3FREHw86surAFKwlDSy5uVdsoy4dFv69Ztv7f1vDGUARFRQfh9Sth/2qrx3DWg5A6AvYur7uvo55Mk7G94er3rOQK4XZrLlpUE/N1Kvh9VsD38c+t55vfg41vwlXvVLUJrB60H//LClCSBtTfDrB6tyLjm3fupjjj4NTfwOcPgQlYmecueAoCASLDAtjDBW+1TGSDUmIIa+RuYZnHx5FiNx99f4g+8REcNzilzgVfeJiQmRTF7y8ag8cfID7STk6Jm6ue/5Yth6yhf89+tYsX505mWK8YfvTMcg4WlhNpD+fR2cdyysg0Iu1VX61Hc4fW6/fz7a5cfvryGsq8fqId4Tw/dzKT+ycS3kBwZYxh88EifvL8txSV+XDawvjzpWM5dWSvTrF6+cHCci54cinZJdYF/7EZ8bx83RRmDU/lg+9qzss5bnDNHtiTR6RxTHpcZca/Eb1jOXtM87Jy2sPDiHaEU1rtrnJytKPR35OWsjI8NX//U0f14g8fbqkx3OfyKZkMS4vlXyv2cPqoXtx4wiCG9256SJmIkJ4QyYNnjcTjD9T5fYuLtDeZ1c3l9rEju4Q/f7oNXyDA3OMGsHpPPs98uZP+yVEsuGl6yIYbVqjvRoBqHa8/wCvf7qlRFjDw/ncHueOUdhxK3cactnBmDEnms7tPxO0LEGkPI1mzz6kQaPB/axHpjZUYIVJExmP1EgHEAc35+p8BXAV8JyLrgmW/AC4XkXFYw+d2AzcdXdO7IZsTpt8Khftg09vWkK1zH7PutquO5681idMY60K9tTwuK+CqCD68ZfDZr+H6hTD9dti52OqpAStQShlWfz0xaU0PR6uPKxeWP1mzzB5tZdzbX3XHkbyd8N0C698T7reGD7a1iDiYeI21VpS7yPpbkDB45WJiM2fxm9N/zP98shd/wBDrtPH/Zo8hpZELrR+yS7nwqaX4gkOShqTF8NoN0+rM8wGIdIQTiRVMHCosrwyIKvz5s63cePygyqxZZV4/9yxYz5L7TiIyvnW9M/mlXu54bR1lXutCvtTj52evruX922c2OGcqt8TDHa+to6jMSiTg9gW47z8bWHzfrA4Piry+AM8u2VkZEAFsyCpk1e58ThmZxgVj03l3w4HKtNHDetUMBlJinfzz2imVKXhTY52Nfs7VJUTa+d1Fo7lnwXoCBmxhwv/96NgO7ZlIjXXy3u0z+Mtn2yh1+7l51mBGp8cRH+Xg1llD8BtTbw9fmcdPsduLAEnRzhpr+9htYUc9D+1wcTkXPb2scqje0h25zL9mMu+tP8ieXBevrdzHbScNCelaQh6fNS8kp8RNUrSD2Ah7j1icti39f/bOOzyqOv3inzt9MpPeSYDQIXQIvQoioAiIDRvYFbvrurruT3fdYte1F+wKNsTeRZr03gkllBAgvc9k+v398WZmMskkhGZZc54nD+TO7XNn8j3f877naBWFdvENJ6vaxv2+g7LDwaDTkhz160/2tOB/C019A40HrgTSkb4f/7dhJUJumoSqqsvqbFMXLRbcTcGaJERo/EN18mZaPvi/OoxRMOB6CR71o/3oxtWS44GrGg6tbrjcXgIpfaQPZ/d3EJkKbYeeGPFpCoqmYe6PNRFK9jZctzxXeoRWPAeTn/tlgldNUfLjSxWDiU3vQ/4WLPlbmDxYx5hZl1OhRhCrdRJbuQqYGHY3VQ43j3+/K0CIAPYWVrO3qDosKaoLRYFbx3SkZ1o0B0vtvLvyIKoqznJ10S7Bgi+MXffxwuX1UV6vkbiwyhly7vXhU8V4oi5q3N4AsfLV2jI3hyCV2104PT4sRi1W48lnx7h9Pg6V2RssP1xew9huyfxrag/uPbsrCgpWU/hj1lcW3F4vZTa3XJNO2+h7aNRrOSszhWX3xJNf4aBVjJkos67JcsbTDaNOS5eUKJ66qA9eVSWqTklbYyWSpTYnLy3KYe6aXKLNeh44N5MRHROaLIdrLj7beKRB79JXW44yvFMCH649xN6CKrw+9ZSRIlVV2XZYVE27y4tWo/DvqT2Y0qfVb6bc8/cIjUZh+sA2zFufR16tRXW31EiGH8P4owUtaIGg0W8fVVXfBt5WFOV8VVXn/4Ln1AL/ILAFvxyqi0T1MccEe2DqwmCG4beLOcCOz6DtMOg+rfklak3BGAntRkHx7uAyRZGyyahaQ4XBs07+OI3BkgDj/gnvTw8u05ogcwoseTi0n6fbubD4EcgYIef4S8BeJrbem96DtCxxArQmQ3UB1lVPYV31FCl9ZwA+yUrqPE76l+rBp6ph+0gc7mP3lsRFGNhbWM07Kw+SmRrFkxf1xuX2smyvWINHmXU8fXFfSqudzF+fx1ndU0iNNp1wb5NJp6VDojWkGb97qyiMtUpAcbWT7YcrOFrpYESnxNpwWQ1DOsSzMqcksE1KlIkIg5bCSgfvr8klO7+Kiwe0pk/rGGLC9L34fCoHSmzc+8lWduWLo9/fzul20sYPEQYdVwzJYMHOYP+QXqsEAmobK/GqdIgqUv8+Oj1eVu8r5bYPNlJud9MuwcKbVw4gIyH8JIXFqMNi1NEq5vSG/h4vmlta6fOpfL0ln1eX7QfA7vIya84Glt1zBpUOD99uO0qUSc+oLokn9F6lxjTcJs5iILfUTnqsmVvHdsRwCt0Qi6td/OmjTYFGea9P5e+fb+eMLkkhpMjt9YHKH8aJ8VQgOcrEpzcN42CJDZ1WQ3qsudmqagta8EeHov7S+SsngKysLHXdunW/9mm04H8RLpuUiH37F1Fm+l0Fg25oOj/H7RSF5FSSguoCyeHJ+UlKxM55EjqdJYTpl4CzCiqPSOhrcnchfzqT2GsveBC8TnGW83lg4b9h1nKIzTj95+X1wPo34Zs/B5elZcGQm+DjOqaV09+DH/4PJj4GncY1urulu4uY8caawO+JViMf3jCYBKux0b6LCruL2z7cxJJdwXyX9FgzH984BIA7P9rMBf3S+WRjHsv3BgnJK1f0Z1y35IBN9/Eit8TGXfM2s/lQBf0zYnn8gl6kx0ZQUu3kyjfXsvWwJCMYtBo+u3koKVEmHB4fq/aV8PA32aTFmnnywt7EWvRc8NJK9tVRkR46rwcXZ7Vu0J9UWOVg0rPLQpzMJnRPOWlHP5D7uDynhFeW5GAx6rh3Ylc6JVkxh1EGqp0eso9W8sxPe9AoCn8a15lOydbAgLmg0sEZTywOcZ/q1yaG12YOaOAS+L+Ayho3N8xZH0J4E6wG5lwziKkvLsfhljLeVtEmPrtl2HETo6IqBxe8vDKQ+5IUaeTNqwawMbecTslWPlmfR4ckK1P7pJ205T3Iczb4oZ+oL3wu/vNoMhIsONxeDpfVMHtpDhqNwnUj2pMWYz6m0UgLWtCCFiiKYldV9YTKeFp06hb8sWEvgXenBjOJlj4q5WlZV4dmAdWF/jTMulmT4YLXpZ9I0YA57sRL0xyVQvYUwBgt2UvHgjESErvIT110GAMpveS8SvZA8V64ec2pL+FrDPYS+PnJ0GWH10FSJqT2AZ9bgo/LDkC/GZDWv8nd9UqPZs41A/loXR4JVgOT+6Rx2wcbee6Sfo2SIqfHR16Znb9O7EqC1ciKnGK+2HwEp8dH23gLL13Wj1Kbi7vmbQ7Z7pFvs+nfJvaYpXkhl+v0UOlwU2Z3k2g18tJl/fGpKgadJqDs7C+xBQgRSKndY9/tYkiHeB79LpsJ3VP56tbh6HUKcRYj2fmVIYQI4JWl+xiXmdLAZMLm9IYQIoAFOwtwnKSjH0B0rRvf4PZxaBUN0RGN7y+v1M6Fr6wMiJQ/7ykKcdCyOT0hhAhgc14Fnv/RnBKzXkuvtOgQUjSxRyqvLdsfIEQARyocrMwpYUqf48tJT4w08fGNQ9mVX4nHp5LZKgqzTsvhshoufmVVYL331xxi3g1DjuuZDgeTTsuYrkkhymGraBMWY7CHb8IzSwMmKvPXH2bBXaNo8z/YG9OCFrTgt4MWUtSCPzZyVwcJkR/b5kHP80/e4MJT2xOia+Zg0hx78se0FcMP98PWDyVvaMSfheBFxNU5LwdoDI2TvvrwZzHFtBaSBOLG5/MGLbMbg9cjxMZtl76liHhxx2suFML31Gm0YvsdlSZ9XT7vse3CkUrAOasOkhRlIjXGhNvr4/5zMgEVp9sbdiZaq1H4z9SePL1gN4fLazinZyqvzsjCpJN1YyIMFNcaCHRItHDb2E6kRJtqB/TNV+JdXi8rcoqZNXcDbq+KUafhjSsHMLh9fEgvh83habCtv7fJp8I3246SFmviz2cJwdWHeZ9NOm3Yt82s1zZw9GuXYEE5hapo3DFcolRV5d1VB0OqNn0qzFufx70TuwJSdhZp1IX0dA3IiD2lJV6/Fipr3DjcXswGbYCI6nUarhnejiW7iwKGH1kZsfy4vaDB9jWuE7MaT4w0khgZDHYtsTl5duGekHX2F9s4VGY/aVIUZdbz0Hk9sRh3snR3EV1To3j4vKBJytzVuSHPoMvr48M1udw9oetJHbcFLWhBC5pCs0iRoihDgYy666uq+s5pOqcWtOCXQ3zHhssSM6V07EThcUD5ITEjABh6qxCKk9lnc6CqYqe9+T353VcDC/8lRCYiTsjJwRWwdZ6UoPWefvyKj8sulvE/PQgdx4mFvM4IBitE1CN0Ph/kb4b3LhKyZo6VMrf0gWF7fkJQXSjXY7DC6Pvg85uCr2UMh6Obpeyx7TCIbg3JPUF77NIai1FHm3gLu/OrGNw+nivfWIPNJZbXr83MYkBGHLp6JWUen8o1b60NWDq/vGQfJr2WARlBohljNjCsYzx3jevCvZ9sYXdBNVFmHU9e2JvhnRJCLLrro9TmYndBFesOlNK9VTR/ndiNf329A6fHx58+2sRXt44IUXS6pUYRG6EPSXS/MCudTzYcDvy+aFcRN4zqgFGvJdaiZ3D7OFbtKwWEw95bq3rVR6RJxz/O7c4DX2zH61OxGnU8cWHvX7QnwW8xXR+p0cHPT2yEnjeuHMCt728kv9JBj7Qonriwd9g+qd8T8srs/O2zbWw+VM6gdnE8OLkHKbXXnRRlYs61g7A5Pei1Gqwm6Tv7etvRAIGMNOoY3SWxiSM0HwqEDcM8VWYLSVEmHjqvJzanJ0QJBQKKUV1YTccerpTbXRRWOdmVX0WPtGgsBi3xVuMpdc1rQQta8L+LY/YUKYryLtAB2AT4p6BUVVVvO83nFkBLT1ELThtsJfD9fbDlA/k9pi1c9S1EH1/5SQhK98MLA4MW3lqDlJzFtTv5820KLjvMv1r6gurizH/C4Bth+TOhWUtp/cXlsPKoBMZamjGYKjsAz/WHiY9C2UFY/bJcZ+cJMPl5ca2rKoDsL6FVX/hopljM+2FJhBuXSa5SOHickL8FPr8FyvZDtylw1j/lHLd9Cqm9IDJZ7ummuZD9tdzXc/4rxhTNUKGKqpzsL7Zx09z1FFcHbdYTrAa+uW1Eg56JVftKmD57VciyDokWPrh+MIl1ejfyK2u4e94Wft5THFhm0GpYfPdo9FqNZOPUG5xV1rh55Nts3luTG1h211mdyS21M29dnhz/r2MDA2OQpvsjFTW8tDiHI+UOrhjchoOldh78ckdgnWn90vj3lB5E1DbyF1c72ZRbzp7CKsZlppAcZWy0HK7a4aHK6abc7ibeYiAmQo9Bd3p7OVweH1UON2a9Fq9PpcLhprDSyeLdhby8eB9JUUY+mTU05L3x+lRKbE68Pikv/L3nlBRXObnk1VXsKQyaa2S1jeXVGVmN2ofbnB4Olth59ed9RJl1XDe8PSnRphBi7/H6KK0N9I0w6Ig6jkDf+j14XZIjmXvdoLAk2R8cbHdLkHGcxXDCDn9Hy2uY8MzPVNQI8Y+N0PPt7SNDPgf1Ue108+rS/TzzU1DdenhaT1KjTY0ai/ye4fb6UBTQNVfxb0EL/iA43T1FWUCm+ntwZGjBbxM+H9iLZNCuN9WWOZ1m1aS5sMTDhEckhNVdI4pKY+pJVQGU5si5x7RunESsfys008jrkmXjHjzVZx8KnQnan9GQFLUdAjXlsPKF0OWH14ts8PGV0G609DRZjmHduvt7WSemDXx9V53l38Hm96HvZfD6OCg/CFd+HUqIAGxFDfOe6qKmDN4+V94LkFykpG4w8Hq5f1VHYfnTso8NtWK1vQTeOgduWds42aqDxEgjNW5vCCECccRyh+lJSQwzAEyPi8BYjyhoUNiUWx6yzOX1kVNUzf2fbeOR83uhUWDBjkIm9EihfaKFGreX99fmhmwW3f4YAAAgAElEQVQze8k+XrisH/PW5TEgIxajPnTQo9EopMdG8MCkTNw+H6oKewqrA2VvXZIj+cv4LgFCBJBgNXJmZjJnZiY3el8qHW6ctb1DqdFmUqN/Gae24monby0/wI87CuiRFs21I9pxy/sbOFBs55KBrfnujhFEmvRhQ3ZP1hUPxMnOoNU0q0SwxuWlyuEGRdTBY5XrVTrcVNa4Kah0kh5rJsasb9QswOHxhhAigHUHy3CEcUz0w2LUkdkqikdrn636KifAviIbl7y6ihKbC4NWw0PTenJ2z5RmEaN+bWL4/o4RfLrxMO0TrJzRNSksIfL6VLbmVXDN22sps7uJjdDz2sws+qTHNBo23BSSokx8f8dIFuwsQFHgzG7Jx1Qrqx1eXlgUGiPw+Pe7eOLC3qzZX8pZ3Y/93VBhd+P0etFrNL9qjlVTqHZ6OFhi47Wf9xMboeea4e1JjjKGfe9b8MeB2+Oj0uEmwqANa17TguahOXduG5ACHD3Wii1oQViU5oiZQUWelENNfQnSB0h/yS+Rc3MsRMQ2LP2qj8oj8OoYGZSDqCCXfhSeQIXLLjJYT/48jwWNBnpMg/1LIfsrUU0G3ywlgj63EFJHvW2U2j+k+xeLA92xSFFMG4jrAEc2NXxt32LJbiqvTVSvPCyGCIVBBYPYDAmitZeEtzOvyAsSIkUDU18UUv35zdCqH/S6CLqeA5/Wy3x2Vsp70wxS5HB7ya+ooXOyld0FwUFol+TIsAPWOKuBi7Na8+E6IXhRZh0PnJPZwJjBpNcyoF0sC7ODLnVGnYYIg44DJXaufHMNc68dzOyf9zH75308ODmTsd2SqT/d5PL6MOo0jO+ezIOTuxPbyAy3Ua/FWBsue/ngtkzp0wqXVyVC33hmTzioqsqhWqVpV0EV4zOTmXVGx1+kZK7a6eaRb7L5eIOoYrsKqth0qIy7x3flxjnrmbMql/GZKYzofOo/PyXVTn7KLmRRdiGjuyRyZrfkkByk+ii1uZi9NIe3VhzAoNVwx5mdmdYvrVEFotrhZu6qXB79LhsAk17D3GsH0b9tXNj19VoNVqOO6jp9UomRxrAlbPVRn5xV1LhweXzoNRrumb+FEpsLvVbB5fVx3ydbGd4xoVmkyGrS0yVFz70TQyMivF4fJTYXewuribUYiI3Q8+d5mwIlnWV2N7PmbGgybLgpaDUKKdEmLh/cttnbuL2+BjleFTVuLAYtryw9yLCOCU1aoB8pr+Ge+VtYva+UHmnRPHlRbzLiI05pP92pwL6iaqa8sDzwvfHx+jx+/NMokk+BK2ALfp8ornby5vL9/LSzkB5p0dw1rjOpv7H4gd8LmkOKEoAdiqKsAQK2RKqqTj5tZ9WC/x3YSuDT62WwCxJU+un1MOMLURb6zTj2QPzXhtcjZWJ+QtTxTMnrqcoPT4r6XAarXhTVA0QZ63PpyZ9HdaGUllUXQftRoNGDp9atTtEAioTMTnlBrKkVRVzljJFyDWMeCO3N6XpOKLnxOqWPp6lBQFp/UaRaDwouM8XIeXQaJ2qgHz8/Bec+A9/eA0c3idX3xMdg/jXQbTL0vgRshaA1yjNgiJCwYj96XSSliEseld93fAbbP5G+pLgOcv/ropmZUTVuL3NW5fLwtF488u1ONuSW069NDA/VafQGKTuqdnqwGnTcdVZnrh/VnlKbi9axERj1Clvzyskrq6F36xjiLAaizHr+PbUnN83dwKZD5SRajfz93EzeXnEAAIfbR0WNzOTZXV6eXrCH8d1TGNkpgaV1Su4uGdiGdgkWnriwd7Md3/w5PMeDcrsr4OB20SuryK8Uxvz68gNUOT38/dzuzd5nZY2b4monO45W0r1VFPFWY0ggaWOwO718vvlwyLKcIhvx1iDRWLa3mBGdT02fTOB8HW4e+iab+bVk7Ntt+UzpXcK/pvZo1IVwZU4xLy/ZB8h7+c+vdtC/bWyjpKjK6eHx77MDvzvcPu6Zv5UPrh8clnDGROh59Pye3PHhpoDRxlMX9Sb+OBQLj9fH/mIbf/9iO4fLa5jaJ42HpvXE5ZFnWaMoPPXjLuyuhmYdzUFJtRNVVal0eJj64nIqa2Q/Y7okcv+k7lz11trAuoVVzrDK6+lChEFLr/RotuQFnRnP6ZnKipwSOiRaMTShpJTanNzy3kY25Mp39obcMma+sYb5s4Y2UCh/TdS4PLy4OCdkIqXS4eHnPcVc0D/91zuxZqCyxk1hlZO1B0rp3iqK1rERv1k17veEaoebh77eyScb5Xs0O7+KTYfK+eC6wSdtiPJHRHP+4v3jdJ9EC/6H4fPA0S2hy9w1Uv7004OQnCn9KCcLWzGgyqD6VM/s+dwyOIcg2Vj9MujMMPbvkNCx1hTAIuV3kSkwa4WoNV4PdD5LCIzPG3RSc1ZJWKwpunnnUF0Ic6ZB/lYxNpj5Ffz4d8hdIfvMukZIR1W+WFTX74nS6oQEpS6X8rqkrnIdn9QqLulZULoPzPHSF9QYrEkw5Xnp8Zn8gvTzOCvFUjwyRd6HyBQ5j6Js+PI2uGgOOCugeI/kQZXug7OfgDcnSt8QiHnCuc/Blg9h1D3w8xNCPL+8I/T4RzeJkcWkp+CNCUI8FQVG3iOEsD68XvDYQW8JuO1F6RV6pJi488NNXDUsgzvO7MzugiosdcbCJdVO3l+Ty6JdRWS1jWVq3zRueHcdTreP5y7ty5vLD/DtNiFlBq2GeTcOoXfrGFrFmHnjygHUuDwcLq/hxUU5LN4typFWoxAXoafGHQys1GoVnrq4D19uPsKqfSWM757C6C5Jpz1rp6Tayd+/2M7XW4/ywfWDA4TIj6+2HOXPZ3VpkhRV1VqHV9a4WL2/lH99tTPw2n+m9uCC/unHzJVRFIVEq5EjFcHjazUKujq9V6NOkXFAXdidHj7dmBey7MstR7j37K5hSZHL4+ObrfkNli/MLqR365gGyytq3FQ5PA1yeA6V2nF7fBRWOtDrNCEqoFGn5YwuSfz8lzMosblIsBqJNuuPq/ysxOZi2osrAq58z/y0B4/Px9EKB59sOEycxcArl/cnuhHi1xh8PpW9RdXc+t5GxnZLIqeoOkCIABbuKmLWGR156qLebDhYRpXTw+6C6gYlpqcT8VYjr83I4uUlOWzILWdI+3hGdUnkgc+38c7Vg5oMgHV51AAh8iO31B74rP5WoCgK5jCfqQjDbzu/ye318f32fO7+ODgWuHZ4O24/s9NJW/3/0WF3e/li85GQZXsLq7G5PCTQQoqOF8f8tlVVdUm4n8bWVxRlgqIouxRF2asoyr1NrHeBoiiqoihZJ3ryLfgdQGeEjBGhy0wxBKyKt34sxOFE4ayCvT/BnPPhnSmw/VPpnzmV0JthwDVSCmZJgG/uhsKdcGQDzJkq5WIvD4cvbpeeGT/x2bcYdn0DLwyCFwcKUXDVCLH55HqYd5W4wTmrjn0ORdmyHYjKsvMLIUQgZGvNbCmTW/cGlOeG34c5BlJ6wKi7oVV/MTXodq4Qu3H/gkUPCVFrClUF8PpZ8OFlYnowbwa8Px1ePQMW/F1IyvT3YPidogJOfEyUpTcmwGezoGC7kLNt84OECODAMshbAzs/F9Jz9feQ0CV875lGB3Gd4KbVcONyuGObhLma6w1Oqwul/2jeTAmAtYkao3VXcUF7H6M7RvPod9n85eMttDa7iK6SfoQqh5t/frWDJ37YzfqDZbyydB/3f7aNm8/oRHmNG1UlQIhAyt0e/HI7ZTbpUYqzGEiLjSAlyhzIBzLqNNx/Tje+2HwkMMt7w6gORJn0JFiNzBySwTPT+zKtX3oDQuTx+iiudlJub6IX6zixal8pX20R1zKjVkN9c670WHOTobM1Li+fbTzMyMcWUe308vj3u0Jef/jbbMpr3I1sHUS8xcDD03qGuINdP6I9C3cWYtBquHFUe7qmhCG7JwlFURo0qGs1Cgrhr1mvVRjUrmHZW1ZGw7Jbr0/lxx0FHC2vIaVeSdPEHil8vfUoAx/6iRvfXc+R8pqQ1yOMOlKizXRvFU1ylAnTcYaV5pbaQ2zKQQjukPaiopbaXDy1YDea45w4KrE5mfH6GnYVVBFnMZBfUb8OV4hTm7gIqp1e4iwGZl/Rn9gmsqhOB5KiTNwzoSsvX96PSwe1IUKvZe61g5o0aADQaiCtXrlRpFGH8Tdm8W7Sa7l1TMeQ80qLMTMgzHP4W0KZ3cV/vtkZsuyN5ftDSkVbcGJQoIHyrNUov7ln9/eCYypFiqIMBp4DugEGQAvYVFVt8JdKURQt8AIwDsgD1iqK8oWqqjvqrRcJ3AasPukraMHJo7pAlBCtEaLTm1YKjhfmGFEWPrlOCEBce3EuW/ZfeT2tPzgqRDE5lk1zOFTkiYLix8dXyYC6zeBTc/5+pPaBKc/BiudDl6uqkLL0LMj+QowGukyQ0sDsr4Pr1ZTBxjnQ/0qYPVoUNICcn+C6ReKmZogAUyP9TXWJXnwHuZf1UbBdyFveGmjVu+nr0epg03sQ1QoO/CzW3aPvO3ZO0oGfxTxh+J9g6eMBogHAlo9g8E3w3nToPF6ykH68Hy6dJyWFG96W9awpoYTIj9J9ojgtf0Z+ukyEsfcLgfSj8wQwWsV+OzJZfsLBXgIfXy3nC/Ie5W+Fs/4NBitxez/lrxEebp05GRwVxG28D+0Eceazu7x8WW/mbd3BMu6d2BWTXttg0Ali0lC/n6FNfATzZw3B7vJi1GnRaeDHnYVM65fG5N6t6N06JjCTrtEomMLkMZXZXHy26TBzVh0kzmLg/kmZdEmJPOkZ+BV7g+/bT9mFXDeiPa8sldIwo07Dw9N6NtlTVOlwBwY5Wo0SEiAK0gzua8Sbp7jaye78Kg6X1zCkQzx9W8fw81/OIDu/kox4C1EmHV4fXD6kLZFGXYhhxInA5vSQX+ngs42HaR0bwRldk4gy6rhuZDteWJQTWO/q4e2IbMT2WVEUzu6Vyo878vl5bwmKAtP6ppGZ2pCwldpcPLdwD1EmPc9f2pfnF+5ld0EVY7slMa1fOjNr3dxW7y/lro8289Ll/U6ZM1q4Urv0WHMgRwukJ+V4y9pq3L6AmrhsbzHn9GrF5jplalltY4g06Vi0qwgVlbmrcvl80xG+u72hm+PphlGvJaXWJKR1bdiru7YHamteOfFWI23jIkL6x+ItRp69pA8z31hLtdMjpYsX92m0n+/XRFqMmZ/uGsW32/KJMesZ1SUxxAXzNwlVPod14VPB6w3/HdGC5iPOYuShaT259u21AWX6tjEdsZ7k9+YfFc25a88D04F5iBPdDKBTI+sOBPaqqroPQFGUD4ApwI566/0LeAz48wmccwuagqqKWqH6pJzIcIwE8MojMvPvdwlL7Q2XfXz8+TVNITodLp4LLhuU7IHFD8OhNdKX0mkcPNcPbvxZmviPF9vmN1y27g0hKZpT+KVgjoHUvhDfueFrMW1g7wL5f94aIUWOMOqPsxLy1gUJkR9rXpFSvPVvQv+rhQhE1JuVTh8gxNFRIeWIncaJoUJdJGdCVHrD/YeDNUkstFc+L8/MlBdqM4fqDQKcNil9c1TINn5VKzJZCF19VBXA9YskR8gcCyP+BBGJUhI36AYpnXTbpbesLmlUFDn+6peDy4p2QdvhogZlfy3mFqm9oGQfLHhQfu96jpyX1wM1JSJAmmPlWfMTIj82zYHR90p536DrMc+7CvOq/4qaOfqvQtZqTyXSpA/YAYMoBSBlUVajjkSrkaI6A81LB7UJOytef7ByycA2XJzVukkVxg9VVflxZ0HAajunyMYFL61k8d2jw+b4HA/G90hhbq0N+AuL9nLf2d1YeNcoiqqctI6LIM7S9Ay/2+sLEKGdRysZ0iGelTklgdfP6JIYtsynpNrJzXM3sHq/ZCYZtBrmzxpCz/SYk7qmyho3NpcHVZVSorokY1d+FRe8vAKfKoRvRmFbrhnejutHtGdMlySW7S1maIcEOiZZmywXTLAaefaSfthc0ptjMWqJNocfNGsUha2HK7j9g01MH9iaKX3TyGoby5Tnl1FZJ3x35b4SXJ5T13cTYdByfr805tdmVkUaddw6phP3zg+WLY3vntJo31RjMOo0RJl0VDo8LNldxPn90vnrxK7kltoY2SmJXq2jeXvFQdYeKKV/21jmXDuI699dx8ZD5Yxvhuvb6cahUjvnPrcskDU2qF0sL17WP0CMNBqFnmnRLLxrFNVODxajjmiz/jcZBmzUa0mPjeC6Ee1/7VNpNixGHRf0T+f9NUE30n5tYk96wqMFMik1qF0cP/9lDLvyK8lIsBBnMWBtKUs8ITTriVRVda+iKFpVVb3Am4qihJmmBiANqOvBmwcMqruCoih9gdaqqn6lKEqjpEhRlOuB6wH69+/fnNNsgcsmZOObu6R0qM/lMPLPjRsZ+Lyw7vVQ2+Sjm0WF6D711J5bRJwM6jVacZ9TfTJAfvc8cJTDqpdkFj/MbHmTSAhDUpIyQTkNNdYaLQy4GrZ+KHk9IEpXbIbcN4Cuk+Tf/jNh1Qt1sor0kHW12GDXhzlO1DqA9W/AkFkNSZElCa5fUqvOFEGPC0QZ2vqxGCmMvFvet/ZnNCS0Xg/Yi+We68xBJSoqVUrnPA7ZR/2SGpcNdnwKX94uRMscJ4THGAkHlgsh8V83CLlI7g6vjJRzBBh4I/SZLqSm41gxhIhsJXbmk56Blc+KM9+5z8pzetW3cGQj5K2FvpeL8nfROzD6HnleN38QNIvY8Lb8XPIB5CyChf+UksCht0Kvi+VYdcsB9bUTBC677Ou8l+WaNdraCQRxDYwxG/i/c7qF1L9fN6I9P+4owKjTcKC4mvk3DeXpH3dzoMTGtH7pnNMztdmWuM0hRCAE7MO1oZbmLq+PjbllJ0cgHG5So03cMLI9b688QLRZz+guiTz2XTbrc8sw67U8eWEfeqVHN9oTZNYHm9qf+2kvL1/Rn6+2HGHDwTKGdUzg6mHtwqof+ZWOACHyX89D32Tz8uX9iD7BWflSm5Mnvt/NB2tz8alCyJ64sDfxViMVdjeP/7ALnyplja/O6I/N5aWo2gWqSqtYM7efGeY7BFF8iquclNictE+0Em8xiNPaMfq94i0G7jyzE7d9sInD5TU8+cNu+raJYXC7OGrqKWpdUyKb/Tw0B1qNwoCMOC4a0JqSahdt4iJwe31EmfVEmXWc0zOV28Z2Ou6yvNgIPc9f2o+b5m6g2unhn19u57Obh7F0TzE2l4d7529lSW3v3PqDZewpqOaWMzqeUAmP3eWhqpY4Rpn0mE+yX6ba6eGx77IDhAhg9f4yDpbYQ9Qig05LUpSWUzgd2IJaWIw67h7fhS7JUfywI5+strFcMSTjtPdO/lHgN9pJi21xnDtZNIcU2RVFMQCbFEV5DLHmbiwUKdy3e0AfVRRFA/wXuPJYB1VVdTYwGyS8tRnn2QJ7Kcw9XwZ8AKtfkhn9obeGV018Hpl1r4/SMMtOBTRaKdda8yr8+IAoBn74jQc4zj+A7UeLuuUfnMd3EFezU2G24POJO9rRLUIE4juIynDND1BxRErQfF7pDYqIhzP+JuWBAJGponAsfwZQYdjtcu1Gq6zjv8eWROh5Abw1KXjcqvyGZE+rrQ0pfVLeN68bWg8W4uBxSrle0S6IbSf399ynZZDvssH+n+GLW4SotBsF02YHrat1hsZt0R0V8PWfgspTTSkseRxuWCoktv1o+XRvmivP2YRHYccXQUIEkDFU1DGAtycLSWzVDy6eI/bhncZKmd2RDfLs2oqF2E14BD64RO7T9k9h8CwpiVv6WOg5Vh2Vn89uDC5b8A9I7CKhtT/+X3D52L+L4cWa2aJWehzQ6SyY8mKIjbpBp2FCjxRGdk5gS14FbeJk5s3rU7l6eLvAQO0/5/XA4fYRbdaf0oGtH0adhrZxEaw/GNoAXvcPX5nNhcfrQ69TMOi0zbJZPlBs47wXV3DZoDa8PnMACVYDLy7K4bvtBYF1rnhjNUvuPoPkRgbP8VYjs2dk8dQPu9h8qIJNuaXcNkYKCCxGXaMz7NWOhipmRY27Qenh8SA7vyok/HbRriK+3nKUK4a0RUXFW7vv28Z2orLGw6cbDwcakzPiI3jvusENSGapzcUDn2/jqy3iOGk16vjs5qF0TIoMew4erw+nx4fFqEOjURjdJYkvbhnGZxsPk9kqitFdkrAadTx7SV9u/2AjdpeXxEgjT0/vc0qtz2MiJDB15htrsBp1FFe7uPPMTrw6Iwul9jo0GoUKu5tIk67Zz61Bp2VQuzh+umsUNS4v0WYdP2UX8tdPtjLvxiEBQuTHol2F3Da2I+mxx6hUqIdSm4sXFu7h3VW5KApcN6IdVw9vf1KDZ7fHJyS4HuqWFLbg9CPOYuSKIW2Z1i8Ns0F7wsG+LWjB6URzSNEViCHDLcCdQGvg/EbWzat93Y90oG5xfiTQA1hc6/2fAnyhKMpkVVXXHd+pt6ABjm4MEiI/dnwOfa8IrxbpjOJatv2T4DJFA5lTTu95dp4gvSZ1jzn4JlFTjhfWJLhsvgyMfV5xXTve0j9bkbipGSOlJK3yKPS6QFSVV4YL2QRI6QmXfyJ9L9baXha3A67+Tv4fERe8Br0JEjvDpNreKT/x0Jul5yl/i5DC+M7w+awgQTRYID5MdarPJ+dZslcUt6hWUqb3w/1wcLkQjUn/lf4bg0XUEINFVLgPLxNi06ovJHSCLR/DgKvC5ynVhbtGCFddbH5PyMVZDwE+KSnMulLIhkYH398Xur4lSQjjN3VE4SMbxF1u8M3yfHabVHuOtc/uvkWw/L/SU7TyBfDUGdAo9f6QpvaB7G8anvuWeeJQ13Yw5K2HdiOktLDysBhC+LHnBym3HHFXsKfNXkpk0S4i9/zAuIzhENkbLMHBsMvjo6DSgdenYtJrAgPLKoebggoHi3YV0S01im6pkU3m3hwLZoOOO8d1ZsnuIkpqTRzO7JZE69qB5qFSO08v2M0Vg9vy8YY88iscXDEkg97p0U32qHy49hBen8o7Kw/yzsqDvHBpP5buCR3UOtxyjclRJlweH+U1cvxIY3DmPiXKxAOTMqmocbNqXyk7jlbSJSWyUUJUUu0kzmogwWoICc69aljGSfVurD9Q1mDZyn0lXDygNTERBm4d05ErXl9Dn9bRFFe7QpyaDpTYeWXJPu47u2uIKlZU5QwQIhC14d9f7+TZS/o2sBovqHTw9ooDZOdXcX6/NIZ2TCA2wkCv9Bh6pYeaf4zolMCiP4+mxuUlwqgl3nJq3aH0Wg3juifTKz2a5TnF9EyLpl2Chbja4xytEEfE3QVVTO2bxvjuKc0mHEa9NkCSy+wu3lstRNT/OajbV2bWa0mOMh23nfXaA6W8vvxA4PfnF+UwtEMCQzueeGxDTISeGUPahkwuWAxaeoVxDWxB8+DyeCmxuViVU0JSlIkuKZHNIvdajXLcpZstaMEviWOSIlVVDyqKYgZSVVV98BirrwU6KYrSDlGN/gYUKIpyOTBbVdVnFEXpDHwIZAB24LIWQnSKENex4bLkHsGyoXBI6QEXvi3GB3oTjP1HswIwTwrW5KCK4q6B4bdDTBMhfbYSIQ0aLRgiwVRvttaaeOLmELYSIQntR4lhg1/B+fkxuOJzsfj2k6L8rXB4g5ARP/Qm+WkMfjJkLxUlzOcTFSttICx4QN6bNkMleyg6TdSWugS2qgB2fyvlkO3PgA1viaFBxzPhvNniGndwGRTvhg8ulfXGPBA0TCg/BKgw7VXJIcpZJCqWo7IhKXLZpe9JaxCCZ7AK+aqsM6/R6axadanOHzY/QVRVMZLIXRl8zVEeasbgR946yFkAqlfKN+uT+YMrpWTOYIGetXMwEfHSE1TXeMEUBWn9Gu4/PUtcDtMHyI8fO79ouO7+JdLvZI6R59GvJAEse0quadw/wRSNzelmYXYRf/t0K5UOD31bx/DS5f1JijSybG8xs+ZsCOx2fPdkHpnW66SyOOItBr66bTi5JXZiIvTEWQzEW42UVDu5ae4G7p+UyXXvrA/0Ny3YWcjzl/blnJ6pjYZOdk4O/fzkltrITI0KyUrSKJBoNVJhd/HVlqM8/sMuHG4vVw7N4PqRHQID6SPlDs59fhnO2r6YPq2jeW3mgAYDpGqHh39/vYN9RTZenZHFe6tzya90cMnANgztEH9SStvIzok8+ePukGXju6cESE6f1jF8ecswIow61oUhUNn5lTjc3sD65XZXA4tyudaaBv0/xVVOLpm9KuAyuDC7kP87pxszh2ag12oornZypLwGr08lPTaCxEjjcZeuHS+iTHqiTHo61Xufi6ocXPTKSg6ViuPd6v2lFFU5mDWqY5N21eGg12pIrnV0+2rzEWaN6sB/F+wJvH73+C7Hre74fCrfb29oe/5TduFJkSJFURjVOZFnpvfh7RUHSYo0cPf4riS0lG6dMA4U25v1uW9BC35vOOY3oaIo5wKbgO9qf++jKEqYkQWoqupBFKXvgYXAW6qqdgC+BP6iKEomcC/wk6qqnYBymlFK14JmIjJFejj8iGsvg8imzBbMMaIMXT4fpr8PbYccW0E4WegMUop29hPS7J/cA4yNHLO6SPpKnu4hP0sfD5KUk4XXA/YiKD8gGTp1ywZ9XlErekwL3aYq1JXsmHDZIX+buK1t/xQW/0eUkppiubb3LxHiMPaBWoVODapN1QXw+pnS07PoP/DWRFH9YtqKsUNpjrx/UWmw80spqRtys/Qz+VWP6HRxfivKhs9vEWOKhf+Se1qXrFQXiYLyykghV4U7hRjN+BLaDJGem8zzJIy1vvW1H4oipGnS09Jb1G6khKy2HdqwnDFjhJQ8Ln1MerLqv57WD4zRMGtlkHRptNBpPFy7ULKYpr4oilV6FnSeGLptzwvDl1Cmh+lP7HCGEEAQsth2mKh/Zz8hquOGd8BZDUBFjYfbP9gYaJbfeKicR77dSfq8ItEAACAASURBVGGVg4fqWc5+v72Aiho3B4ptHC2v4eXFe3n0253kltpxeY6df+Ly+Fi8u4jhjy7i5vc2cNHLK9mYW47b68Xl9VFS7aSg0hFi+AAwe+k+ypqw757UK5W7xnUmOUoGMCtyinlwSnfSa8vyjDoN/57aA6tJR15ZDX/7bBvldjcOt4+Xl+xjWS15qna4efT77MDACGDToQoOltgaHNPm8vDF5qNszqvgyjfXYtRp6NsmhgFNhJ82F23jI7jv7K5YDFoMWg1XDs1gZJ2w10iTnlYxZvYVVDO8Y0ID+/HJvVsFslJKbS7u+2QrkUZdA/emi7JaE1tvlrvU7goQIj9eX7afMpuLoionl7+2msnPL+e8F1dwwcsrKAxDtk4H3F4vh8treHlJDm8t309+hYNSmztAiPyYsyqXspqGz4rL46PC7g6UHtaH1ajj7rO6EGnUMXdNLkadlo9vHMITF/bmxztHcn7/9OMmfxqNwshODSe3hnVsXihzU4iJMDClTxqvX5nFkxf1oUOStdk9gPVhc3ooqXbiPc3BtDanhz0FVTz45XZeWZJDwS/07BwL1Q43j4X53B8I87lvQQt+b2hueOtAYDGAqqqbFEXJaGxlVVW/Ab6pt+xeRVG6IUYMU4DRtS8N8++3BacAEXFwxl9h2K21zfNRzSslU5TGzRhOJxrrZfHD55FG+v21sVg+L6x6Hvpc0tCIoC5qykQxKd4FKb1FYTBaG65nK4RXx0o/TGoYC2uvW8rC/NAaRKE5HlQdlcH/lg+CbnHr34Iz/wFn3g+7vhKr7o1zpCzu5jXBbfPWh2YOed3SL5Q5BVY8KwpL64FCOmZ8WRsGGyUlen6YoqU08Y3xoeeVu1L6jSwJQtyWPAprX5XXqgskWPWmVRJMO/096QXSR8j+698je4k8bzqz7K/fDDGc0OpEsXJWwbTX4du75b3peo6UzL17nmxfvEcIyA/3iyKY0lNK9MxxYK4XbmuOEWJTl9zYS2H8QzDuQSFOeosoXmtfk+ym9qODn4PIVBj/H1j4H/DUCJnqdJYYO8R3kMDdH++Xe9NulPQ+vXte4FCHy2oaBHKuPVCGV5XsnvoorHIyffZK+rSO5Z4JXZj+6ireWH6AH+4cSdv4picfyuwu7p2/Ba9PDZSb3TN/C9/fMRKDViEpyhi2Cd1i1IXk/gRuk8tDbomdFxfvRavR8PZVA9FrNURH6Ik06vjohiGoqopBq8Fi0hFh0AWCZ+vi661HOat7Mm6fSrm9YRZRRe2yyho3eq0Gs0Eb6GepqHFTUeNmzupcdBqFSweegONkPcREGJg5JIOpfdJQgcjac6+LTYfKuX7uel6bkcWrM7L4z9c7KbO7uHRQGyb2TAkoVQWVDr7Zlk+108NrM7N4cdFejlY4uCirNef3S28QpGoIM7D291Qt2FlAdn7QhfJgiZ35Gw4za3SHk77mY+FohZPx/10aCB99YVEO824c0mC92AhDg8yiwkoH2w5XkhhlxKTTEGXWkxzGVrtNXAQL/jSKnfmVxFsMpMWYycpo4nu5GRjROYHJvVvx5ZYjKMCFWen0OYVlbidTpunzqeSV1/D4d9kcKLEzrV8aU/qknTazgD2FVUx7cUXg++atFQf44pZhv7r9ttunUtbE574FLfg9ozmkyKOqakVjpRjNQS2J6ovkEiWrqnoUQFXVo4qihB2113Wfa9Pm5P9w/mFgjml8Jv/3Ao9TBrqeGrHtTu0DRzfJ4HbM/eLgVnlEBs/1SZ+jEla9CEtqG/IVBS6aK31M2noDyEOrxRq6pFrUisgUMTnwY8TdoNHUKiWRMlA/3n6ljXOl3K6+ffbK58VB7sx/Sp9OdGsZ2EfUmSn1hmkE9rpESdIZ5d740Vj5oDFSysi0TfzhdlbBjs9Cl/mJZWRK4wTU65YyuA8vlfcrMgUu/QisqUJudAZR4xQNZE6GjGFi3rDzC1GjPLUznxotdJkkBNbnDmZPnfmghMs29d1TUy4q2trXZBKgy0QYcK38vuVDWSelJ1z+qdwjc6z00WVOkWfo0BoJ/fW6RIH6+k/Bfe9fAmWXwXUL5VptRbSJj0SrUUJm0AdmxBFt0nHVsHYhIaZdUyIptbnwqbAht4yNh8oZ0j6eFTklvLn8AA9MymyybMzl8YXYNwOU2d04PT5yS+08fXFfqh1ueqVHo9dqiI3QszG3nHsndg1rFX203ME5zy0LnPvXW46y4K5R6DQKb688yPML9+D1qdwwqgNXDG5LhIGwA9IBGbEYtBpMei3XDM8I6dWIMuvIbBXN4l2FvL5sP7ERBu4c15nUKCN/O6cbf6nj6DdrdAesjeQCNQWfT6XE5sTrE1OMOIsBo15LUhPKhM3pRVXhmrfXMbZrEvdO7EpMhJ6uKZFE1blXfiVn6Z5iDpTYuTArnYz4CIZ3TAhbBhll1jOmaxILswsBeVT/dnY3os169hc3nDnPKarG51NPqlxQVYUkuzxeDDotcRZDCAn2+Hy8sWx/gBABFNWG/57bu1Ugg0urUfj7uZkhJU/FVU62Hq7gu+35zF+fh0+FMV2TePT8ng0G47raErrkYwSjHg/iLUb+NaU7907sKnN1Bt1vpgel2OZk2ovLAxMUWw9XYHN6uGFUh1NuGlDlcPP0gj0hEzBHKxxsyatgbLdflxTFRhi4dni7Bp/7HmnRTWzVghb8PtCcv0jbFEW5FNAqitIJCV1tzJK7ARRFsQLzgTtUVa1sLrlqcZ/7g8LtkMHoJ9fJADo2Q8r6SnIgpjW8PSmYlZOUCTM+DyUqrmr4+cng76oK3/xJSqzqB32a6wz2v/2LKCI7vxKlZOD1Un5oipLja7QNVZLmoLFwURQxJhh6M/S5VAiEqc4fFa9HyFhEvCgxICOuIbeIicA1P4YSqKZgSZCcoLpmB13OqWMXrhNnu7qucUndhAzVlDUe6GovgY8uD5YzVuXDvCuFPM6bCSm9xOzgx79LgG9ce7mP+dulZFBnguF3SvmkvUhKBeti8cNyD/yEz1lV+94rUu5mipT3e93r0m815m9ChDa+C0NulWNtek96wSrygvvRm+HwRvjoiuCxEjqLWlQXo+4R4vTFrULUU/uQOP19XrqsL3/+eAuVNR76t43lnrO7YjXpuXRgG9olWPh042G6pEQytU8ahVUOHj6vJ3sKq+iQaCElysieguqwNp11UVrtZOfRSnqmRbP1cDAks1+bGJbtLeavn2xFUeDZ6X2YfUV/lu4uJrfMzj0TuoZtbldVlbdXHgghcy6vjwU7CuiZFh1S+vfUj7vpnR7NqC5JdE2JDMm9GdQujql90wKD+qEdEnhtRhZvrzxASpSJW8d24ki5nSvfDN7Ln3YW8NNdo5nQPYWstrHkldXQJs6M2aDDajy+Aa/L42VLnuT/HC6voV+bWJ6/tO8xLcoHto8L5Oz8lF3IT9mFfHTD4BBCBNA1NYoIgxa7y0tuqZ0nf9jNg5O7N1jPjziLgccv6EV2fhW7C6oY3TmRxCgTiqIwpU8aLy7OoW6G7aWD2py0U+HewmqufWcdB0vspEabmH1FFpmpkUEVSwVnmPLMTYfK+cfkTK4ZnsG+IhsDMuIahL26PF7sLi/z1uUFli3MLuS7bflcPrhto31qpxLREQaij8+07hfB0XJHiEEIwAdrD3HRgNYknWL1prG7/Evc/+ZgSId4Xp+ZxVsrgp/7ln6iFvwvoDmk6FbEMMEJvI/0C/2rOTtXFEWPEKK5qqr6Lc4KFEVJrVWJUoHC4z/tFvxm4HbIAFfRiL30yX5p15TJwNrvxlZ2QOykh94mJMIYGSRFhTvgyCbofFZwe6+rYdN+uEZ/kIGw3847fyu8N12ygLR6UTH8zmsRjZCC5iBzimT6tBsVLAMEcTsD6eWxJAVVLEeFlJOtfU0IwfWLYe0bUurX80KozpfBv1Yny/wZO/XLA6uLxMTAGAlao6g4l80Txar1IOn12foxZJ4rKtWkp6VkzlEB/a+C7ufB5zeLQjLybsljqksKvR65P/Xvbem+YClm/hYhKXHt4L2L4MpvakNjn5ESNkUj+zRYgsTPjy4TofelopapqhCvxQ9LwC0q9LtSLNC9blHBxt4vlt8u6f1h03sw4zPIWShkrX6grbGeWUflYemD8kNngg5jQssOj25Cs/g/jBn/GD/eOarWdUsbKJ+JtRg4u2cqozsnUu3y8Mg32SzcVcgLl0rg53ML99ImLoJXZvQnJcrY5OC4xu3jX1/v4NnpfXl5SQ4bcssZmBHHdSPbc/NcMXNQVYg2G5j5xlp2Fchn4sVFe/nw+iEMaBeq7ilKeNenjPgIvtvWsLn9yy1HGdEpkXirkQcmZXLXWV3wqSoRBm3AyQykdO3MzGQGtovDoNPg8fqYvSSHNnER5JbKZ9jm8rL2QCnn9m6FT1XZnFfBw9/uJMKg496JXemeGtXsEMcyu5sr31xLtVPezw25Zdz7yRaem963yZyjRIuBb24bwStLcyiudnHdiPZ0Sm5YUhtn0fPd7SPYdKicFXuL6ZQSyeTercKWI/oRbzUyrKORYfXMAFKjTbx7zSCe/H4Xbp+P28Z0okNi8Jgl1U68teWKze2rKq5yMmvOehKsRjomWXF5fOwvribOYiDOYsBs0KLTarh2eHvmrcsLWJ1bDFrO6p5CvMVIvMVIn9bhv9OMei3b6pBwP/xufgbd6TWJ+C0jytzwGU2KNKLXnHpraatJz51ndmbp7qKAWtQq2kTPtBOYmDsNiIkwMLabfO71tapxC1rwv4DmuM/ZEVL0t+PZsSJTGq8DO1VVfarOS18AM4FHav/9/Hj224LfEOwlsOIFCRw1x8LEx8RJrTHThObAbQvNLwIpnYuIk16PQTdKxlHdc6gLvUUGtwXbg8t6XdSIeYRPVA3/8ZJ7SODqqhelPycpUyy4o1Kbf/7VhWLzfGQT9L5Y7LXbjYC0vhKueniDECVrkuTpHNkg1tSZU4To5K6E9y6WfW1+X7a/+B3JBfr8Zhm8j39YyMiyJ4UoDr9T+oYi4oTMHdkMX90h6/a8sNZswyLbT3tVSvo2vyfHWPKI9M10nij9TNVFolq9ODgYfPrucrhukRgY1FRAcbYQtcE3iclD5eHg9Sd3F1UGpAfJUQFJ3aVnyuOUcjeDJVQVA7CmyLYZIyTk1uuSe/ntX8RUwW2XnietQcwvUnvLcaLThTztXRAkRCAkaNN7cl37FkFsPXfD5O6Q2FUMKPzrm2PF1vyH+0Whq8ijAQ6tQeexkRzVdBnlE9/t4pONh5nWL41le4p5aUkOAFvyKli9v5Svbh3e5PY6rUJptYvr31nPJYNaM6lXK7qlRHLx7FUBe+5Eq5EatzdAiAB8Kjz+wy5mX9G/wUD7soFtmLPqYKAPKNFqpHfrGBweH68v3x+y7qB2cQHS1pyZ+yizHrfXS6nNQ2arKAa0iyParOfuj7dQVOUMEMdNh8q588NNge2mz17FwrtG0baZpKja6QkQIj9W7yvFeYymd61WQ3pcBA9M6o5XVcMO4jxeH4dKa3jsu2wKKp1MH9iaszKTT9g9MNKkZ3jHBDJTI1EhYL/t9ankFFZzx4eb2HG0kiHt43nyot7NCuT1qSoPTevFtsMVlNpdnNsrla+2HOX/PtvGeX3TuW1sR+KtRlrFmPj+jpG8sXw/Jr2Wq4ZmNMse26DTMLxTAq8sDc2qOysz5Q9NiEBCnSf3bhWwdDfqNPx9cveTcpdsCh2TrPxw50g+WHOIlGgTk3u3+tX7ieoj0vTbKG1sQQtOFY75l0hRlCzgPsRCO7C+qqq9jrHpMCTjaKuiKP6/gvchZOgjRVGuAXKBC4//tFtwyuDziuKQu0pmz1N6Na9vxueD7Z/JwBxE4XnvIrh148mRIoNVemAc5cFlbYaKknNwuZSPBda1QPuRodtbE+GyjyVk9MgGGRQPvCa80YKilQF9VCshK9YkUTX8KNwhbnfj/xNqXuCH0wY1JXJu8R1F9fhopvQqgQzip74spMyaBEV7RLHxN/Sn9ICB1wnJi2ktg/K6pX+KAiV7oDBbFA8/+cj+SvqrQAbzSx+HbpOFFNlL4Z1zgyrX2tfkvIbcBkNvF3XGT4j8+OlByTnS6ERd2jovSIj8WPsqpDwn9t8fXCrLSnMkCParO0TdSukJZz8OX94BI/4Mnc4Uo4j4jtIf5CiXkNW2w6Tvp+5zZk2UvKlt8+HlYaIAxbaDaa/IMo9L1JtLPpB7sfI5saCf8JCYVmyqd00AWhN0HCeksP4zbU2CmV/Kc28rhM7jISJJgn87T5D7qtbap9etf+owRpS5JlBR42ZBbY/JyE6JIX1GIBk4RVXOsM3rfkSb9fxjcnf+Mn8Lz/60F40CX94ynM4pkazMkYmAxtQLt8cXcsp+JEXJQHnp7iK0GoXhHROIsxjonR7NuMxkftwh4a2jOicwqnMzSzPrILekhknPLQv0svRMi+ax83vxxA+76JIcSY3LE8i28cPrU1mYXchVw9qF22UDWA06jDpNiPNVj7ToZs/W63UaGhvGFVe7mPL8cqqcQWdBnyp2w3EWY8DCucTmQlXBZNAS3Yx+l7h6WUQl1U4uf301hVXyGV25r4Q7P9zEK7VE1ub0UOVwU1jlJCnSRLRZh7nWOMKnqvz1k63kFMkEwEuLc3h1Rhbfb8/n7ZUHiLXouWl0R8wGHR2SrPxzSncUlGaX7EWa9HROjuTu8V14YdFePF6V6QNbh7j5/VERazHwj8nduXF0B46U1dA9LYq4k3RObAoWo46OSZH836TM03aMFrTgZOH0eKl2eLCadBj/ByZOmjM9Nxe4G9gKNNuDUlXVZTReGju2uftpwWlGRZ7YMPtJSGIXmPnVsYmRs0IGq3Wh+kTpiMtoelt/yR0ICapLWLQGUS4+vxnKD0ov0IRH4P3pYrgQ1Qo6jBUCMfpeKT2rj6hWMlh22WQA25jLnT5Ccny+uFV+L9wBw+6AG5bCrm/FDOHIBnFnq0+KfD7IXSFE0E8ght0hZMVPikBc3TqOlftZdgC6nA2vjwtm/5hixA597esweJa43SV1ExJhjBTlC5WQj1JKT9lXh7Ew7HYpodMZ5b4W724YuLrzSxg0CwZcI+SlPjwuUZjemSyldF3PabhOTIa8Z0ufCC7LWwvf/w0u+Uhc4lSkH2vSf4XUfHh5sLxu4mNCPI2R8tzkroIL3xRFJnBPPfDj/wVJSNl+IYmdxst9UjSw6xvJEQK5lsPrJPOq+3mSKeTvi9JHwLDbwtt9+2FNEgOI+vC/104bXPgOfH2nKJKdJsCIPzWdS4Xchg6JFkptLipq3CRYDRwuD7VCrm/3XB8mvZaJPVIY0iGegyV2MhIsxJp1PHNxH/67YDcrc0ronxFHr/Ro0mLMIfu/ZUzHsLPXWo1CcpSJC7OC+dplNhf3zN/KmZnJzBrVARXYlV8ZKLuqi8oaNw63F2sYdzeb08MTP+4Kae7fergCnVbh3asHEmc14vb6yEhoOGHSNq75DSRRZh3PX9qPP324iSqnhzZxETxxYe9TMlu//UhFgBD58f6aXGpcaTy9YDef3DSM4ioHt36wiaIqJ6M6J/D4Bb1JaoLchkON2xsgRH6s3l+K0+PD6fGyaFchd3ywCY9PSuteuaI/IzoloNNqyC21BwgRCKl8fdk+zu3diid/2M23W6X3x9/foT2B0q7kKBPXDG/Hhf3TUZFn1dJMJe9/Hf4yxczU30YZWwta8GuiqMrBq0v3s2JfMUPbJ3DdyPbHHdj8W0NzvumKVFUNm0vUgt85PE5Y/nSoKlO0Swb13c5telt9hAzODy4PXZ7Ypentaspg01xY9LD0i/SdAWfcJ30oqiqD3o1z4Kx/gyUeiveKmqW3wNSXRGW56F0ZxBsigpk+Dc7PHF7dqQuXDVY8I/8fdoeoNe9OlZKvbufCJe/DwVUNS70A7MXiVFZXUVnxLFzzgxChANTaH6DXhZJVVDcM1VEuJOGM++R8xtwvZXT7l0opWckeKeM79xlxZEvtLWpZ/la5/nkz5Z4ao+D81xuWiQG0Gy2ht1q9lLu1GSqEzo9BN/w/e+cdH1WVvvHnZPqk9wQCofdO6FXpSNFVmqKIKDbsrm1tq6vurnX1hwWxoiBYKCICUgRBeu8dQjCQkJ5MJtPu749nhimZkElIQoDz/Xzygblz594zd04m57nv+z4vU+7y0hiNGvZf1utojYxSNR0CxDSl4Bn0Cmu8ck7ytYntAYcF2PoFjx3fGlj+PNPaJnwHfD+Zx9QYKZajm9B1D2CjVE/yz6BUiOPsXu4f35rNbT3NEQCKoKJMPn/vH4yiWUxMsQtNuHiNmymb199icjYA9jHF0AWztqleV45LYwjI2dFqs+PJwc3xwLfbMW/raTwxuDnum7UNFmeK140d6iDcWH6EIUSvQYheg6RIt2gw6jR4cURrFJZYEaxVw6hT46cHeuK7zak4lW3CxG7JaBLnJyrqg83hgNWmwGp34ODZfKw76l0b9svDvb3SudKyTXhp0T7sOZOHPs1i8fSQ5l5iwGZXkFtU2pK3sMSGKOcCXaMKwl29GuLnXX8hPY8ub52SI9CuApbLBq0a/ZrFYsUT/WCxOaDXqBATUjV36/19JjEhOuQVW5FvtuG1X/ajY/0IZDoFzZrD5/HW8kN4eWTrgGuiAApel5mDi8axIVAJgVyTFc/+uOeCKLXYHfj7D7uw5OE+iA3VocRa+r6kxea4EClrFh/iN0pYUfQalawTkUgkZZJrsuCxuTux7igzF/aeyceBs/n4YELHS+49dzkJ5Jv8JSHETAArQbMFAICHcYLkSsVh93Ycc+Fvmy9qHaMUR1cAWUe5rf2tbCx6MXJOMrrgYutnLOLvcCvFyK45jDalbnDvM/pDplEZo1mTkroR2PwJe870e4rRjaBK/AFXHO7+O82HAp8PdT+3fyHNCHpOczdC9XqtQpHgezzf4GjfpwCjswDblM2+Rb6Y84E/3mL/otu+B3LTeH0/H8zzBKmAW74AHt7JyNUXw4CI+sDgV9221iX5wIJ7gSkrKPBcYu/Gj4HQOqzHqtuZPzd9zKhM5kHn8dXASadleHQTdwTt3F5g1AfA0meAk3/w+djmwM0zOYboJoy0fNTTbW4R25yRvVk30eCgzxM8TvZxiikXne5gfyVPQuL5vj0jXY36Mb3NGMVoUVgSa4080YdR/IQlMh0xEIqy6Ma3z/k1Fp4E3LWcwssTlYbiqgIYtGrMWLsf70/oiCAhEBOiwdJH++BoRiGSooxICNNfUr8Ug1bl1Z8oPkyPh65visISG6x2BwzlLGYz8s34dlMqDqTn48HrGmNYmwTM2uhOaws3aBDr4SSVWcB0r5NZrL37cVsacosseHdchwvmDeFGDe7q3QAbjrtr/EJ0anSs713QnxCux8JpvXA62wSDRoX4MD2iK+hapVUHXTT1sLLEh+rRszEt0wHAqFXh3r6N8MT3uwAAZ3KLMaClt3BefzQLhRZbhURRuEGD/43viIfn7ECx1Y6oYC3en9ABMaE6pOWYSkWrzhda4FAUpOeZYdCqEB+mw7l89+/I7d2T8fn6k6gTrsfkXg1x/zfb8P6E8h35JBKJpLIUW+0XBJGLP46ch8liR0QtdI8MlEC+yScDaAFAA3f6nAJAiqIrHa2RRf4HfnZvUzvrMAIhrA4w+Vcu6tU6psKV59R2/PfS2w79wvQntZ5C5OQ67+cjk2nRPfFHGhh4RgsO/gI8uKnCC1cArElqMYrRmLN7Sz9/4nfvGiZPdCFAu/FsLpvYgdbbpmwKtVEfAH/tYH1KTDOKGlMWa28GvgT8+YFbzIgg1hzNv5ePs44xZfCrUe6oicMOLH6MwuiHu7gt7zSwex7Q6kYKSYDnO72Jn8HUP5hiuO9H97G3fMqoT+vRwIIHaGM97D/A9q8ZsdMG05luzjgK3YS2fB8uQQQwknhsNZvFqjTAqle93f4yD9EdMKwuxzLwZUb3Zo/1vn47vqHltQu7FTi4hNGu5c+zFqnFDYyg2Sw0hKjfizVLX97gvn6dJ1NE2Uo4BwMl56RbEAGMkq19i2mX5UUY/WEr4Zj04YgO0eG54a3w/IK9OHG+CNe3jMPjA5thcOtKzNEAsNjsOHyuEC8u3Idz+Wbc3DkJd/ZMLlXLAgDnC0sw4dNNF1Kw1h09j4XTeiFICCzZexYNY4LxrxvbeFk1myy2C4LIxapDGSi22r0c7bo2iMJnk1Lw+foTiA3R4dGBzS7U4XgSF6qvcgvjqiBUr8YTg5vjLpMFVpsDieF6vLfyCNJyGNG8uVMS/jzmHVFrlxQOYwUjKnqNCn2axuD3v/eHyWJHsE51oTbFoFGhZWIoDqS7zTNSkiOhVavw9vJD2J6ag09uT8Evu9ORWVCC23vUR2KYHvFhehRb7Xhh4V7s+ysf/1l6EK/f1LZG095yiizIN1thstgRE6KtdaYAEomk6ggSolTEO1iruqhT55VAIN+Y7RVFaVvtI5FcHuJbAXcsAtb/jwv96/5RsQalIXEV29+z4aiLBn0oiCxFvNN/bKXb+avZUEYujNGMbmyc7v1acy4jHioNa2qCVOw/5LAy8uSw89j+mpsaIoARbwP7f+Z18CWpWxmudeD2AS8y9ezMNtY/tf4boxad7uCPJ3Yb91n/P+DOX1hDZDMDPR9ixMkVnUvbwuvh68BniHRGM5ay7ujUeuDwMkZizh9yppndDMwcwGhdci+ez9O4AQCOLAP6/Z3/P73R2WRVT6EZ0xxoO9ZtJBCawAiPL+f20ZAjvk3p+iWA21QaRncUB6CPLG2J7WvkEKRmkG3jRxRSwTEUmYdXAL88yn0OLKYYu+8Piq/IBhRMnw4EplVQGPt7X+cPcg5VVBTl/wWse4/zsP0EqJoNQeNwLT4a2xwWmwOhOhUMxqq37XWRXWTFLR//CbMzter9lUdg/oOuqAAAIABJREFU0AThnj6NoPZpKplbZPGqSTFZ7Lj362345u5uePC6JtCqS9tD69SqUuYGdcIN8P3bF+606e3SMAqaoCCvaNaVQIRRiyZxQLFFD0UBcoutsNgcaBwbjFs6J+FvnZIQbtCgxGrH+K71EROiQ0KYHiF6DYpKbMgusmDrqWw0jg1BUqTxguOeP8pKT4sO0eGzSV3w0qJ92JGag24No/HCiFZQBwmczCrCgfQCjPtkAwa2jEeEUYOMfDOChMCETzd6NfrceybPKbhqRhRlF5XgpUX7LzSGrRthwPf39ZDRKkmtx253oMhqh1GjKvV9KSmbcIMGzw1viecXuG8oP+tsXH0lE8g35kYhRCtFUfZX+2gkNY8+nClKdTpwYVqWCPCHw85CeoeVvXD8CQ9fYpqzMeqWmVwYNxnEmpGgIBawn1gHjJ7OyIHWCGQdZ8pZcBzFUVI3CiVLIfvslBRwcTzHGSUxRAIj32eUZf49PE7rvwGD/knbZ99UuOBYoPMkLsCvex5Y+x++JikF6P1ouUX1WPw4xQXASMNt3wNNB5fezxAJdLzd6ZLm4LWyW9mTqdlgCoHlzwMHFvH/rv5JAEXKmC8ZbXGlKna8g2lqx1bQ6S2+jTsdrsc0Hqvv30vX6ADubR0nMmKzZSbTz+p0ZNrczTOBde8Ch5eyP9S6d7xf33wYsPpfNI3o+bB3qmNoIlPQ8tIY9dEGUzR3msTzuGgxkvPNhRC0D9/zPa8JQHe4JX937zP0DWDh/YxehSZSEPd+DGg2kKl6FRFF9btRQHtGudqN818/djEKzzHtMvcUH59YQ5OMmKaImHsbr7UulEI4sf1FD6UoCnJNVmjVQRVazB7JKLggiFzM33EGY1LqlWqo6O+PvhACqdkmdG8UXeo5gH/8XhrZGs8v2AOHQivit8a0u2Ax7UvYFWzTG27QIty5jk+MMOCjiZ1gtTkQYdRCrQrC8LYJSAjX4+kfdyOjoAR9m8XizZvb4WhGISZ+tumCMLmlc108f0OrSuXW14kw4J2x7VFsscOoVSHEeT3Hd6mP9UezUGJz4Jc96dCoBO7v3xiqIMGmnh6/69e3iEOYvuaiRKeziy8Ion7NYjG1byOcLyxBkBCICtZcdjtvh0NBic0OvUZVaxqgSi4/WYUl+HF7GlYfykSPRtG4tWt9xFzhRgE1hV6jwqgOddCrSQwOpOejZWIYokO0V3wtolDKqcoUQhwA0BjACbCmSABQArDkrjJSUlKUrVu31tTpJIFgt9JN7Ic7eac8riUwfjYQ1aj815rzKWYUBxfNRo9GkwVn6YKW/xfrfZoO4eI+NJHRhxNr2UdIHw70eJDH2fsTsPcH9zGC1MBdy+jy5opIDHoF6DCR5g1lUVJEVz2HjQIsOKbsfQGaEHzoE/mKb0ODAbUWMMZS7LkwZfE1a99k7xxPpqygW1uXKRSNlkJaZZ/ewjSzM1u9RQXA1MUgDTB7DDD4NUbhpqfQPfDLGyjCQhN4PheNB9BEYvGjdPn7+WEKwuFvMbK24f94zbpOZdpbcDyjSateYRSlyxTW9vzsbKZ73x9Azil+BuF1gZQprG8yRNLcQRvMa1CYQZF1bBXtvxPb03Ri4Mve5gVFmZwfQSq+t88G0YBBCGDyUu9mqgDrkG54m9f9yG8U+KGJgNrgrBkroXjKPU27dX04x2QxUVwtfZrvP+UuIGWytxteIJzdSwtxT8Lr8X39OMW9LbED0z/LmFM5RRasOpiBbzelok6EHk8Obo56kQaoArhzefhcAQa/u9Zr26BWcXh3bIcLC2rP8zw6dwfWHGYamBDAW2PaI0ynxqCLpPcVmK0oMNtwLt+MOhEGhBs01frHr8BsRYnNgXCDBppadPf2bF4x+vx3Nax299/NWzoloUlcMNLzSzC4FWuOlu07i6l9G3mZZFwqOSYLluxOx5d/nkS4QYPnb2iJ5gnsgbTlRDae/WkPzhWUYHibBLw0snWNLu4W7jyDR77biW4No3Bvv8Z4fN5O5JqsCNOrMeOOFKQkR162u/BZhSVYvDsd646ex4AWcRjcOt5vaqnk2iLfbMXz8/dg0S53nW+fJtF4f0Knaus9JakZhBAmRVEq1RsmkFtJQ8vfRVKrcDi8F+PVcRxTFmtPinP4OOMAF4G3/nBx4QEwxUxfhqVpcBwX9eZ8iiCNgRVs548AlgLveqLjv7Ph6JInfcZtY3RJH+4e3+lNjOBcbGy64Ir1WHKUdtuCzUzTgt//w0apdTq6LcGN0RQa/lK3rCbgxg9Zl2WI4M/gN4D8NKCkENj2RenXpO/isfr+HdjxNWu8Rr7PKE18G7r8jXqfEZsTa4B6PYCkzsDXo51jLWHtjy6c4snzOq59k/2eTv7B9MCeDzPiE1YX+LgP9zFEUhAtew7oPg1oMpBRkYh6pceqOBgFimlGc44Vzga8PR5wOgmGUpDaSniMkDjAbgeufx5YcD/3FX7mYpCa6YJ5p4GE1oDZWYux8WMgsR37Li150m0oMX420Hggo5ANegG3z+c8N0SWbd3ui60EQBCg1vhPtTNEMCJ648f8vKEA5/Z7R6U8cDgULN13Fs/+tAcAsD0VWHskEyse6xeQ3XNsiA7jUuph7tbTAGgb/I/hrUoJIoC9Vv5zcztsOpGN45lF6NE4GjtSc9C3s5/PzINQvQahek21p0M5HApSs014bcl+nDxvwugOdXBrt/rVsogtsdmhEqJCi/UzucVegggA1h87j7t6N8RPO9Iw5astEBC4vUc5hjOVINKoxfiu9TGkTQLUQcIrCtW7aSwWTusFBaxLqummmp2TI6EOEri7T0P8Y/6eCw2C8802PPjtdvz6SJ8KW5dXBbkmC575ac+FHly/7T+Hbak5eHFEK9l49BqnuMSOxbu9jY/+OJqFYqsd5VRGS65iyhVFiqKcqomBSKqAokzg0FIuZFvfCNTr7h2FCfg454Hja4AjS9mbpVG/0ne4LUVuweHizHb/QiEQzPlsBrplJpt2driN59y/EPjpbtbO/LXT+zU2M1B4lil1++e7twepuMg357m3NegDaMq3Kq4QxmhaVXv2/ukyhcYVuadoof3QNu+0Ln0ETSXWv+fepg1mmt5ng4EWI4DEmazzOb6KBhMtbmCvI8/+RyIIqNuJ0aTb5zOCdmo90PkuismEtsC3Y4CF04C6KcCIdwCh5vnvXuF03QvmAn73XP8GGPt+AiAoqE6s4bYb3gZu/tRpTx1Fx7zs48DZXUCniRcxO1A4/hMeEQ0hGKU5uISv++0FRiCjm/A9RdRnit7UNcD+BRSMja7ndXFx3XMUv78+RZE4dQ2b4R5fBbS7BZj1Nw/DCht7Ut37B40xAD53/HeK6NY3MjKmLWPhbykCsk/Qel1jpPuiIQJofgPNQgDOvb5/p/tfz4fZX6tOR6ZiWk2MmKl0/D1x/k7lmCz4ZqP312x+sQ2HzxUEtJCMDNbi2eEt8MB1jZFrsiIxXF8qbc6ThHAD+jaNRevEMBTbHBjTuV6tSRk5X1SCmz/6E1lFFgDAW8sPo9hqxyMDmkGrrppIQ36xFUcyCvH5uhNICGdPnoQwfUANThPCDaX6+bZLCofN4cDMP05c2DZj7XH0bhJTpZEigL2m/H22qiBxWY0NooK1+PbubtCqgy7YrbvIKrJcsKOvaUwW+wVB5OKn7Wfw5KDmUhRd4wjBGwhFHkYBGpVAkEyvvKaRHdmuFkzZwIIHWUgPcKHb5wku0CpSOG7OB1a8DOyY5TzOPJoGDH7NO7qjDeZi1FN4JHbwrhOpCGe2sUeQi21fAFN+c9/lL85l/Y8vNgsw9DWKkL+2c0w3vMNoSZAKSOrBWpSSAsBm4nWqjFD0h0rLaMChJXQzazGCEbRDv/J5SyEX24qDaV5BKoqfntO4+N/7PRf+1z3vboparxsXzcU5dIsDmHbWeTKdAnfMohi77jl+NoqDPz0e5DG6TmW9kjEauGc1F+IagzMS4rGYMmVTVOb9BfR6HDi7u3R6Xp1OFKUuEtrS0vu3FylAGvQFej8CpG1jU9OLub/pwoFu99FowkXL0UDaVlpzf+bheJh1lLbtoz90Rs06sOYNAG6eAZzawM+61Y2cE7+9wPd51zKmJdbtCPR9kp+PzXuBhqIMd0plYQatxV11Wqv/Bdy/gTVcNjPfjzHGXYeWcxL4pI/79bvnAtO2MBqX+SDncL2uwK7vGBUrzgaGOPtxfXML0/iiGzOCuO4dWtgn94JGHexXlFQkhSPCqEWEUYvkALP/IoO1tTJFJCO/5IIgcvHjtjOY1KNBlUUa9pzJw20z3TcY5u84g6UBRjLC9Gq8flNbvLxoH0psDjSODcGLI1rhqz9Pltp3+f6z6NssgDrLqwCjVo1ujaKRnluM5vGhOHTO7Z7XINp42TrdBwkBdZDwakasVQWV3VZecs0QbtDgqaHN8dIid7n8A/2bILQGa/EktQ/56V8tWIrcgsjFxg+BrvdWTBRZCpl25cnOb4H+z3qLIkMUMH4Om4cWZXKxd/Nn5dfh+KM4B1j7X+9teWl0GHOlwO37CZgwl4LD1Ww2sQMQ24Ii4LbvAVsx61AMkUxxemQ3xdDnQ9xRrXbjgAEv8bi6S4wcaYzA3vlA3imgy91cDLvssQEuyu1W9vG5b727B05wLDDgBaaOnd0DLP8HHd2SugLtxzNlUaVlKiHAtKsf72bdT4cJvC47ZjHC0f9Z1i7tnA2MfM/tBBgU5I6G+JL/FyNQqRuBe9cybS25Jw0sDi/lwr7fs4yCQaEYyDsN9H+GJgiuxq0Hf+Z8uWMB50bBWW73FWAA09V6PcLGsQd/5mcXmUwjBd/eQABFl9UE6EP52FZCAW4roUCq15WCpSCdwuqWz4Fvb3H3jlr/P+CeVYyWuowwAKbOuX4fzu1zCyIAiG/LKOmsGzn/QuKAcd9SHMJBK3VP1zyriVHB7vdTbB1YCPz+hts58Mx2YNibrDlyNarNOsZ0w9Z/A767FbhrKcLq98Bzw1pg8/FsFFt517JP0xgkhl/dlsYOh4LMwhLsOp0Lg1aFFgmhfs0BEsP1VVZXlFdsxfTVR722ZRdZsCstD4NalX+9Q/UajO5QB9c3j4PF7oBBq0JMiA5tk0o3oO3ZuBLfhVc4iREGzLijMx75bid2ns5F6zph+GBCxyprsFtRQnQq3NWrIWb84U5ZnnZ9Ey8recm1iU6jwo0d66JH4xhsO5WD9knhqBNhqFEbe0ntQ376Vwv+Qr6VitoIpmZ5Lv781XKotYxq3LeOqVhqvf9ITqDn9DfWIDWQ3JuLcFM2sOIl4I6FLLw3RFGIuRzvfMWYa1H+yxPeaX675zI1L30XI2CG0ouZgNEagT6PAXvmsV9Rz0foxJZzkqleQ15nD6DiHIqWfh5OahoDLbY1wRR7Luc/l/DUhTDKkNyLAqA4h4t0XSjrcpoPZ72NxugUHA8HFgErzmPPI1cvqI0fst/S6tdYczXgJQrJBfcxLS65J53vfrqHBgIuQeTi+GoKv/0LKHjM+TRa0EUAoT5W7cZoNsmNb836s9ObOLfC6zHlz+6ReumqTwJoinBqHT/zpU9TBAXHMkpXtzPT1NJ3eTfTtRQBmz5hnda693iu5J7Adc+6P3Nbsff4ej4ELHzAbQdfmEHhct86CjDXeDzROoW1LowC19OivH4PXkurz3nObHf3aNrC5sUNY4Kx+sl+2JWWh7hQHepHGWukGLzYaofZwn5DNd1f4my+GSM+WIdsZ2SocWwwvr27O27tWh+zN7OZrE4dhFdGt66yqJZKsCmrL+U1vPXEqFXDqPX+vurZOBo3tE3AL3t4Y2Bkuzro1rCKItJXGMnRwfj8zi6w2R1QBYkKN+etSkL0GtzfvzGGtInH5hPZ6Nk4BsnRxgp93pKrF7pNatEs3s93u+SaRIqiqwVtsNvS2EXvJypuMawLYQrWxg/d27pMdfeu8USlrlzTVF8MEeyPdHKdW4xFNwFim7PZqSGSNSKxLXg+VypVeViKSi/iAUYXtnwKtBh+aaIIoBjrei/rSvb8ANz0CQVPST4F0e55zrEU+n+9MZJmAKkbWRPUYgRFg70EyDlOIfTFUAoGtY7RuEO/AucPM7pWdB54bF/gKYG2YoqH4W/Spe30Zl7TXXP4c+di4Lvb3GmRp/4EVr8O3LmEaYwao3cPpYhkIGMfENearoEuQdHhNjqw+ethFRwDjPo/2n7rwygsbvkCWPoMo1jNhzHtU+usxzDnAem7KYbSnC6URZnA3FuBh3cy6rLjaz/vtYTztuNEpiwaorxt4+t04liKnA05Q+JKm2AUZTr7Lqlpdb5ztvuzDE0EmjrT/lQa4KYZrG0qPAfU7865a87n+/P8/Ov3YJQKoFujUEOrCkJCuAEJ4dVrZOBJem4x/rfyCA6fK8DI9nUwukPdi/bWqUpsDge+WHfigiACgGOZRdhyMgtPDW2Ou3o3RHpeMZrGhSIquOru6ofoNXhicHOsOZx5wTChcWwIkqONsNsdAbn9+SM6RIfXbmqLf9zAfmfBOnWl+3VkF1lQbLVDFSQQrtdccf2eANTYPAqEyGAtOgdHoXPytSlSJRJJ4EhRdLVgiGTfmjY3cyHbfDhFRXl9dnzRhfLOe4M+LIpvOpC1JJ6pZoUZXOSp9VzwleUkFyjZJ3gnf9Jipm9FNaJgCYnjXfZej7A+SmPgeYtzAxMzQRqg1Sggw6PFlsbICFPeaRokRDe5tLEDbmOHtjcD278FWo9igb/dueBTaYHOd/p/bXEuF9J7f+TjjR8CD24Cvh3LWpVfHndHUGwljPLc+CFNFAD2U1J7fMYOOw0FyqrvUWmBwf9iXVD2cYo5r8aqwrtODKCbnhDOZrfvMZrisi0f/X9AeH0aLXi+bue3QJd7WB9lM1M0QFDoHV0FJPcABr8CFGUDnw1kxGfIGxSJGQe9I4fFWUBCG9qFe2IrocC1lfBzXvtfCmHXZ9L9AYqlkgLg4C8UQUNfd9tuh8QDU9cCm2dQjIUmUnhnHnSfI6yO+/qGJgAPbKQo1YXQ3tyVohgcx35ZI99nyl/GQeDcQfZDunUuI235f3EMA15gGmJ4PfZvqgqnyAqSWVCCMZ9sQFoOo1jbU3ORV2zFlN4NUWyxQ60KqtaFrcOh4GyBudT2s3klF+qjmsRVsTGKk5hgLb6/tyfWHM5AZLAWzRNC8dDs7ZhxR8ol1S1x3Jc2tox8Mx6cvR1bTuZApw7C00Nb4ObOSVd8Q0SJRCK5EpCi6GoiOIZ32ZsPq/wxCjN4x18I2gove461LCHxTL0y5zJVbOOHXIz2fQrofh9FWWXPN3ssIx+GSKaLFeewiD7/L5oHnN1No4e808CG6YyKDfonENuqbKcwALAWsnal39OMoIXVYQRi7ZsABCMyJYVcgFdEPBbn0tjhyG90dktow2sf2QAY8A+KgAc2AH86F/E9pwFhiUwDK8mnWHNZg1sK3YIIoABN3cjjqzSlBUpRJj+LiPrOaMQ/3amD+elc4OecAFLu5rh8xaPdwka3Jfl8vPMbNq+Na0lbdZWGIsDToCChHcesMTDF7oFNNBHQR7CGZv8Cfl7jvmU9jivad24vBYlKTSFy8Be65bnocg/Q9R4KmOOr3b2bBr3iPZ+MMfyM6namnbcLlYbn+mIYTQumruH8sJmBbvfy+YwDvMaD/smoWGGGWxQJwXqmAS8yWqfSsnfT3NtYtxXVCBj7Na+vKYcOcxs+BOp1oZjxbHQsBGuwjFFuw4WwOoxUBWmAu5Y7r7lg/dGQ1+myWNnfm0qQX2yF2WlDnVdsvSCIAKaU9WoSg3//ehBL9qQjOToYr9/UFk3jQ6qlT5BWzVqPnz16hGhUAkPbVEHkuRwsdgcmfLoRnZIjUGC2YXcaf8esl8khzUWJ1Y6Pfj+GLSeZ7ltic+CVxfvRv3msFEUSiURSA0hRJPEm5xQFCsCFIcC0sNBE4NengawjXBjf9j0wexyw5t80L6js4s5mdp+vOAc4uJj/7/8MF9jnj7DRZ+4p3m138dlg4KHtgPYi/UA0RjYdTWjPhqqZB5miZcoGxs7iQveXJ7h47f04a3yCyklVsVtp+rD4Mfe2duOBYf92XwO1nhGo4c6mqSoNUJjpFBDzuRge+T9GJXx716g07hqUvDMUbq5UKwBI6sJ6mikrmV7miuAVngNmDmC9FcDGqGNnMYLiiavmx5Nfn6ZpxuZP6Ow2ejrw8yMUE+FJwE0fu0WcMZKLfEsRML2L+xj7fqKwajqY0b4gNT83RQHmTWS05I+3vM+79TOg423AhDnA+vcpelvdyPmk8vhqClIDJ/8EBr/KyNC5fRRkQ16jJTgA7HI2Do5tTjMDQwTwYQ/3tTz0K8fgMunwJEgFwPm5xzQFJv1C8ajS8FoLQbe7hQ9yn4x9vDHw4BZA19R9HG0wfyLq87EpB9j2FbDmDX7OvR7lNVn7Jq9Tck93imA1cy7fjH/M34M1hzPRPD4U/3drJ6/nx6TUw/wdZzB7E2t5cky5GPvJBqx6IrBeSZWhSVwIZt/TDdNXH4VBo8Ljg5sjtgaswXVqFepE6LH+aNaFbY1jgy+bQ5qLwhIbNp/MLrX98LlCNIqtnqiZRCKRSNzUnlbhktqB4qfBZMfbgC+HA8dWArmptG7ePY93ywEKlsqi0rrv3LsITeBi1tX/p1F/Z88cDxw24Mhy720lhUDBOUYDAKbfTZjHCM0PkwEINiS99w/Wlszoy2PsnsvoWFGm97Hy/6JI9NxenA2setX7vLu/c6dteb03jVvkrH2TIsCUzUjCF8M4ztMbgWZD3K9J3wU0vo6L/jX/oXhqMpCCq/kw2otv+JCRLc+UxqxjbkHkYt27QFEWF+QF6cDu77mgv2spBZkLtZ5CI7oZBUjWMYreh7bT1jvKJ8VQH+Lt6OYidSNFW3wbYOxXbLq74mXWWVmL3emELhQHo40/TKH463g7r6PKJ23LamKESWOk0Ht4BzDpZ0bqdnzj3i/nBIW8LgQ4urK0wcHO2UBU49Lj9iVIxdfmplJsWoopgrzGrtB5zu6/ISsA3kBY8gRrlopzaBSiOBiN6v7AJRiTVIx8sxUvLNiLFQcyYLUr2PtXPtYdPY8xKUkX9klJjsTKA979XApLbDibXzrFraoI1WvQs3EMPrqtM94b3wGtEsOgr0ABvMOhoMR2ketfBjGhOsyc1AWt6zDtt3WdMMyc1OWy92oK1WvQp2lpx7qWibII3BeHQ0FmQQkyC0pgu8wRPolEcvVQbZEiIcTnAEYAyFAUpY1z28sA7gHgWmU+pyjKkuoag6QSRDViJCPH2YhQpQFUerfQcHHgZ0YUtnzKu/OVxRgN3DwTmDuRC2JtCM0EPCM2pmwgtE7p10Z4RIkKM4DlLzCVKzIZGPkBa4f0kRyn1cTFsjbYuUB9mfVTw/7DO/slhTy/ojBlbctMRnYcNqaPjZ/NY2hDAKufhaLDzlSxkkJnlCOIwkUbzOMdWOS9f0kBIyPqYGDYf4Fmwyk0Wo4C9FG0yt70EdP+Br3CsR1fTROEokzaebtquexWRrvu/IXXbctMRvc0erq7FaQDH/d2u/CFJwHjvwPy05juFVYHSN8DnNlK4wBTNrD0OWDiD2VbrNfrWnpbgz50l0tsz3MAHOPRFbyu7ca7+18BtADPO0Mxt/ZNCrLJS0ubRliL2TB2+Qu8jsZoRv4OLPTer9MdNBbRhgJpm0uPzxDldosri6IsOty5DEuM0bRT9zfHQ+JY7+RrJmG3A6bzFHEj/wf88Y77xsGe74FG19VoHZHZaseaw5le295adgjLH+uLB/s3wV95xUiOMqJRTAjO5Zd47VcTBfOVsUfOLCjB/B1p2JGai9Ed6qBbw+gKOdQ1jAnG13d1hc2hQH2ZHdJcaNVBuLt3Ixw5V4hVhzIQqlPjhRGtapVpQW0gv9iKtUcy8dayQ7DaFdzfrxFGtK+DCKO8ThKJ5NKoclEkhBgK4H8AggF8B+B6n122AWgCwAbgCSHEPkVRLiHUIKlSQuIYSdg9j3e6U+5iypRvG/eI+hQJty+g8KgsKg2tnB/aTqGgC2VU5OhKRg52zKLQuWMhU+tctst1OwN1OvL/1mJgzX8ZsQEYLfh6FN/H+v8DBr3M81iKuFANUrOZ6KgPGD1wRZxCE4ApKxjR8IwGnd1NgaQNZo1I13uB9e+6n6/fk9GNU38CUIBjq5iy17AvoyUqHdPpCtz1EwAoOBY/yrqX2xcCEfWAzZ8y3azj7XRvs9uBLwZT0HS8g9vOH3HbpDscwF872KPHnMf3N+JdwG5jNEIfDqx/z9uWXKXl5/nr01ysa4yscQlS0wBg4D/Z9+diPacikllPtv5dirKmg4Dk7sDOObS2NkQB2ceABr2AA4tppDH2KyC+Fa9T/R50jVNsNC9I2wo06sf6IV+CY/gal7A0ZQF7fwAm/sTP3WGlY+Lx1cDv/6YYnrSYAt/lJqcLA3o/Wn66WkG6t4OjKYumFIP+yUib62ZBvW40Ssg6xmsdFERhrNLRTGLuRM7VpBRey7m3sY9T/R41bqygEgJN40Ow9wzTJhtEG/He+I74bN0JHDxbgJs61kXrxDC8emNrjPl4A3JMVggBPHx9U4Tqa18tS1ZhCaZ+vRU7TjMV8te9Z/HYoKa4r1/jCqXA1QYh5EtMqA7vjG2PYqsdQUIgwqiFVi0TOjw5k1uMabN3XHj8/MJ9aBgbgl5Nrr2+UBKJpGoRiudC91IPJoQKwGEAgwCkAdgJQKMoSlPn8y8DiAfwhKIoJiHE/QD6K4oy7mLHTUlJUbZu3Vpl45RcBIeDi1yNjiJION3I/vzAaVAALqJdi05DhP8eSZfK4WVcRIbX5cKzfk9GHXJTKU7C67ntlQuc9TR5p72PMe5bRh12fMMam7BEYMT/aI6Qd5qi77tbvV/TaRKQMhmY0d97e0Jb2kzC3+DKAAAgAElEQVT/9gJwxyKm1u1fwOag7cZxXKc30pjCRaPrgBunM9KWdRT4bjyjMEIAfZ6iYFn+HO2sx35FEQEwUrdlJhDXAmg7lkKpYR9g40dA2haec9A/udAvyqQAzE11n1cfzkhT5mGKxxUveUdohr7BSN+pP93bVFpGmj4bxPqxqb+Xb7deUsj6JIcNgKA4NUS4Iyc2C0XF9q8oKgGgQW+m13WYCHxzE8ffbjzrgy4mwhY/Bmz93Hvbdc/zM9n/E7B/IY0UAIq7xw8BcHBbSQEFV3A8oCpn0Xx4GY0/PElsD0ycD+SlcrwqLc029OGcVx1u5diO/sa0xOtfYCTy9Ca+vulgiqjjq9nzqYbS5jw5dDYfEz7dhOwiCz6flIJ//XIAx8+7Uz6fGtIcU3o3RF6xFVlFFoQZNAjVqxFWC0VRarYJff+72mtbmEGNlY/3Q2zo1d3wVgK8vfwQPljl3YB3dIc6eGtM+2oxBZFIJFcWQgiToijB5e9ZmqqOFHUFcFRRlOMAIIT4GcAkn32GAeglhNgK4EsAE/0dSAgxFcBUAKhfv34VD1Pil8IM3iU/vZnW3g16MX1IEww0GcTalsIMLpbN+UBhOhd6dTpyQeuvuWVlSUqh89zvr3ORnp/OCETDPqX31eiBuFalRVFMUy7Id37Lx1nHaN7wyG4gogGL533JOspohW9krEEfRozsVi7QJy9lTyFX/cv5w6Uto4+vZqrdiXXA9i/pZGa3UsxYTMDG6dxv5HvAT1OBxtfTqnrDdEY76nVnRKj9BEaPXD16clO5QB89ndEIT0EEUMTmpwOzxzD1b/R0usy53k90E/b98cRuoelFkIo/gQhdXYh3XZMvai2FaOfJNLnYv5BRrSYDgRO/u2u1dn8HdLodCO7t/fqiLJo9qLRAi5GlRVHdzoBGyyatnteg1WhakutDgZYjyn8fniS0Le2+124Ca7zMuTQXsRRxv9Y3UZhvnuF2EDz1JzDvDqaEfj2a21I3AsPfpi37xYQfwMigzcTfuSqMKDWODcHSR/ugyGyD1aF4CSIA+PLPk7glJQlxYfpqM1aoKlR+publNkm42skussDs6p1k0FSo9quqaZlYugVE27rhUNdw82GJRHL1UdWiqC4Az5XpWQCetxo/AvAqmFT0KoCPAcz2dyBFUWYAmAEwUlTF45T4UnSeKT+uu9v7FwD9ngF6P8ZF9o9TuADXhwHtb+Oief177tf/bSbQ+kZnP5oqwBjNhq49HwYEKCS0ZQh/fThrg87tZX1KkIrjLspkGp4nDhuQeQBoUpf23yqNuw8QwAiGMRoY8zV7BBVnc0HecgR7DwFcDOtCvN+rIdKn348TRaHgSN0IfDmCC257CS2kh7zByMn5IxxzXEvgm5vdr936BXDXMppfpPlESlM3MlJz/ggFpOfzEckcN0AhZzXRXCLzEBf3cS2Z2nfIo5xP63w/Djud/wwVSEVxOGtoFFDEndvLFMImA2kLHhrP2pohbwBQKI6WPet9jPRdvBaua1aYSSH5x1s0Y5j4I+fjn+9zn54PAXXaM01v0s9MBTy3j6YV/Z6mIKoMxmhe86VPMwLZ6Xag3VhGmMKTgCm/MeUyKYXpnC1G0vjCk6JMRqtcwrpuJ46nPIfGwgxGNU+tA5oN4zwrT0QFiFoVhLhQPRAKpGaZSj0fqtcgqDoivtWAUavG8DYJWLL37IVtTw1pjkhZU1ItnMs34/5vtmN7ag6CtSq8OLIVhrdNvGyplV0bRqF7oyhsPM7vuFaJYRjdoS7EFTJ/JRJJ7aWqRdFFv5UURblgbySEyATQAMCbfg/kESnq3Llz1Y1Q4h9LkVsQudj4IWuKBLjYtVsonloMB768wXvfpU8zihOawLQpu8UdRTDlUAjowipmQVxeJMKTyAbA1NXuvkM7ZrHAP66ldzNOwG3QYIwB7lzCBbopG+gyhUYBWiOb39brRkFiKQQWPUxR1mUK0OXu0uIvNIE1PCtedm9L6sr6EquJRg3z7nBHIJoPA+aMoxV44VkKyk0fex8z5wRrYqIb89p5WmnrIzi2de8yKrHyFeDUekbthrwBLPk796vXlQtrcx4X3LmnaEgw/E2+rxNree1G/R+QcQi4exXPV16amQtzAXBiDa9hx4kUM1s+5XN/vk/x0u8ZCld9OLcbIr2jcACjZACjQ4d/ZVpaXCs2V809RUHX4gamNgI8lsbZoyqyAfC3GYzK6UIvzeZarQPqdKBFucMKCDWvXe5JIKwuhVHvx1ijpdbzc49uDJzd4z5GkIpjUxQaNIx8v3xBZMqm5fzx3/n46EoKxaFvXDwCa87n764QnBMB9NsK1asxtHUClu6jqBACeP6Gloi+Qgr6I4O1ePXGNhjftR52peVhQIt4JEUaoJapU1VOscWGd347jO2prEksstjx9I970LNxzGUTRTEhOnx4WyfkFdtgdyiIMGoQUwvrwyQSyZVHVYuiNAD1PB4nALhwG14IkagoSroQYiCAZwEsUxSlBH6QkaIaRvhZUKidf2iMMUD/Z4EF9zmfUEpHRcy53J53hvVHOceBno+ypueXx5he1nw46y183bqqZPyCTU1D4hn5SZnCmqHwJKZs5Zzke+z1qPvuu9ZA0TBhHgv+jdEUVAAd5ELj3ccfN4sREc/FuCfGKKZZJbanxXdiB/7/+0mMAPR+nD/759MUIOckr8mSJ9l09PCv/j8DEQSoDcDQfwOLptHSWQTxcWgijQG+n8wGuv2fZa3Vt7e4heCgVyg05oxzmy24hNstXzgX/irWufhLTfSkpMCdmheexPqhogyaCABMMfxqpPdrNn0MdLoTsEW4r3uTQTS5MMZQLKg0dMCzFgMbPqDQAyhqT6wF+jzBxq/1e3Kc/npJeYquqsAYRaHy24sU2FGNmFLa+S5Ggj4fTIGb2AEY9iZTFUsK+NkMeoVuiY/uoXAKZL5bityCyMWuOYyWliWKijKBZf+g6YTa4KyxmlC6Ya8PkcFavHZTG0zu1QCHzxWgd9NYxIbqrqg77dEhOvRtFoe+zarhu0RygcISO7b66Z10MqsI9aJqpseWP6KCdYgKlkJIIpFULVUtirYAaCqEaAjg3wD+BgBCiDQALwHoL4ToDqA+gHUAHqji80sqizaE6Tr75ru3DXjJKRRUjGzcs8pp9RzClKAzHjU5rW4CIGh44HJZ6/4g8NUNjC4BwPavKaaGvRl4BKgyqDSsZQlL5OMpyxlBUuu4wPRdPLsak16MQIrjwxKYXhjTnAJm2XMUMQCw42v2/Iluwhqaoyu43VJIEdd4AA0W5k30rv2Jash9zu3l+8g9TZe6PT/SPGDaVqajGSLZg0cfRgG3fyENHPSRFKie7nMAsOUzpvCFJpb/vgAu2vd8z5RCRaHZxoS5gNWjNkUI9/t1oTgonP78gM1X9WGMZoQmsEFs4Tmg5WimP1rNNJXwJH0nRcWp9cCcscC967zFalVizqModqVpFmVQEPV4kL2yts9iv6SeD/Hx4aUc37p36aBnyqaY0oW57dIDxVXL5dnMV2Msu7bLYecc2D2Xjy2FwLJngEZ9yhVFAEVFdIgO3RoFMPcl1ywhOjW6N4rGsUz377kQtDSXSCSSq40qFUWKotiEENMALANbxL+sKMprQohXAGQqinK7EGIFgDAA0QB+FUKkKooyqirHUS0U5wDnjwKHfmFaVVKXKsv3rxUYI4HhbzEFKm0bRVBEfWfPHXChVbczfwCmF617D0jbBDQdwrSy7JNuQeQq1ncJIhcHfqbYqk5R5IsrglQTaI2srzm2ynu7IYpRhNQ/3YIIYCTBEEEBZ4wB7lsH7JwLRDdkulhIHJ3uNn3Egn5DJOei4gB6PczPqOdD3ucyxgB1OrEuLLkXbaB90+8i6lWs/sucDyx9hsYNA192iodQIKYZcOs8Rs/M+UDbW2jn7qLdOEZAds4C+j9NsVCcA8wZ7xYA+35ialrPaRStlkLvc7siQ4UZfA8uUaQojFCqDQGljZVJcS5TRzdMd9ayPceUvPx0CtXG1zP65hKrBxbSffH4atY7HVnGlNHEdpUfgzaUNxFcNVMAo6plpd1ZTDyvL6c20N1PIqkCDFoVHhnQFMfPF2HDsSyEGdR4dXQbRBiujFRLiUQiqQhV3qfI2Yx1ic+2Fz3+P7Cqz1nt2CzAru+4KHTR6kZgxHsUE1cyDgcX8VC4mG4ykD/lEZrAxbGliAtdlYaLyAvHtTvvdAd5Rw+iGrtT1MrCYuJde8XBY1xp11gbyijMLqeHSJCKkZC1bwOd76AoOLiYgmbUdPf7C43jzxCfRa02mJG4fT+5HdvajKFDmS/WYoonlwX29q9ZA3bzZ0zxAhgVHP5W6SapF8NWwgX68DeZrpd/hoYGoYns6WQpZMri9S8yPe7ob6ypCk8CfpjsfazMw94REYAL/D6PA4P/RVMPF23H0FTCdR3VOorEIDUjNbu+ozDr+yTPZSni3DHncbyGKLrgXYy0zd423EeWMQIX24LCdOds7xooazEFUb1uTO+LqF9xkW/KAnJSgXN7KFpD4lir1PpG3pRo0JNCUV1GipDGyHRFX/FdN6Vi47iKKSqx4WyeGQt2nkFylBH9mschNlSmXFWUuDA9PrytE93nZO8kiURyFVOlfYqqi8vep6jgHDC9q7NuxoNH9/KO+5VKcR5wbCWw+l9c9PV5kovAANJv/FKUCcy9HUjdwMf9nmYEYeU/eXxdGHDnYtbalDmmHGCbs6+Nzcwo1Ojp7p5EtQVXjx6bmSLDt24kP519hzIOsG7JGEOzCYuJ1yRITTOK6CaB2V8XnWfk5+hKNkptOcp/pLLgHPBBR4oDTx7eyW2mbKYLhsRXLNJZmEEBkraZ0T5DJNP0vvSxvB7yOhvPHlkObP7E3Tuoyz2MEOpDgazjHKMn7cbyJoPDzv5Ux1cD8a153gX389r1f5bvoTCTNT6r/+V+fXgSTSKOrwYWPsg0TW0IcMcCCgVXvy2H3VsMmvPYsNZXXPxtJq2988+wQe22r7yfH/Eu36PDTqEYkRx4vy5zHrD6DUb/XNz0CW9G6ELLFkK+FGYC8+/l77BKw4hhj4cqJnavYracyMa4GRvgcP6JaxoXgjn3dEeMFEYSiURy1VKb+hRdvfizW0btF5QXJeeE9138hQ8AUUvZK6cyBMcCY2fRBrowA2jUl/1wpq7hYjYiufyi84J0Nht1cWQZ+9P0ecKdyne5MeexvmTFS5wXkQ3Y0DXS6WpnNdNgYNccRtQ2z2CPom/HsJeSSsMFfmJ7Rhl8F8HmAjqubfuSNUVtbmHKWMoUNgpVG8pZgPt5zpQFLHqIorMgHXhoh7coMuex18+++ezBk9zbW4iGxFEk7PyGj2NbAKk+boUAUwMT27PmRh8OHF4ONB1IYeKyyTZGMcq46l+8frHNKZhctTz6MEZJLEVOV8HfWXe1fwHTy/72KbDin97nzUujQP35EffvqqWQouHOJRTsv71EIdtjGuuxDJFAkIYpc74ExzDCFNUQ6PUYsPcnGikAnMfNh9E4RGOouMGDpYiC0ZPl/+A4zmwHut7tf0y+hMTSedBqYkRWF1azaam1mFyTBW8uP3RBEAHAkYxCnMoukqJIIpFIJH6pJavMWo4+nAupNf92b2vUv+y+OVcKe34ovW3nt0D97oHf9fYlJBZoMoCRje9uZa2GCOLiseVImixcrJYlbVvpbSfWAN3urXwEq6ox53ER6yLnJLD0WeCmj7mgN+dSPBSdp5HAgBfpEuZqLmu3MuVsykrWs/gaB6Tv8HZx2zyD/XFC4pg2dTHUekYMXOlzAKNK6buAjP18HKTyrsFxOIBjq+mU5yK5F4Wcp3AKTaQpQuZ/KaDiWpY+f3wbRgoT2jKi1XRQ6X0MEYwctRvHtDxtsLdYLjgLLHmKKXhxLWgXvupVRmYAihNjVOlmva4GtJ5kH6dI+vR6Pg/wfd72A8emNVKgHl7qFj2J7RmlchFeD3hwM6NJ2mC64F2K2YPdWtqQwpxPcfz760BMEzrdBYIxCoCMDPmiKIDN7ii13Wa/wm9kSSQSiaTakInBgaDRc1E+4TvWOIx4j3doA7mbW5tJaFt6W2L7ygsiT6wmd98jxeF2L/N0KyvKBHbOAX5+FDi5jv2MkvzURDS6jqlQtYW8MzQymDAHmLyEzUND4lhrAlB0eBo7RDage5wnigKYMktf6+Icb0EDuO27A6EkDwivS7vtlLuY5tXrUY7ZxbA3ed7MwzxuUSbwx9vexzm1noLNE7WWvwfd7uPn67AzeuV6D0kpFL4OW/niTRdCG+6oht6CyJwH/PIEzQysJkZOvh7FhrIudnzD1EzP2rSWo3jO8CTv8zQewFRGlyBysXkGUyABRn4e3AKM+RKYtIiCyXNMKjXH2nEiHRov1f1OG0z3Rk/aj3cbcOyeVzr9UVIhIoO1eOj6pl7b6kYY0Cj2Cr+RJZFIJJJqQ0aKAsUYxZSZpoPKNwq4Umh8HV300rbwcUI7pkhVBUFq/nimHerCcCG1qygL+GEKo0AAsO0L9t5pOxYY8hqw6jXAVgw0Gw50vrPyqXMWE62VDy0DIuszjetS65OiG3OM8+9lxEQfzr47rv5FwbHA8LeBr0cyKnBmO+fNjm/cx9AYnBba/qJf/kRpgEI16xiwcBoQ05Sf545ZgPn/gNsXAE2uA8LqMSKRcYCpjUeWMyoy6n3gx7uBrKPuYykeZgiKwpRIcx4tqlPu5rzpfCedB0sKmI659i1g9AcVc7bzxGp2R4RcFJ2nKG5+A/s5lRSwFuvhHTRhiGpIlzhjNHD7Qtqhn9sLNOzPep+sI6XPE57kHqNKTfe/1jdVbswVJTgGGP8dUyzTtjCVr25nRlYBCu5A64okZdK5QSQWPNALszadRIPoYIxNqYfY0EtwKZRIJBLJVY00WrjWKToPFGczhcoYXXWGBiUFwPr3uEh2MXo6RY9aC+ScAv7nY2FsjAbu3+BOQXPYAQimROlCKmernbYV+HyIW5zV6UQL6Ut5n4UZdCv7a4d7mzYYeGg7a4gARo1MWcDZPVyw68OBX58GDi1mZGLUB0BsKyDYT+rTiXXA1yPcjmeRDdmjKJAmoLmpvK6ev9edJlFwap3RmyO/0ZBgw3T3PtFN2EdozgQ+jm9DIeW6TjkngS+G0flNCNbZtL8VOL4KaDqYAlhx8DpcilV9USYw6yZeNxcqDfDIbrrt2czORr0XuRambEaGNEbOpcIMYPY44C9nXy1jFOvcIupXfpxVgc3C372ds5keqDgYvZ34o3uulxSxNkoX6v78JBXC5nBAJcQV1ZxWIpFIJJXjUowWpCiSMJpSnANkHwXCk1nzURX1O6YcoOAMIxJJXbiQdRWl+xNFwTHA/X9yQWjKAda9A2z4gAv88CRg8q8VW8gW5wBzJzI1z5N7fgfqdvT7koAoPAe83dxbeADAQ9soLsrCnE+xJASjSWUt0koK2KR1xywKolajA0/ZKikADv0KLHmSUZ3kXsAtn7vFmqIwOjFnHMWDJ/dvoJBNaEc3OJfwMOcD8+9jjy6v97sDiG4U2Lgqwtk9rKkqzqHYGvEua2wupYavMJPCrqQAiG8FBMcBQbUke9iUTeHjsFH8uBoF56dTLKVuABr0Ba571v05SiQSiUQiKYV0n5NUHoeDtsmzb2GqF0BnsC73XLqTlTGSP/6aSepCWCt0fLV7W9+n2FcGYL2NZyPLvDTgtxdZdB/ouBx2d92IJ1ZT4O/BH0FaFtufWu/eZogsv+5JH8af8tCFcuE+9I3y9/X32lajgYZ9nL2iDN61b0IwUqKPKC2KdCHA6A9LpyrazMD5g6XPlX+6ekRRbEvggU0UdboQQBd+6aYmIbG1z9bdhTGqtI120Xlg3kRGOgEaRuQcB8Z8JS23JRKJRCKpBmrJrVLJZcN0Hvj5IbcgAmiVXJJfvec1RgM3fwr8bQbrUyb/ytQ6V51Hbmrp12QccJsZBHqOXg97bwtNuHg0J6DjRrKvjMsUIrIBi/Nri/GGWkenuPAk/2MKSQAGv0ZXQBftb6Wo81e7pQ8HWowqfY7opqX3rQpUakbGYpvR4EB3DRbHW4vdgsjFibX+57/Nwho9q7n0cxKJRCKRSAJCRoqudRSFdSKeOGy0Sq5ugmNpy9xuXOnn4lpRIHmKtVY3VqwnjBB0H5s4H9g6E4hsBPS4/9LdwwA27Z0wl7UrQSqmY10pNQu6EKBhP2DaVuD0RkZmIpLLjkCodUDPB+lst+cHiq0R78mIRXWiUjM65ulCZ4jkXPOkMIM9j46soJV+78dkip1EIpFIJJVA1hRd65gLgMWPAHt/dG+LbgxMXhpYYX91YS2mkcHixyja2o8H+j3lrreoKBYTRVZlXdFqM7YS1t+IIMAYU321MpYi1uQIVc2kohVl8r0Fqfm+Lkfz3uJcCnNDZM2e31rM38lF03jjQgSxDUCLkTQqAZheuPAh2pe7qNuZRiKXYnYhkUgkEskViqwpklQefSidyULi2cAyoT1dyC6nIAJYC5PcE5i0mNbQurBLc9+qjc5dRVm0i/5rB22ZQ+syEmApctb+BCBwTFnA5pnAlhm8RkNeB5J783OtarTBNdewODeVFtVn91AI3/wZUK+bd9PZ6sRupT35sucoyjvdQWFeUymSGgN7LzXsC2SfAKIaUZi5BBFAoX/wZ+/Xndl26TVzEolEIpFcg8hIkYRYzawj0hhYrC+pXopzgRUvAdu+5GO1Hrh/PZuo7vmeNUEj3mNK1MWEyM45wIL73I+FAKZtY7TvSqU4B5h7O3DyD/c2X8vz6qYgHfggha5wLob+hwYkKlXZr6tJCs4CH3bn9XKh0tK+PCzx8o1LIpFIJJLLxKVEiqTRgoRo9IwOSUFUM1gKge1fuR+3uRnY8hl71titjJTMHuO94PXFXEAB5YmiAMd/r5Yh1xg2C5C22Xubpaj6zT88yTjgLYgAZyPcbP/7Xw6M0cCwN723Xfecs0myxB+mEhvO5pmx50wezuaZUWyxlf8iiUQikVwTyPQ5ieRy4LB79zmq2wnYMrP0PhkHaGzgD42ePYWOrfTeHteyasda06i07Gvl2V9KY6xZwe4vfTS8HqDS1dwYykOlAZoNAR7eBZzdDcS1oOHHtejWFwAWmwNrjmTiodk7YHMo0KqC8PHtndGnaQw0Knl/UCKRSK51qu0vgRDicyFEhhBir8e2KCHEb0KII85/I6vr/BJJrUYbzBoZFzkn/fdzimxY9jFUGqD7fUBsc/e21jcDMc2qbJiXBWMkMHo6HQgBRkTGf8uampoiNJFuhy50Yay1C6TPVE2iDwOiGgCtRvFzr4qmy1cpOSYLnv5hN2wO3oyw2B148vtdyCmyXOaRSSQSiaQ2UJ2Roi8B/B+Arz22PQNgpaIo/xZCPON8/HQ1jkEiqTpsFqfLW4AmCBcjOAYY9w2w/WvaYie0A7pOpelC1lEaLvT5e/kuYqEJNKMw51Mk6UKvDqvsyAbAHYvYOFaloTCqSedAYzRwwztA/2fYSDWmKWCspc1fJQFhsyvIN3uny2UXWWC/AupqJRKJRFL9VJsoUhRlrRCigc/m0QD6O///FYDfIUWR5ErAlM2ako0fMpVr4D+BRv0vLXIQEgf0epQLf20wxdbkX1k/o9YC2rDAXORC4i6/W2B1UBO23xcjOJo/kqsCvSYIrRLDsD/dXZvWqX4EdOpaYpwhkUgkkstKTSdSxyuKkg4Azn/LXMkJIaYKIbYKIbZmZmbW2AAlEr+cXAf89iIdv7KPA/Nup0PZpaJSs5mqq/FrSBwQ1RAIq1s9ttoSyTVKdIgOMyelYGDLOEQFazG0dQKm39YJUcHa8l8skUgkkqueWmu0oCjKDAAzAFpyX+bhSK5lrCZg93eltx9e6l3PI5FIajV1Igx4Z1wHmC12GLQqhOqvwmbOEolEIqkUNR0pOieESAQA578ZNXx+iaTiqHRsautLfNuaH4tEIrkkwvQaxIXppSCSSCQSiRc1LYoWAZjk/P8kAAtr+PwSScUJUgEpd7rd0ACg2VAgUYoiiUQikUgkkquBakufE0LMAU0VYoQQaQBeAvBvAPOEEFMApAIYU13nl0iqlJB44I6FgDnPw+VNFuFLJBKJRCKRXA1Up/vchDKeGlBd55RIqpWr1eVNIpFIJBKJ5BqnytPnhBBDhRCHhBBHnb2IfJ/XCSHmOp/f5Me2WyKRSCQSiUQikUhqjCoVRUIIFYDpAIYBaAVgghCilc9uUwDkKIrSBMC7AP5TlWOQSCQSiUQikUgkkopQ1ZGirgCOKopyXFEUC4DvwIatnowGG7cCwA8ABgjhatIikUgkEolEIpFIJDVLVdcU1QVw2uNxGoBuZe2jKIpNCJEHIBrAec+dhBBTAUz1eGyq4rFKri7UAGy18FgSCXDxOSXnm6Sm8Z1zcg5KqpNLnV9yfkoqgqGyL6xqUeQv4uPbeDWQfbyatwohtiqKknLpw5NcrVTlHJHzTVLVXGxOyfkmqWl855ycg5Lq5FLnl5yfkooghNha2ddWdfpcGoB6Ho+TAPxV1j5CCDWAcADZVTwOiUQikUgkEolEIgmIqhZFWwA0FUI0FEJoAYwHG7Z64tnA9RYAqxRFKRUpkkgkEolEIpFIJJKaoErT55w1QtMALAOgAvC5oij7hBCvANiqKMoiAJ8BmCWEOApGiMYHcOgZVTlOyVVJVc4ROd8kVc3F5pScb5KaxnfOyTkoqU4udX7J+SmpCJWeL0IGaSQSiUQikUgkEsm1TJU3b5VIJBKJRCKRSCSSKwkpiiQSiUQikUgkEsk1Ta0SRUKIoUKIQ0KIo0KIZ/w8rxNCzHU+v0kI0aDmRym53AghPhdCZAgh9npsixJC/CaEOOL8NzKA45Q33x4XQuwXQuwWQqwUQiRX9XuRXH2UMT9fFkKcF0KYhRAlQogvLvL6W5v42O4AACAASURBVIQQihBCWtBKKo2/7zchRD0hxGohxAEhxD4hxBfO77iDQoj0inx/SiS+BPA3tb5z/u1w/l0d7vO87/x8xLn9ZSHEGSHETufPcN9jS64t/P2d9XleCCHed87F3UKIToEct9aIIiGECsB0AMMAtAIwQQjRyme3KQByFEVpAuBdAP+p2VFKaglfAhjqs+0ZACsVRWkKYKXzcZkEON92AEhRFKUdgB8A/PfShy65BvgSpeenqz9bKwChADr5mW8QQoQCeBjApuocoOTq5iLfbzYATyiK0hLAbQAmALgLdIWdGej3p0TiS4B/U58HME9RlI6gydaHPs97zs/uAB70OMa7iqJ0cP4sqbY3IrlS+BKl/856MgxAU+fPVAAfBXLQWiOKAHQFcFRRlOOKolgAfAdgtM8+owF85fz/DwAGCCH8NYOVXMUoirIWpXtbec6NrwDcWM5hyp1viqKsVhTF5Hy4Eey7JZFclDLmZ10AWeV8vwHAq6D4NlfvKCVXOX6/3xRFSVcUZbtzn1sBHABF+mi4F6iBfH9KJL4EsoZTAIQ5/x8Onz6WnvNTUZQCcH7WrdZRS65Iyvg768loAF8rZCOACCFEYnnHrU2iqC6A0x6P01D6l+HCPoqi2ADkAYiukdFJajvxiqKkA/xiBRBXzv6BzDdPpgD49ZJGKLmWCQNQxxnG/xz8Mveab0KIjgDqKYqy+HIMUHJVEcj3WwcAjUEh3hhAeyDg70+JxJdA5tzLACYKIdIALAHwUFkHc5ZHdIQ7aj7N9f0p0zslAVDRNR6A2iWK/EV8fP3CA9lHIgmEgOeSEGIigBQAb1briCRXM8sBzAMXoungXfoL800IEQSmBD9xWUYnudq46PebECIEvLO/H0AfACYAM4UQETUzPMlVSCB/UycA+FJRlCQAw8GelaXWoc75+SOARxVFyQdTnxrD/f35dlUOXHJVUim9UJtEURqAeh6Pk+ATWvXcRwihBsOvFwufSa4dzrlCo85/M8rZP5D5BiHEQAD/ADBKUZSSKhqr5NpjH4AkRVEcAD4F0Bze8y0UQBsAvwshToL59Iuk2YKkkpT5/SaE0IALzv0APlYUxQouNE8AaBrg96dE4ksgf1OngDeHoCjKBgB6ADGeO3jMz28VRfnJue85RVHsHt+fXavlHUiuJgJa4/lSm0TRFvALuaEQQgsW4S3y2WcRgEnO/98CYJUiu89KiOfcmARgYTn7lzvfnOlMn4CCSC4SJJfCaTjnG/jdpYPHfFMUJU9RlBhFURooitIArGEbpSjK1ssyWsmVjt/vN2cN7mdgrcYrAK5z7v8bgLYAjiOw70+JxJdA1nCpAAYAgBCiJSiKMl1Pes5PRVHe8djuWQtyEwC/jmMSiQeLANzhdKHrDiDPVWJxMdTVP67AUBTFJoSYBmAZABWAzxVF2SeEeAXAVkVRFoG/LLOEEEfBCNH4yzdiyeVCCDEHQH8AMc7c5JcA/BvAPCHEFPCLd8zFjhHgfHsTQAiA751+HqmKooyqprcluUooY372B29CHQQdlt73M98kkirhIt9vXwC4HcAecE7WEUKkAigE76xuRADfnxKJLwH+TX0CwKdCiMfAVKY7fW5s94Jzfgohdjq3PQc62XVwvuYkgHtr5E1Jai1l/J3VAICiKB+DNWvDARwF04MnB3RcGWiRSCQSiUQikUgk1zK1KX1OIpFIJBKJRCKRSGocKYokEolEIpFIJBLJNY0URRKJRCKRSCQSieSaRooiiUQikUgkEolEck0jRZFEIpFIJBKJRCK5ppGiSCKRSCTXFEKIk0KIGOf//7zc45FIJBLJ5UeKIolEIpFc8QghKtV3T1GUnlU9FolEIpFceUhRJJFIJJJKIYRoIIQ4KIT4f/buOzyu4mr8+PdotdKqyyqucsO4V9ywscH0ZjAlmFCDIcFA6ISWkEII4eX9kYQSAsQBYt4EbEoIvYMNGDDGHVfcbbnItopVd7Xand8fcyWtpJXVi6XzeZ59rJ1779zZIuueOzNnnhWRNSLyooicKiJficgmEZno7BcnIs+LyHciskJEzgs5/ksRWe48jnPKTxSRhSLymlP/i85q99XPv1BEHhKRz4FbReRcEfnWOccnItLN2S9VRD5yyv8OSEgdhSHnfCek/EkRmeX8/LCIrBOR1SLypxZ7Q5VSSrWZRt1ZU0oppRxHAzOB2cB3wGXAVGAGdjX684H7gM+MMdeISDKwREQ+AfYDpxljvCIyEJgHjHfqPQYYDuwBvsKudr8ozPmTjTHTAESkCzDJGGNE5GfA3cAvsKudLzLGPCAi05221ouIpAAXAEOcepPre6xSSqkjhwZFSimlmmKbMeZ7ABFZC3zqBA/fA/2cfU4HZojInc5zD9AHG/A8KSJjgAAwKKTeJcaYTKfelU5d4YKil0N+zgBeFpEeQBSwzSk/AbgQwBjzrojkNuD15QNe4FkReRd4p479lVJKHYF0+JxSSqmm8IX8HAx5HqTyxpsAPzLGjHEefYwx64HbgSxgNLaHKKqWegPUfhOvKOTnvwJPGmNGAtdhg69ypo7XUUbVv4keAGNMGTAR+A+21+uDOupRSil1BNKgSCmlVEv7ELi5fF6QiBzjlCcBe40xQeBKwNXE8yQBu52frwop/wK43Dn3WUCXMMfuAIaJSLSIJAGnOPvHA0nGmPeA24AxTWyjUkqpdkiHzymllGppfwAeA1Y7gdF24BzgKeA/IjITWEDVXp/GuB94VUR2A4uB/k7574F5IrIc+BzYWf1AY8wuEXkFWA1sAlY4mxKAN0XEg+3xur2JbVRKKdUOiTF1jShQSimllFJKqY5Lh88ppZRSSimlOjUNipRSSimllFKdmgZFSimllFJKqU5NgyKllFJKKaVUp6ZBkVJKKaWUUqpT06BIKaWUUkop1alpUKSUUkoppZTq1DQoUkoppZRSSnVqGhQppZRSSimlOjUNipRSSimllFKdmgZFSimllFJKqU5NgyKllFJKKaVUp6ZBkVJKKaWUUqpT06BIKaWUUkop1alpUKSUUkoppZTq1DQoUkoppZRSSnVqGhQppZRSSimlOjUNipRSSimllFKdmgZFSimllFJKqU5NgyKllFJKKaVUp6ZBkVJKKaWUUqpT06BIKaWUUkop1alpUKSUUkoppZTq1DQoUkoppZRSSnVqGhQppZRSSimlOjUNipRSSimllFKdmgZFSimllFJKqU5NgyKllFJKKaVUp6ZBkVJKKaWUUqpT06BIKaWUUkop1alpUKSUUkoppZTq1DQoUkoppZRSSnVqGhQppZRSSimlOjUNipRSSimllFKdmgZFSimllFJKqU5NgyKllAohIseLyMa2bkddRMSIyNEtVPflIvJRyPMpIrJJRApF5HwReV9ErmqJc7c0EenjvA5XPfbt57zPkbVsv19E/t38rWw4EdkuIqe2UN1VfidEZLCIrBCRAhG5RUSeEZHftMS5lVKqtWhQpJTqlGq7iDTGfGmMGdwWbWovjDEvGmNODyl6AHjSGBNvjHnDGHOWMeaFljh39UBErL+KyAYR6SUis5ztd1U7LlNETqyrfmPMTud1BFqi/S1FRBJF5DER2ekEdZud52ktfe4wvxN3AwuNMQnGmCeMMdcbY/7Q0u1QSqmWpEGRUkq1A7X1RrQTfYG1Ta2koa9RRAT4O3AiMM0Ys9vZlAPcIyKJTW1Te3G4nisRiQI+BYYDZwKJwHFANjCxVRpYVZt8H5RSqiVpUKSUUiFE5EQRyQx5vl1E7hSR1SJySEReFhFPyPZzRGSliOSJyNciMipk270issUZZrRORC4I2TZLRL4SkUdFJAe4P0xbXCLyq5A6lolI7zD7TXeGM+WLyC4RuT9km0dE/i0i2U4bvxORbiFt2OrUvU1ELg8pX+T8vAU4Cnjb6aGIFpGFIvKzkHNcIyLrRSRXRD4Ukb4h24yI3Cgim4BNDfgoXMBcYDxwojEmK2TbeuAb4PZwB4pIRMh7ny0ir4hIirOtek9UfxH5wnkPPhGRv4UZEne500NzUETuq7bN43wnCkRkuYiMDmnHUOe9yhORtSIyI2TbXBF5WkTeE5Ei4CQROdv5nhSIyG4RudPZ/SdAH+ACY8w6Y0zQGLPfGPMHY8x7YV7/RBH5xjnvXhF50gmsynveHhWR/c73ebWIjHC2hT1/6O+EiHwGnAQ86XwfBjmv5cGQ8x/ud2K7iNwjIquBItHASCnVTmhQpJRSdbsYe4e+PzAKmAUgImOB54HrgFRsr8ZbIhLtHLcFOB5IAn4P/FtEeoTUeyywFegK/DHMee8ALgXOxvYOXAMUh9mvCHvhnAxMB24QkfOdbVc55+/ttPF6oERE4oAngLOMMQnYnoeV1Ss2xgwAdgLnOsPOfKHbnfP8CrgQSAe+BOZVq+Z857UOc455R0TuDfM6Qr0IDAFONsZkh9n+G+D28mCnmlucc04DegK5wN9qOc9LwBLse3M/cGWYfaYCg4FTgN+KyNCQbecBrwIpTl1viIhbRNzA28BH2M/3ZuBFEQkdhnYZ9nNPABYBzwHXOZ/HCOAzZ79TgQ+MMYW1vIbqAtiAMQ2Y7LT7586204ETgEHY78uPsT1OHOb8FYwxJ2M/45uc78MPodvr8TsB9js9HUg2xpTV8zUppVSL0qBIKaXq9oQxZo8xJgd7oTvGKb8W+Lsx5ltjTMCZZ+MDJgEYY151jgsaY17G9pSEDnfaY4z5qzGmzBhTEua8PwN+bYzZaKxV4QIEY8xCY8z3znlWY4OSac5mP/bi9GinjcuMMfnOtiAwQkRijDF7jTGNGRJ1HfA/xpj1zgXuQ8CY0N4iZ3tO+Ws0xpxjjHm4jnpPB14xxuSF22iMWYkNOO6ppU33GWMynSDufuCi6r0SItIHmAD81hhTaoxZBLwVpr7fG2NKjDGrgFXA6JBty4wxrxlj/MBfAA/2858ExAMPO3V/BryDDQjKvWmM+cr53LzYz2qYiCQaY3KNMcud/VKBveHfprDvzTJjzGLne7UdG5iEfh8SsAGnOJ/b3pBt4c7fEIf9nXA8YYzZVct3Ximl2oQGRUopVbd9IT8XYy92wc6t+IUzTChPRPKwPTI9AUTkJyHDiPKwd99DJ8bvquO8vbG9TYclIseKyAIROSAih7C9QeXn+RfwITBfRPaIyP8TEbcxpgjbS3A9sFdE3hWRIXWdK4y+wOMhrzEHEKBXyD51vc5wzgF+JyLXHGaf32J7xbqHadN/Q9q0Htt70q3afj2BHGNMaO9buLbW9vlX2d8YEwQynXp7ArucsnI7OPz78iNsr+AOEflcRCY75dlAD+rJGdL2jojsE5F8bKCa5rTxM+BJbM9ZlojMkcq5WbWdvyEO+zvhaMz3QSmlWpQGRUop1Xi7gD8aY5JDHrHGmHlOT8k/gJuAVGNMMrAGGzCUM/Wof0A92vEStoejtzEmCXim/DzGGL8x5vfGmGHYIXLnYIfaYYz50BhzGvaCe4PT3obahR1yFfoexBhjvg7Zp67XGc7XwLnYgOuycDsYYzYAr2OH71Vv01nV2uQJSdRQbi+QIiKxIWU15mzVoWJ/EYkAMoA9zqO3U1auDxDahirvizHmO2PMedjhdm8ArzibPgHOcIY81sfT2M9zoDEmEfv+VHzvnIxx47CJGwYBd9Vx/oao9Xci9KU2ol6llGpRGhQppTozt9hEBOWPhk76/gdwvdNTIyISJzbpQQIQh734OwAgIldje4oa4lngDyIy0Kl/lIikhtkvAdvj4RWRidi5KjjnPUlERorNbpaPHSIVEJFuIjLDudD2AYXY3pSGegb4pYgMd86XJCIzG1FPDcaYz7FzleaIyEW17PZ74Grs/JjQNv2xfAifiKSLyHlh6t8BLAXuF5Eop2fk3AY2c5yIXOh8d27DvpeLgW+xc73uduYYnejUPT9cJc75LxeRJGcoXj6Vn8e/sMHGf0RkiNhEEqlik3CcHaa6BOf4Qqf374aQ80xwvq9up31e7PfhcOdviMP9TiilVLulQZFSqjN7DygJedzfkIONMUuxcyiexE7m34yThMEYsw74MzZLWhYwEviqge37C/Zu/UfYi9TngJgw+/0ceEBECrBDykLv8HcHXnOOXw98Dvwb+///L7A9GjnYOSc/p4GMMf8F/hc7PC8f2xt21uGOEbv4a/Xendrq/xg7zG+uiNQIWIwx27BBQ2gvyuPYnrOPnPdkMTbRQziXY5MRZAMPAi9jA5v6etNpXy42ScOFTu9cKTAD+14cBJ4CfuL0btXmSmC78z5eD1zhvEYfNtnCBuBj7Ge5BDsk7tsw9dyJDYwLsEHKyyHbEp2yXOxwvmzgT4c7f0Mc7ndCKaXaMzFGe7GVUkopABF5GdhgjPldW7dFKaVU69GeIqWUUp2WM5xsgDMk7Uxsiu032rpdSimlWlezBkUi8rzYBeHW1LJdROQJEdksdsG4sc15fqWUUqqBugMLsXOqngBuMMasaNMWKaWUanXNOnxORE7A/mH5P2NMjQnFzoTQm7EpP48FHjfG1DbOWymllFJKKaVaXLP2FBljvsBO2K3NediAyRhjFgPJUnV1d6WUUkoppZRqVa09p6gXVRdty6TqQnZKKaWUUkop1aoauiZHgzlrYyzFLlgnQA8R+RZIwaYGddVy3GxgNkBqauq4fv36tXRTlVJKKaWUUkeoZcuWGWNMozp9WjwoAm7Fro2RiO0ZugN41BgzX0TygBMJs86CMWYOMAdg/PjxZunSpa3QVKWUUkoppdSRSERKGntsiw6fE5EMYDp2VXawi+mNA14TkUnYRQNPbsk2KKWUUkoppdThNGtPkYjMw/b8pIlIJrAPuxL7Oc4u3wLFwEbn37uwK6ErpZRSSimlVJto1qDIGHNp+c8icg5wtjHmVyJyInAndk7RQWPM0c4+vYGwOcFD5xT16dOnOZuplFLqCOLzB8gtLmXT/kJ6JMWQFh9FcmxUWzdLKaVUB9KSc4qmADOctYk82DlFj2HTcEcaY8qADOwQuhqqzylqwXYqpZRqx9btzeeSOYvxlQUBmHVcP247daAGRkqpDs/v95OZmYnX623rprQrHo+HjIwM3G53s9XZYkGRMeaXwC8BynuKjDGXi8irwEXAfOAq4M2WaoNSSqkjW3ahj1+/saYiIAKY+/V2fnZ8fw2KlFIdXmZmJgkJCfTr1w8RaevmtAvGGLKzs8nMzKR///7NVm9rr1MEcA9wh4hsBlKB59qgDUoppY4AAWPYd6jmHdJCX1kbtEYppVqX1+slNTVVA6IQIkJqamqz9561SlBkjFlojDnH+XmrMWaiMeZoY8xMY4yvNdqglFLqyJPocXPh2IwqZV0TokmJ014ipVTnoAFRTS3xnrRFT5FSSilVLx63i+unHcUdpw1iYNd4zhrRndduOI70+Oi2bppSSnUKLpeLMWPGMGLECGbOnElxcXGj61q4cCHnnGOTUr/11ls8/PDDte6bl5fHU0891ehzNZQGRUoppdq11PhobjhxAPNmT+KRi0bRJyVW75wqpVQriYmJYeXKlaxZs4aoqCieeeaZKtuNMQSDwVqOrt2MGTO49957a92uQZFSSilVjdsVQVp8NPGe5ss0pJRSqmGOP/54Nm/ezPbt2xk6dCg///nPGTt2LLt27eKjjz5i8uTJjB07lpkzZ1JYWAjABx98wJAhQ5g6dSqvv/56RV1z587lpptuAiArK4sLLriA0aNHM3r0aL7++mvuvfdetmzZwpgxY7jrrrta/LVpUKSUUkoppZQ6rLKyMt5//31GjhwJwMaNG/nJT37CihUriIuL48EHH+STTz5h+fLljB8/nr/85S94vV6uvfZa3n77bb788kv27dsXtu5bbrmFadOmsWrVKpYvX87w4cN5+OGHGTBgACtXruSRRx5p8denQZFSSimllFIqrJKSEsaMGcP48ePp06cPP/3pTwHo27cvkyZNAmDx4sWsW7eOKVOmMGbMGF544QV27NjBhg0b6N+/PwMHDkREuOKKK8Ke47PPPuOGG24A7BympKSk1nlxIVpy8VallFJKKaXUEax8TlF1cXFxFT8bYzjttNOYN29elX1Wrlx5xMwB1Z4ipZRSSimlVKNNmjSJr776is2bNwNQXFzMDz/8wJAhQ9i2bRtbtmwBqBE0lTvllFN4+umnAQgEAuTn55OQkEBBQUHrvAA0KFJKKaWUUko1QXp6OnPnzuXSSy9l1KhRTJo0iQ0bNuDxeJgzZw7Tp09n6tSp9O3bN+zxjz/+OAsWLGDkyJGMGzeOtWvXkpqaypQpUxgxYkSrJFoQY0yLn6Spxo8fb5YuXdrWzVBKKaWUUqrVrF+/nqFDh7Z1M9qlcO+NiBQbY+JqOeSwtKdIKaWUUkop1alpUKSUUkoppZTq1DQoUkoppZRSSnVqGhQppZRSSimlOjUNipRSSimllFKdmgZFSimllFJKqU5NgyKllFJKKaVUrT744AMGDx7M0UcfzcMPP9zWzWkRLRYUiYhHRJaIyCoRWSsiv3fK54rINhFZ6TzGtFQblFJKKaWUUo0XCAS48cYbef/991m3bh3z5s1j3bp1bd2sZhfZgnX7gJONMYUi4gYWicj7zra7jDGvteC5lVJKKaWU6lTeWLGbRz7cyJ68Enomx3DXGYM5/5heTapzyZIlHH300Rx11FEAXHLJJbz55psMGzasOZrcbrRYT5GxCp2nbudhWup8SimllFJKdVZvrNjNL1//nt15JRhgd14Jv3z9e95YsbtJ9e7evZvevXtXPM/IyGD37qbV2R616JwiEXGJyEpgP/CxMeZbZ9MfRWS1iDwqItEt2QallFJKKaU6ukc+3EiJP1ClrMQf4JEPNzapXmNq9mmISJPqbI+aPSgSkTNFZKOIbMYOkxsDZAATRWQE8CSwBwgCVwHP1lLPbBFZKiJLDxw40NzNVEoppZRSqsPYk1fSoPL6ysjIYNeuXRXPMzMz6dmzZ5PqbI+aNSgSERfwN+AsYBhwqYgMM8bkAQuBM4HZwCtOsHQ78KNwdRlj5hhjxhtjxqenpzdnM5VSSimllOpQeibHNKi8viZMmMCmTZvYtm0bpaWlzJ8/nxkzZjSpzvaouXuKJgKbjTFbgSTgDeA8EYkBTgU2ADFAoth+t7OAnGZug1LtS1kpFGTZR5mvrVujlFJKqQ7orjMGE+N2VSmLcbu464zBTao3MjKSJ598kjPOOIOhQ4dy8cUXM3z48CbV2R41d/a5XkB5/1oP7PC4eOBybO/QOyJyLzATeBA7hO6UcBWJyGxsrxLjxo1r5mYq1UpKcmH1q/D5w2CCMPV2OOZKiE1p65apI0yRr4zICCG62h88pZRSCqjIMtfc2ecAzj77bM4+++wm19OeNXdQVDHryhizWkR+A0w0xtwcss/rwH+NMX8WkcnAcyIywhgTDK3IGDMHmAMwfvx4zVqnjkwHf4D376p8/vFvofsoGHBS27VJHVHyS/ysyszj+UXb6ZoQzY0nH02vJA8ul669rZRSqqrzj+nVLEFQZ9TcQVEm0DvkeQY2qUKon2LnFmGM+UZEPEAaNkOdUh3Lujdrln3/CvSfBhF6UavqtmxHLlfP/a7i+ftr9vLxHdPoluhpw1YppZRSHUtzX5V9BwwUkf4iEgVcArxVbZ+dOEPmRGQo4AE0vZzqmDIm1CzrM1kDIlUvh0r8zPlya5WyfG8ZK3bmtlGLlFJKqY6pWa/MjDFlwE3Ah8B67DyitSLygIiUp6n4BXCtiKwC5gGzTLgE6Ep1BP2mwqAzKp/3PwEGndV27VFHlMgIITnGXaM8KUyZUkoppRqvuYfPYYx5D3ivWtlvQ35eB0xp7vMq1S7FpcP5T0NpERgDUfEQl9rWrVJHiLjoSO44fRALNu7H67fTLof2SGBg14Q2bplSSinVsTR7UKSUqiY21T6UaoS+KbF89osTWbT5IOnx0YzslURaQnRbN0u1A4eKSynwlVFcGiA51k16fHSHXGVeKaVagwZFSinVjkVFuuiZHMPF43vXvbPqNPKKS3nsk03M/Xo7AN0TPbx6/WR6p8S2bcOUUh3ONddcwzvvvEPXrl1Zs2ZNWzenxehsb6WUUuoIc7DQVxEQAezL9/K/H2yg0FfWdo1SSnVIs2bN4oMPPmjrZrQ4DYqUUkqpI0xmbkmNsk1ZhXj9gTZojVKq3Vj9Cjw6Au5Ptv+ufqXJVZ5wwgmkpHT8Red1+JxSSil1hBncPYEoVwSlgcp1z88d3UMzEyrVma1+Bd6+BfzOTZNDu+xzgFEXt127jhDaU6SUUkodYbrERjFv9rEM65FISlwU107tz6UT++B26Z91pTqtTx+oDIjK+UtsuaqT9hQppZRSRxiP28W4vin866cTCQQNiTFuPG5XWzdLKdWWDmU2rFxVoUGRUkopdYRKjW+/6dnzikvZlVPM11uyGde3C0elx5MSF9XWzVKq40rKsEPmwpWrOmk/u1JKKaWaldcf4JWluzj3ya/4n/c3cNEz3/C3BZsp9PrbumlKdVyn/BbcMVXL3DG2vAkuvfRSJk+ezMaNG8nIyOC5555rUn3tlfYUKaXaVkme7drf8hn0GgvpQyGucyx2m13oIxA0REVGkByrd9BVx3GoxM9jn2yqUjb36+1ce3x/4j2aDEKpFlGeTOHTB+zf1aQMGxA1McnCvHnzmqFx7Z8GRUqpthPww7o34O1bK8uOuRJOfxBiktuuXS0sEDRs2l/ArfNWsjGrgGP7p/Doj8fQMzmm7oOVOkKUlgWrPA8EDUHTRo1RqrMYdbFmmmukeg2fE5EYERnc0o1RSnUyxTnw6e+rlq38N5QWtk17Wkl2kY8rn1vCxqwCAL7dlsNtL68kt6i0jVumVPOIi3Jx0biq8xhOGdKV2ChNBqGUap/q7CkSkXOBPwFRQH8RGQM8YIyZUcdxnIeIVwAAIABJREFUHuALINo5z2vGmN+JSH9gPpACLAeuNMbolYBSrcXvhTIveJJApK1bUzN9qDEQ7NgLUJaUBjhQ4KtStmRbTpU1Z5Q6ksV73Nx1xmCO6ZPMx+uyOG5AGjPG9NRhokqpdqs+PUX3AxOBPABjzEqgXz2O8wEnG2NGA2OAM0VkEvC/wKPGmIFALvDThjdbKdUohzLhw1/By5fDyhehOLtt2xOdABOurVrWZzJExbVNe1pBTlEpblcEcdXumB/dNR5XRDsIUpVqJqnx0Vw8vjd/vfQYZh3Xj7R2nClPqfbMGB13Wl1LvCf1mVNUZow5JA28o2xsa8vHwLidhwFOBi5zyl/ABl1PN6hypVTDFWbB82dWpuvcvghOvR8m3wSuNpr4HBULU26DbsPt3KLek2DMZRCX1jbtaUHBoGHrwULufm01/VLj+J8LR3Lv699TXBogLT6KJy4ZoxeNqsMREWKidPqyUo3l8XjIzs4mNTWVhl6Ld1TGGLKzs/F4PM1ab33+p1ojIpcBLhEZCNwCfF2fykXEBSwDjgb+BmwB8owxZc4umUCvBrdaqSNJmc8OEYtOhIg2zIJfuL/m+gXfPWeDkPhu9a/H7wVvnh3mFp0A0fFNa1dcKoy+BIbOgMhoiOiYcw4OFvm47B/fsr/Ax/KdefgDQV6ePYm46EjioyN1/RallFI1ZGRkkJmZyYEDB9q6Ke2Kx+MhI6N511+qT1B0M3AfdjjcS8CHwIP1qdwYEwDGiEgy8F9gaLjdwh0rIrOB2QB9+vSpz+mUan/y98LXT8C+1TDiInvhX59008EAFB2AnK0QkwLx6RDbxDTV7tiaZTFdQBoQqJXkwsp5sPAhG+iNudym+2yOnp2oMO3rQIp9AfaHzCN6e/Ve3v1+L4t/eQpdE5v3bpdSbeFAgZcFGw+QdcjLuWN60i0xmhi39hIp1RRut5v+/fu3dTM6hcP+b+X09PzeGHMXNjBqFGNMnogsBCYBySIS6fQWZQB7ajlmDjAHYPz48TqYUh15CvfD/50LB521OrYvgrxdMO1ucNdxEZy3A/5xsg1CAIacA+c+3rTgIyYZhp4L69+2zyNccObDEJde/zrydsGHv6x8vvwFyBhv02hrt/5hxbhdREdG4AtJUzwgPZ4InUekOoADBT5mPvMN27OLAXj80028ceMURvRKauOWKaVU/Rz2FrHT0zOuMRWLSLrTQ4SIxACnAuuBBcBFzm5XAW82pn6l2j1ffmVAVG7Z8+A9VMdxhfDx/ZUBEcCGd+DQ7qa1JzYVznkMfvoJnP8M3LISeh7TsDq2f1n1+ciLoMdo+O5Z2Pi+DQRVWIkxbv54wUjcLhsEJXoi+cvFOo9INV2h109JaVndO7agDfvyKwIigLKg4c8f/UCB19+GrVJKqfqrT7/2ChF5C3gVKCovNMa8XsdxPYAXnN6mCOAVY8w7IrIOmC8iDwIrgOca13Sl2jlXmIvdmC5196iU+WrO/QEo2AOMblqb4tLso/eExh2fEXJc2kA7fO7ZU+wirGADpMv/Y4f7qSpiolycPaI7U49Oo9DnJ9HjpovOI1JNUOD1s25PPk8v3EJCTCS3nTKI3ikxREW2/ry86gu1ApQGAmjSLKXUkaI+QVEKkI3NGlfOAIcNiowxq4Eat6GNMVuxKb6V6tii4mH0ZbDqJftcxA5Xi61jCFxMFzscbc/yyjJ3jA042lrqAJut7tunYeRM+PrJyoAIYO8qOw9Kg6KwYqMjiY2OBHQOkWq6jfsK+PGcxRXPP1qbxYI7T6Rnckyrt2VkRhLpCdFV1t+6+aSBJMa0UWZLpZRqoDqDImPM1a3REKXCKiu1w8giIuuXoKA9ie0Cpz8IE38G+zdA3+Ps/J26MtBFRMDw8+wCq8vn2sxwZzxUdzAV8Nt1h8Rlkxa0xFo/sakw7R6YfKNNBrH5k5r7lBbVLGuIooMQLLPZ+jp48gWlGqukNMCzi7ZVKfOVBflsw36umNS3UXWWlgXILfZTWhbE43aRFh9V7xTA6fHRvH3TVP69eDt7D3mZdVw/+qV13PXGlFIdT51BkYj8kzAZ4owx17RIi5QqV5QNy/5pJ/PHpcNZj0D34RB5BN1lj0u1j14NnJoXmwoTr7Nzdlxu23t0OL5C2LoQ/MU2gcL2r6D/VOh3QvOv+eNJtA+A4261C8GWi0uzaw7VpuigDZoiIm1PWkzIJOyyUti/Ft6+FXJ3wPDz4aRfa69TO2OM4UChj4OFpcRHR5LoiSQ5tn0MAzTGkF1YSpkxRLkiOnSac1eEkBrm9YUrqw+vP8DirdncMn8F+SVl9EmJZe7VEzgqvX4p90WE7kke7jhtMEFjiHS14fIDSinVCFLXirAi8qOQpx7gAmCPMeaWlmxYqPHjx5ulS5e21ulUSyrvzSjMshf+0SEX2KGCAVjyD/jgnsoyV5RNDpCkS1vVkLcLFj0KniRY9JfK8uEXwjmP2sxzLaEkD/auhG//Dsl94LibIDEj/Lypwv02gNq1xG4f91M4+VeVqcYL9sFfx1btaTr2Bjj1d3b4YHMqynYCyEj7/WuJXrUOamdOMT96+uuKYVKXTOjNPWcOafP5UYFAkA1ZBdz00gq2HSxidEYST142lt4pHbe3cVdOMdOf+JJ8r02yMCA9jvmzJ5Oe0PDkHVn5Xk58ZCEl/kBF2ZjeyTw/azwpcbXXVx6IBo0hKdZNdBvMZ1JKqXIiUmyMadQf9foMn/tPtZPNA8KMmanYfibwOOACnjXGPBxmn4uB+7E9UKuMMZc1rNnqiLV/HcydDr4Ce2F82h9g3Cy7CGioklxY/XLVskCpvQBvTFDkL7FZ38TVMXseDmyEYTNgfrVfpbWvw+l/aLmgKCYZjjoRMibaACOylgvjYBks/acNiMAu/Lr0Wbtoa3lQlLez5tC7DW/D1NuaNygqzIJXroKd39hA+6Rf2e9gXb1xikJfGf/7/oYq80bmf7eLa6b0b/OgKLu4lKueX8LBwlIAVmUe4tb5K3j2qsNf1B/JeiZ5+PiOaSzZlkN8dCQjeiU1KiACKPKVVQmIAFZn5lEWrP3GabGvjKU7crn/rbUcKvFz2bF9uHpK/w7dQ6eU6rga0789EAi7mqqTae5vwFnAMOBSERlWbZ+BwC+BKcaY4cBtjWiDOhIVHYA3b7IBEdgL449/W/k8lDsGUgbULE9uxEK+RQfh0z/AU5Pg/2bYi2F/ScPrac9SBwBCm6V6ioqtPSAC+35nfluzfM+Kyp/ju9XcnjaoeYdLlvngq7/a7wDYQPuT+6GwlpXCi3Ng6+fw3t2w/i37XerEfP4AWw8W1ijfndf2v08lpYGKgKjc8p15+AMdN/2ZyxVBt0QP547uyUlDujY6IAIqhkKGmtg/hajDDIM7WOhj1j+XsPVgEdlFpfz1s818uHYfwcMEUkop1V7VGRSJSIGI5Jc/gLeBe2rZfSKw2Riz1RhTCswHzqu2z7XA34wxuQDGGF3YpLMIBmxmslAmaOfDVBcVB6f8BuK7VpaNnAmJPRt2zoAflj4Pi/9me5/2r4MXzq26BlBHEJsCgTKY8LOq5UNmgLsdDA2Lioch59Ys73985c+eZDjxl5VD7+K72nlkTe3lMgaCTrrg0iLY+VXNfbLW1Czzl9ghnP83A5b8HV6+Et6/2w4Z7KSSYt3MGF21pzbKFcGQHgm1HFG7YNBQ1/Dthohxu0iIrnpRP6hbPC5dHLdeusS5+efVE+jlZK4bnZHEn2aOPux8sSXbc6ge/7y5cjcF3rZdM0kppRqjPsPnGvLXrhcQusBKJnBstX0GAYjIV9ghdvcbYz6oXpGIzAZmA4wb16j1Y1V7ExUPQ8+BVfMry+LS7TyYcJL7wHWL7Po80Yl2eFNsSsPOWZIHa/9btSzgh6y1DQ+wmoO3wC7qWpxtL/pjUg7fw1JfniToOwm6DbWBxvq3bZKFASfZLHhtTQSGngv719uMelFxcNoDkNCjcp+YJJh0AxxzhQ2UY7rY70djBQNQsBe+ex68eXDsbEjoCQNOgd3Lq+5bnu48GISSHDsUMFgGXz1Wdb81/7HtbqnhiO1cZEQEP57Qm0Kfn1eXZtIt0cMD5w1v0HCp4tIy9uSVMPfr7SR63FwxqS9dE6KbPDE/OdbNU1eM5caXlpNfUkb3RA9/vXSsLo5bT26Xi2N6d+GNG4+jLGiIjnRVfK4+f4BDJX6K/QFio1ykxkbhckVwdNeaSRiGdE/EE6VJFlpKoc9PZEQEHrfO3VKqudUn0cKnxphT6ipzymcCZxhjfuY8vxKYaIy5OWSfdwA/cDGQAXwJjDDG1Hr7VRMtdCCF++GzB2Hju5A+BKY/aod+RbTQf/C+QnjrZju3JtSNSyB9cMucs9a2FNk1i96/2/aQRcXBT96CjPGt2w6wvSeF+22ygUiPvchv7mQG4ZQWVw6XjE2xmfVaSv5eeHpyZa9ghAtmf2EDsbdvhY3vQHQSnPFHGDrDBlE/fACLn7JB5mm/hyXPVq4zVe72tZCU0XLtPgL4yuxFskuE1AYGHRv35XP2E4sIOF0MiTGRfHzbNLolNX2YZHlKaZ8/gCfKRVpcNBHaU9Qoh0r8eJ05RvsOlXD5s0so9JWRFh/FC9dMZHjPJHKKfDzw9jreWLkHgH6pscyfPZnuzfBZqqryS/ys3ZPPnC+2khLn5uaTB9KrSwxuzfKnVBUtkmhBRDxALJAmIl2A8r8siUBtt9gzgd4hzzOAPWH2WWyM8QPbRGQjdp7Sdw1vvjrixHe1C5ie9Cs7yb2hPT8NFR1vL253fQv5u23Zsdc3rQeisXyH4MNf2oAI7FCuN38OV73b+skfsrfAv86HQ7tsMHTuEzBkestnYYuKbb21h7YuqDpMMhiwmfnO+xuc9yT4H7E9WOW9devfgTeur9z/+TPgui9g7X/sXCRoP8MR21h0pIuuCQ2/keHzB3jm860VARFAfkkZn23cz6UTGzFfsJqoSBfdEo/cO+j+QJC8Yj+REdKmiSsOFHj55evf8+mG/XRNiOa+s4dy1ojuvLosk4OFpdwybwUvz55MWkI0988Yzi9OH0xpWZDEGHeT5jWBzWZX6CsjOtJFVKRe8JdbtyefS/9RuVDv+2v28dHtJ+B2RZDoiSQmqs6BP0qpOhzut+g6bBKEnsAyKoOifGwyhXC+AwaKSH9gN3AJUD2z3BvApcBcEUnDDqerNtFEdWiteWEMkNQbrl1gh1C5Y22mu7YY/uQvsUP3QmVvqQySWktxDrx1kw2Iytv15s+h3/cdKzV1RJj/3iLcgNjPP/Q74M23c89CBfywaylc9Q4s/z/oP639DEc8QokIblfNnhu39uaQU1TKvCU7mf/dTromePjducPokeShwFtGXHQkyTFuolthyFRJaYBHP9nEJ+vtdN+sfB93vLKKV6+fzOsrdhMIGrYcKCLgjDJJjo1qtnWqcopK+XjdPt5etZeRvRK5ekp/uiZqr1Ohz8/fv6h6mVRcGuDDtfv4YM0+Zp8wgGmD0jWIVKqJav0NMsY8bozpD9xpjDnKGNPfeYw2xjxZyzFlwE3Ah8B64BVjzFoReUBEZji7fQhki8g6YAFwlzEmu1lflVKhRCChmx0ul9y77eaDRMVXnUMDMPjs1hm2FipQCvu+r1bmtynLO5L+J1TNaOeKguN/Ae4wF1muKEjuW7O8S1/oPdH2LI2a2fwL4XYyUZERXD9tANEhF2/p8dGcMKgDpsmvp0DQkFPk4/XlmTzy4UZ25ZSwbEcuM5/5ht25JZz26Bec/KeFLN+ZS1mg5W+gFPr8fLmpajbGsqBhd24JKU7wM7ZPctjgtim8/gDPLdrKPf/5nkWbD/L051u58rklHCz01X1wBxcZEUFKXM2hxokeN3nFfm5/eSW5xaVhjlSdXaGvjH2HSth2oJD9BV7NDFmH+vS3dhURlzEmACAiicDjxpirw+1sjHkPeK9a2W9DfjbAHc5Dqc4jLh1mvWvns+xfBwNPs5P2wy1e25LcsbbXY+O7lWVt1XvWkuK72eFv6960w+hGXwLx3cPv6/bA8bfbdZGKnAvCPsdBt2Hh91eN1is5hk/umMbrK3aT6Ink7JE9mjzk6ki2K6eYLzcf5I2Vu6uU+8rsYrR9U2LZerCIW+av5N2bp7Z4z0lMlItRvZLZlVOZZl0E+qTGkldSyri+XXj8kjHNvvZTvtfPv77ZUaVsY1YBhd6yTp8sw+N2cfPJA3l/zT6KS+08r4Fd4+nVJYZN+232Vl9ZK484UO1eodfPa8syefDd9ZQFDV0Topk/exJHpddMkKKs+gRFLmCJiFwNdAf+6jyUUg0REWGTSvz4X3aOSnRC2wxX8yTC9D/ZJAtbF0DKUXDBHDu3piMRgYTucOx19ds/qTdcvwiyN0NUAiT1bJu5Zx1ctNtF75RYbj1lYFs3pc0Vev089N56BqTH07tLLGt251fZ3iPRQ47TA3CgwIe/Fe7yxke7uW/6UDZmFbB5fyHRkRHcd/ZQuid6WHTPyUS5IlpkvpMgJMa4ya+WztutQ8IA6NUlhs9+MY2vNmcTEQHdE2O467VVAPROiSFGs9GpavK9ZTzwzrqKtPn7C3zc9981PH3F2GYb8trR1Ccl969E5DPgWyAXOMEYs7nFW6ZURxXTDuakJPaEmXOhzAsSYS/+pZPP6ygPohJq6U1qgvwSP7tyi3lr5R4GdU9g2qD0Tn/3uyECQUNZMEh0ZMe68POVBdmVW8zKXXk8fcU4lmzLIbvIBkHTR3bnYGEpecV2HuKwHol4WilA6Jkcw/xrJ1HiD9iJ/DGRxLbwRP6UuCh+M30Y17+4rGIN6gvH9iIuqmN95o3ldkXQPSmGH43LYH++lztfW0VWvpexfbrwp5mjSIvXi1xVVW5xaY11xDZmFVCqvYq1qvN/ORE5AXgceAAYCTwpItcYY6pnlVNNUZ4iucxr53e4PTbLlU7qVi2low2XawMHC30EjSE2ykV8dPj04sYYvtmazXX/WlZRNrJXEnOvntDgdNadQfX39ECBl1eXZvL97kP8aFwG4/p2oUsHucuZFOPmwrEZ/PHd9fzx3XU8dflYCrxl9EuLJcYdyb2vr8btEsb17cIjF41u1e9LWisPaXRFCFOOTuWzX5zI11sOMqR7Av3S4vSOdhhdEz08cckxlAaCznwjfY9UTenx0cRFuShyhlwCnDykK/EezVRYm/qsU7QEmGWMWec8vxB4yBgzpBXaB3SCdYqCAbuY6CtXQu52u37POY/C9q9gws80MGoL/hKbeEAEYtNabh2lzqYk165VJBF2Qd7oIzPbnc8fYO3efO5+bTW7coo5a0R37ps+rMbcGF9ZgOzCUmb9cwk/ZBVW2fbhbScwuLtdGzuvuJSi0gCBQJC46MhOGSyVlgVYu8e+pzud9/Tes4Zy40vLWLajchm7X08fylXH9esw67PkFPmYt2QXryzdZRfDnTGco9LjiIp0kVtcij8QJMoVocGBUqpBSssCbNhXwJ2vrmL7wWJOH96N3507jPSEjp3RsSnrFNUnKKpIshBSllpXxjgR6Q38H3YeUhCYY4x5XETuB64FytPb/MpJzlCrDh8UFeyDOdPsv+W6DoMpt0LGBDsPRbWeomz45q/w3XN2/s3pf4QBJ7d+QoQjkd8LhVmw4R2b1KD/8XZtKoDCAzYV+A8f2GxvU2+DY2+o11pVXn+AEn+AJI+71RbjLPD6KS0LkhwbhavaObPyvUx7ZAFef+UwhCuO7cN904cR4wz3yS708Y8vtzKsZyKPf7KZLQeqBkXv33o8Q3skklPk48F31/P6cjvRfmSvJJ6fNaHTJR/Iyvdy4iMLKfFX/rm5bGIfYqJcPLdoW0VZ14Ro3r1larv6w36gwMu6PfmICEN7JDb4s7PrE5US6YpodC9YnhNAJcVEVaRmDgYNBwp9fLs1h0iXML5fF7q2k/ftQIGP/QVe3K4IUuOiOuWNAKVaQ0Xvu9tFvKcFF0xvJ1pk8dYQaSLyENDLGHOmiAwDJgPP1XFcGfALY8xyEUkAlonIx862R40xf2pMgzukMm/VgAhsdrKkDJsJS4Oi1mOMzcq26FH73JcPr14FNy1t/0FRYRbk74VIj00d3Rbpo3M2w5wTK9djShtkM+7FpMKqeTYgApsW/PP/Z1OS1xEU7c0r4akFm9mVW8IpQ7syfVTPFh0uUhYIsiO7mD++t56sfC+XTuzD9JE9qkwu35NXUiUgAvhk/X5uOXUgMVEuvP4ATy3YzHNfbefEwenMOq4fv3lzTcW+g7rFV1w4b95fWBEQAXy/+xAvLdnJjScNIDKiY/SG1MfeQyVVAiKATzdkcd/ZQ6uUedwuKpfNa3tZ+V7O/9tX7D3kBSCjSwyv33BcvbPEef0B8kv8RLqELrFR5BaVEjCGLmGC8XD8gQBbDhRx/1tr2XvIy0XjMrj82L6kxEWRVeDl7Me/JNeZl9QjycObN05p87V/9ud7ufjv37A9uxiACf268PQV43Senaq3vOJSsvK9bNpfyKiMZFLiooiP1mFh4ejvVf3V5xs0F/gncJ/z/AfgZeoIiowxe4G9zs8FIrIe6NXolnZk5RexRQft89hUGHGhXdSzS782bVqn4yuANa/XLN/+JaS142xZ+Xvg+TMhz0lp238aXPRc62ZP8xXApw9WXaD24A82wO81HrYurHnMru+g5zG1VnmgwMvidVu5eVwUFObhiwuwaMMezhzdp8UWKswuKuW8v31Foc9mwfr1G2sQ4JKJfSouUtMTohGB0I72wd3j8TiJAPK9ft5atReAhRsPcNyANOZcOY6P12UxrGci54zqUfGHqnrGMYCVO/Pw+YNERneeoCgtPsx72i2BYLU5wXedMZioZl4jpyn+u2J3RUAEkJlbwnvf72PWlH51Hrs/v4QN+wp5cfEOdh8q4XfnDuez9Vl8tC6Lq6f055xRPeocNpdT5OfCp76uSNX8549+IDJC+NnUo/j34h0VARHA3kNePlqXxRWTwqzJ1UqCQcNLS3ZWBEQA323PZfmOXE4f3vxJTlTHU+D18/TCLRUL2orAM5eP49ShXXF1kGG1qm3U59uTZox5BTsErnyB1sDhD6lKRPoBx2Az2AHcJCKrReR5EdEJM7FpcMk8O8zo2Ovh4n/ZhT5ztmlGsNbmjgl/kd5tROu1IRiEgizYvRxyttqf8/fa3sSyMAv0Bfzw7TOVARHAts9h7/c1921JwQCUldQs9xfb93XgaTW39Zl02CojSws4I/81uj4/ka6vnEPvF0/g+OSDFPrshV5+iZ/M3GKW78wlK9+Lz9+g/5rC2rCvoCIgKvfSkp3khSyOmOhxc+9ZQyqCpO6JHn5/3ggSY+zQBHdEBBldKhflfei99Tz03nruPWsIV0/pX2Xo1/EDa/bonTu6B3Gd5K5nIGjIyvdyoMDH3WcMrvKePnDeCKYNTuO5q8Zz00lH8+LPjuWHrAJmzf2OgwX1X9SzuLSMrHwvG/blk5XvxdsM35Nye/JqfufDlYUq8Zexalcet728ikc//oGTh3ZjxuheXPHst5w+vDvbs4v59Rtr+HpL3euab9lfWBEQlfvP8t3klZSSU1jz/4vy7HZtxR8M8kNWQY3y8vV2lKpLobeMf3y5teK5MfCbN9eQE3IDQKnGqM9f3SIRSQUMgIhMAg7V9wQiEg/8B7jNGJMvIk8Df3Dq+wPwZ+CaMMfNBmYD9OnTp76nOzK5IqHnOLjhG3tX/YXplbdLFw+Bq96unJehWpbLbde12fQRZDnDncZcDinOEEZfIZQWQWR0y2Vvy9sBz51qe16ufAO+fhJ+eM8mJjjjIRh6LniSKvcPlMKBjTXryd4ER5/cMm0MJyYZpt5RtUcoNhV6jrWJKkZeBJlLYe3rtnf0xHvt2kCHkSAlRC7+S2VBaSFdPrsL78UvU+jtwvzvdvHQe+sBiI6M4KVrj2Vc36att5QeJrVtjyRPlZ6pxBg3lx/bh/NG96LEHyAu2kV6yBCFLnFRPHjBCGY+803FBetpw7oRGaaHo1uih8d+PIaH3ltPcWmAn0zuy4mDO8/ve1a+l7Of+JJDJX6uPf4o/vvz44iLjiTR4yYtPgpxuo/W7D7EvCU7Ky7qP16fxaUT6/7bUFoW5MtNB7n5pRWUBoJ43BE8d9UEJvVPaZa7ypdN7MO/Fu+o+C87QuDiCRmHPeZAQSk/evprypx8uSt25fHkZcfQLzWOrQeL6JHkITO3hPlLdnLCwLTDzgMIN3+pd0oM0W4Xs6b04+WluyrS8rpdwgVjejbuhTaT6EgXl0zow3vfVw4ZF4EztJeo2eQUlVLkKyNChLhoV4dL0uEPBGukms4r9mNo+XW8VMdWn6DoDuAtYICIfAWkAzPrU7mIuLEB0YvGmNcBjDFZIdv/AbwT7lhjzBxgDthEC/U53xHN5bIZuRb8ser4kQMbIHeHBkWtKaE7/OQNGwC53LbXLibZ9tR8+GvY+hl0H2UzBHbp17y9eaUlsPSfdijl6EtswoKN79pt3kPw5o3Q57iqQVFUHBxzZeV8HbDfpXA9M4dTnOOsW+SyvZcuJ+Oe3wsEwR1bdx09x8BPP4bFT0NiD5j0c4hzvrtx6XDOX+D0P9j3zJNse5AOI6K05tAycnfgiQiy11fG/36woaLYVxbk7tdW8/LsyU1KJ9w9KYZThnbl0/X7AYiPjuTes4aQ4HHbCatBQ1x0JPHR7lrTcIOdN7TgzhPZmVNM14RokmLcJMXUvDhJjHFz7qgeTDna9hgleCKdeTMdU77Xj0uEuOhIAsEgc7/aXrEWz5wvtjLni638v4tGcfH4yoB50eZsFv5woEo9q3bl1Ssoyi0u5c5XVlEasOPwvP4gt7+8knduntosc2syUmJ59brJPPbJJiIEbj9tED2TDv+9/mRdVkVAVO6d1XuZOjCNnkkxFe9H/zSbhe5w0uKjuWiMmW9YAAAgAElEQVRcL15bZuelJcZE8uvpw0j0uHF1Ed68cQp/XbAZd4Rw6ymD6v2aff4AQUNF4pDmNCojif930Sj+/vkWPG4X95w5hO5tPM+pozhY6OPnLy5jybZcAM4e0Z0/nD+iQyWyiI2OZEj3BDbsq+xxvGBsL+JaeC0t1fHV5xu0FpgGDMbObt1IPYbdiYhg5x2tN8b8JaS8hzPfCOACYE244zslYyBYVrM8XJlqWXHpVefjlOTBWzfbHiSArQvgX+fbAKA5AtbSIrtO1YZ3IX0Q/ORNyN4CK/9dc9+9KyH1qKplfY+zQdo3T0JUgg084rvV//z5e+C1a2DnN/a4C56xmQ8L9sEXf7LD4qbcBgk9IDoBouPD1+NJgt4ToccokEjbC1p9e2hAV4eIuHTb21RcOYzIjPgREp2ENz9AoNqF5a6ckjrvFpaWBckrKcUlEvZCISUuikcuGs2+QyUcLCxlcPcEEj2RLN2ew72vf8+evBLOHd2Tu84YjNsVwfaDRXywZh+jeyczoV+XijrdLhfdEl10q8fFnssVUeOOf06Rj8Vbc1i4cT+nDevGuL4pdSaYyC0q5fvdh3hn9R4mD0jlhIHp7eZiKL/Ez6rMPP7++VYSPJHcftog+nSJJbuo5jC47GrDvmaM6ck/v95epezCsfWbouoPBCmoNhxyf4GPQB2ZV+srPjqS8f1SeOqKsQiQUI/sTr261AyauiZEM7BrPJv3F1LoK6N7oofrpg2oc+5cl7go7ps+jBtPPJqcYj+9u8SQ6nxP4qIjGZmRzGM/HoMghw1wDpX4KfaVETSGoIGnF24hr6SUG6YN4Kj0OOIOcwOgoZJjo/jR2AxOHtwVEdrNd/RIZ4zhnVV7KwIigPfW7OOi8RmcPKQBfw/aubT4aOZeM5GnFmxmdeYhTh/WjR9P6N1phhyrllOfb9A3xpix2OAIABFZDoyt47gpwJXA9yKy0in7FXCpiIzBDp/bDlzX0EZ3WHGpcMI98FJIR1xyX80+1x6UeWHzx1XLcrfbYKY5ZK2Ff55p5+WAndd09iOwf6ydWxSqe5j5TbEpcMxVMOQc20vUkMxz3nx4/x4bEIHNYvfaNXDtQnhmqn3tAOvfssP5tiyA424+/Dkim+mub1waXPMhvHcnZG+Goefhm3o3u/LKKPCW0TPJw56QSe5njuhOzGF6WXKKSnnh6+3M/24nafHR/H7GcIb3TCSm2h3GlLioKgHIvkNeLn/2W3zOSuAvf7eLRI+bk4akc9k/vq3Y7+QhXfnzzNFVMtU1Rn6Jn4ff38ArSzMBeGVpJrOO68edZwyuNcOS1x/ghW+289gnmyqOOW1oNx6ZOapdDJ9ZvzefK59bUvH8sw37+eKuk7hman9eX7G7ooM8yhXBOaN6VDn2qLR4HrloFI99sgljDDedPJBB3RLqdV6P28XRTrBRbmyfLkTX0QPTUIkNSHU7rm8XhvdMZO0e2xOanhDN7BOOItol5JWU8caNU+iV7Kl32vEusVF0iY2ify3bY+u4g55d5ON/3tvAf5ZnYgycMrQrVx/Xnyue+5b31+zj3ZuPZ1jP5k3l64oQ0hKiKS0LYoyxwyRVk5QFDct25NQoX7Ezr0MFRWDnHP7q7KEUlwZI9EQSqQkWVDOo9X9KEemOzRYXIyLHUJkDNRGocxyNMWYR4fOmHnZNok6vz7Fw7QJY+pydxzLmMh061x5IhA1Qc7dXlkVGN8/Ff3EufPK7yoAIYM8KKDkE46+2AdPOb+z5TrqvcjhadS5X474r/hLYsahqWa+xsO6/lQER2J7MVfMgMgZ++NB+N1v6QibCZbP+zZxrk0x4ksjKDzD98S8Y1D2eJy49hic/28zGrAJOGJjObacOrHX+RSBoeHPlbh7/1AYNWfk+Lv3HYj6/66QaQVF127OLKA0ESfr/7J13eFRl/sU/d3pLrySkEErovXdQBEUUREQFUbFjXev+Vnftu/a1d8WGiooICiIoINJ7rwkEUkhv0+v9/fFOZjKkA7Y153l4yLxz7507d9p73u/5nqNXY3F68Ppklu8vpFtSqE37yoPFWF2eMyZFVpeHr7blhYzN23ScW0a3b5AUVTvcvL3maMjYigNFWJ2e350U2V0e3l93LGTM6fGx4kARk/sk8/UtQ3ltVRY6tZI7zulIfHho5SDCoOaSPsn+XithV93cSVCsScvcawbwj4V72HmikkEZ0Tx+cfdf1da9Oef04eyB5JbbsLm8dEow+d33JOIacP6XZZkSs5NjZVbCtCoSwnVnrcKyO68q5P3204FiBmfEMCQjhg1Hy3h/3TH+c0mPsxqYW251seloGd/tPsmA9Ggu7NWm1Tr4DKFWKpjUK4lvd58MGR/X9X+LENVAp1b+T0uNW/Hbo7GZwHjgGqAtwgyhZvZTjaj4tOLXgC5CTEjb9Ia/UEbJHx7GOJj8JnwyRZAIhRIueO7sZBfJXnHMU6HWQXhbuHweuGygUInH05xWJlnDUOmEZXaNNBAEAdHXYwypDROVpUNLhW18Ez1BZw8SIIOzmvVZdlxeH3vzq7nz851cMTCVm0a1J7/Sxtx1x/j7+V3qDXittrv5Zkd+yJjbK7M7r5KkyMafR032TInZSVyYlmV7CzlWag1xGcuINTJjcCqyDHaX94x6MeqjmtIpoyKsUybKoBYEQW5gP0nC4/VRbnXhk0GnVjRKkswON9V2DyUWB20i9ETq1WjPcOKhVCjqnfDGhWkxaVX0SY3ipcv7oJAalnidKjEst7o4VGhmb34VIzvF0SZCF3D/OxUp0QZevaIPTo8PnVrZ4Ha/JWJN2haRgIJKBxe/tpZSv7RwcEY0r17Zl0i9mgqbC0mSTptUbDpa1+Vub34V6bEGNhwtI0Kv5mxmJjvcXt5be5TXVmUDsGTPSZbvL+TVK/v+rmT1fwH906P527iOvLvmGGqVgnvGdSI1uhn9oK1oRSsaJkWyLH8IfChJ0lRZlhf8hufUCmglRL8lbGVgrxBSOFMihNWzqiZJwkXtjh3CItsUB9qIs0NQDDEw9A746trgWFgbiOkYdLgzxJz54zQEfQRMfB7mTRPGHtow6D8bUoeIAOEq/wqyLgJ6Xi56qc55+OxJ5JqCuVAYTGT/BNEZTLnwDVZ3juaHg+XkV9p5bvkhbhiRQX6lrdH+HZ1aQfs4E7vyQs0zk5sgRD6fTG65jWvmbsHp8SFJ8H8TOnP1kHRWHhS+MYMzornr3E48v/wQb64+yoTuidx5bsfTnqQatSouH5DKp5tPBMZmDU3DpFXh8njJKrby2Hf7KDG7uGJgClP7tiVCr+bBiV146Ju9AWem87snolUpWJdVyr1f7qbE4mRI+xhenN673mtldXr4YmsuTyw5gOwnUPOuP3NHP41KwS2j2vPt7gKq7aK/p2O8iX6pQeJ9aj9Apc2FzeVF8t9Xm8hU2lw89u0+vtlZAMCTSw/wwmW9uKhXUoMVpIg/gITwdOF0e3l11ZEAIQLYeLQcs8PD4p0FvL/uGAaNkgcndqFfWnSLQyzP6ZzAmz+HVhkHtYvhu90F3D8+k8l9kim3uogxautdcGgpqh1u3l+bEzK2PrsMm8sTIEU2pyfQCxauUzVZzW2FQLRRw80j23PlwDRAJtKgOasVvla04n8ZknyWmk1/TfTv31/eunXr730arfhfhLUUltwN+xeJ2+FJMHs5RDZuFX3WYa8UBgpb3oXoDJFXFf4bW+daSkSmkFIDhihBesxFIrjWXiH6nFb8SxC1SS/9NsGwTjN8M0f0M9VAG0bujF8Y8fp+AKIMauZeO5Br5m5i8W0jGl0Vza+wMfWNDRRWC1ngpJ5tuLBnEv3SoxokMCVmJ1NeX0dehR2lQsLrk9GqFPx832i0KiW78yuJMWqZ+d6mgGsYwIxBqTw0setpVYzcXh9mh5sdJyr5+XAJ53SOp4c/tb2wysGoZ1cF+psAHr+4G8M6xHKk2ELnxDDWHC4hxqRlULtovD6ZYU+vxO0NftdP7p3EE1N61Jk8F1bZGf70qhBntPZxxjN29AMhXyy1ONl+vIIwnYrMxPB67aQByixO/rVoL0v2FCJJMKVPMg9d0IVo/2uUX2ln2FMrQ/aJC9Oy9I7hze7D+TOh2u5mzrztrM0qDYz1TY3k6iHp3Dl/Z2BMkmDlPaNpF9uyxZoKq4tPN5/gtVVZeH0ys4akMX2ACCt+fvkhvt9bSEKYlqcv7Um/tKgme5SaQrHZwbgX1lBlD82VWff3sSRH6im3unjr52w+8JtrXDe8HdePyGitIrWiFa1oEpIk2WRZPq0V69all1b8tVFxPEiIQLiwrXkGzn/mN5SGIYhGxmhoO0jYgJ/q2tZc+LzCxe7EBmElntS7+X1GpnpITliCyBdyWsFZBZe8I6y5Db9R5rLLKpz+asNpJklr56XpvXB5ZfqmRrHxaCnf3TaiTi/KqYg0qHljZl/MDg8GjZKTVQ5+OlhEcpS+QVIkyzKX9U9hZKc4HG4vLo+PZ384hNPjIzFCz6hO8ewvqA4Qogi9OtBEb3a4W0SKyixOVuwvYm1WKed1TWRUZizndAmtXO7NrwohRABfbcvD6fHxxJID6NVKvrl1KJmJQtq5M7cihBABrMsuw+b01CFFDrevjlX0iXIbvrOQ/6FUSCSE6zi/R5smt/3lSClL/Dk2sgxfb8/n/O6JjOsqsmxOdR0EIVn84y/xnR7C9WquGJgaQooGt4th8e6CkO1kGVYdLKbd8IYsF+pHlFHDdcPbMa1fW2REZUaSJJ5ZdpDv/P0pBVUOrp27hV8eGHPGpChSr+HucZ14eHHAv4mLeiVh9H9WduZW8Fat/rjXV2czpH0MIzr+BgsxrWhFK/6yaCVFrfhro+JY3bHSI8Jg4ExIkcsqqhwg5GjNldlpzpCIVRcIxzhHpbgd0wGu/T5IjKxl4HWKnihDXPNlmlqj+AeialSVJ6zidZGNh9jaykSw7JEVkDEKEnoIl8XmQqmBhO5BZzwAhQql7OXifXdCh3EQdjntB6c363Bur8x/vj/IwcJqnp3aS8izJInjZVaSInVEG+sSI0kSK/VTXl+HLAvXozdn9g0hFBEGNZIEN43MYExmPOuzy+iUYGr2JL3a7sbq9LAuq5Snlh2k0ubmu90nmTU4jQfO7xwiLUuMqFsJSYrUB2ys7W4vTy49wCtX9CVCryYhXIdCIiTssE9KZL1kzahV1nX065aI4TdsZpZlOWTyX4P12WUBUmTUKOnVNiJECnn10LQWOcD9EWF1eqi2uykyO0gM1xOhD8rGhnaI4ZlLezJ33TEi9GqmDWjLl1vzAnlaNeiY0IBdfhM4tWm91Oxg1aHQbCiPT+ZoiZU2TeQwNQWNSsHk3kn0SY3kpwPF9E2NpHtyRKDXbfm+ojr7rNhf1CxS5HB7sbk8mLTqJu3MW9GKVrSiNppFiiRJGgqk195eluWPfqVzakUrfjukDBIGBrWzoHpeLvqFThe2Mlj/Cmx8HZBg8C3CwvrX7AsC8Lhh/ctBQgTCxjpnrTBFqMqDL6+BvC0QkQJT/VK9llh4W8uEU96J9XDRq8KeW/ZCpwki30ipRpZlSi0u9Dgwbnkdac1zYt+1L8DAm2DsP0HXiJ2yrRxspaKXKK4zXPQKfHQxVOcLSd+4x+DYLzDyXhFoW5ULXnf9la5TEGkQK+L7Cqr46WAxX2zNBYTF9lWD03hgQmYd9zqr08u7a4PkubDawRurs3nusl6BsTCdiuen9cIny0x/e2Ng/LyuCTw9tWejbnR55Tb+uWgve/OrGZwRzftXD+CmT7ZRYnby2ZYT3Dq2QwgpahOpY3y3RH7YV+h/TmquG96OOfOC1u0lZicef1hpuE7N89N68eA3ewNOZw9f1K3ePJ1Yk5bPbhzMvxbt5WChmbGd47l7XN1r8mtCkiQuH5BCdrGFXXmVATJX20ErxqTl3asH8MXWE+w4UcmkXkmM7Bj3p3aicri9/HigiLu/2IXXJ6NWSrx9VX9GdIxFpVQQZdBwad+2nNM5HqVCItKg4eqh6XzvN/0AGN0pjq5tzoL5C6DTqOiWFB44dg1S6slYOh1EGDT0NGjo2bbuosrwjrF8viU3ZKwm3LgxFFU7eOWnI+zIrWR0ZhwzB6ehUSpac5Ba0YpWNAtN9hRJkvQx0B7YCdR4BsuyLN/xK59bAK09Ra341eCyQ+FuWPaAIDP9ZkO/WQ0TGIdZVFcaq/xk/QifTA0dm7kAOpx79s67PrgdsPAm2P9N6Pj5z0KPafDVNXB0dXBcGw5XzocfHoSLX4XYzKZle8fXw9zzRfVp0a1Q7pe4qA1w81pspjS2HC/nkcX7mXtpCumfDAFPrXBOhRLu2ttwv5StAlY+BlvfDx73pp+FyYPLKgjstg9F1Wn+TEGKAIbfDcPubLxq5UeVzUW5zc25L/wcIsNSKSTWPjC2TiVmfVYpV767KWSsXayRL24aHNK/crLKzhVvbySnzBay7Yq7R+LxyiSG65ABj8+HQa3CpFNRYnZy2VsbQiaeozrFMaxDLP9eKqRwq+8bXccUodzqotTipMrupm2UngcW7GLN4aCD2BOTu3PFQNETAmLCXWV34/YK97WmDCCq7W4cbi9hv0GDe40zns3lRadWopBg1aFiPF6ZLknhPPbtPkZ1iueaYelEnWKW4PX6cHp8GP7AoY1en/8cm7iORdUOxj63GqsraM0fa9Kw9I4RxDdiIFJidlJudaFRSkQYNHX6biptwqVv8a4C+qZFMapTXLMNQAoq7cx8dxNHS62oFBL3js/kioGpRNTj3ldhdXGoyMyawyWM7BhHp8Sw0+4BKrM4efy7/SzaJeSBl/RJ5sGJXeqt5NbeZ9b7mwPZTwATe7RhYLtozu+e2Og1/LPB4nBj9ZuQRBjUZz1zqxWt+DPj1+4p6g90lf8Mjgyt+GPCXgnlx+DQEkjuB237/zZN+s2BRi+yoWZ8JfpxDNGip+dUOKqhaA/88oLo1Rn9fxDVDtT1/Egf+K7+sV+bFKl1MOS2UFKk0kLmBPC6BKGpDWc1yD4o2A4fTIQ5GyEssfHHKNgBiT2FS115Lbcqtw3WPIfznGe4du4Wsbovy6HZSwCyD58s06CoxVEZJEQgyGnhXkgZCGqj0LIZYmDVv4OECEQVqv+1zSJFEQYN1Q5PvfbV9SEjzoRWpQjp4zm/eyIR+tAJn1IhhUxoa1BucTHj3U1M7pPMiI6x/OPrPYzKjOPhSd1weXx1VuLXHClhzhgR2DxndPt67aNrh8t6vT4evagHz/5wiIJKO1cMTOG8rokBQgRN53lYnB4sDjcWpwhCjDZqfjPb6qwSCzPf3USpxYVOreCxi7qz6Vg5X2/PJy5My6JbhxFl1NQbyqtUKjCcgbNWqUVU1FTK+i3DT0WJ2cHBQjNalZKMOGOT+xSbHczfnMvOvEom9UxiVKe4BquGbq+vzvun1OLC28RPb1yYtkHDCrfXxzc78nnkW2FKMm/TCYZ3iOXlK/o0i7AkReqZf9Ng7C4vGpWSMJ0qpGpZbXejUSnw+mTe/Dk70Af0+upsbhyRwR3ndmyxEx6ISuCjF3fjgQmdQQKjRtXk+9Hm8oYQIoBl+wqZNSSNjzce585zOjaabWVzeai0uckps5ISZSDSoK63mvp7o8zi5OllB/l6ez56tZJ7x3dicp/kOt9HrfjroPbCkl6jJEKv/lNXzX9PNOfbai+QCJxsasNWtKIOvB4xSf/2zuBY5wvh3EdFtSW86abr3wRNycdKDsHcC4K3Dy+D27ZAZGrdbduPgW1z646dDdgrxDU1RIuqy6mIy4Rrl8La/wbJmzEBXBZhupC7ObitWi8qLzXHtZU3TYoyxojX02Wte5+zmsIKS0DutOyIldk9Z6LZ+UFgE3eXKaw/bqNDqp3kSD0OtxeFJAW0/7K9IkhWwhJh2lxY/k9hVx7RVhg9tB8L61+q+/i2svpfj1NgdrjZkF3K1H5tmV9LojN9QAombd1rGmVQ8+kNg3hw4V4KKu1c1DuJ64a3w+PzYbF6iNCrhZxJr+G6Ye14atnBwL6dEkxU2d14fDJfbcvj8gEpOD0+lu4pxOXx8fjF3esQrjbhOnQqJV/dPIT2caZ6yUBtKJUK2sUaeebSnrg8PiL16hbZJludHhbtyOfhxfvw+GQiDWo+u2EwXVoow3J6vFgcHsJ0ze/lKLU4+dv8nQGraYfbx78W7+Xj6wbx9fZ8SsxOlu8r4pph6S06l+Ygu9jCLfO2cbjIQsd4E6/P7EuHOBNSA4HEhVUiJ6ioWlQ+O8Sb+OyGQQ263ZVZnMz+YAt788VE/acDxdw+tgO3jelQb+6TTq2kc2IYBwvNgbFB7aLRtbAKUNOfZnN70auVrDpYzLld4okP07E5p5y1WaVYnZ5mV3Hqe35VNhebjpXz0YbjJIbruG1sB3bnVYZsM3f9MWYPb3dapAggQq+hJa1LaqWESiGFGIVEGUTY8p78KhweH6YGSJHb62NdVik3fbwt8P31xOTuTO3b9ozyxs42fD6ZJbtP8sVWEZNgdnp4ePF+BmXE/ClIkcPtxexwY9Co6ljwt+L0caTYwlXviYUlvVrJi5f3ZlSnP7ec+PdCc96VscB+SZI2AwEdjCzLF/1qZ9WK/x3YymDlE6FjB7+D4XfBp9PgmiW/vfV0S+FxwMbXxN/hSTD+3yJHyGUTRMJwSoZL2jDocRns/VLc7j5NjJ0J3A4oPQQ//ENc03GPCxOFfQtBHw3thkN5DiT2EI+V0FOQJo3fnlqt9YfPThXmEtpwuOAZ2PqeuF+hFFUYt71xg4nwJBhxn+hF+vlp0ZvUfizYy6H/dSgJfgn/d00BA2fcTueUIRiOLacyaSR5cSOZ8/Fh5oyRGNEhlrd/OUqYTs3NozII06lRauKJMESL6zrwRvEYNSYLVXkw71K4bSt0nQyb3gyely5CvCbNxPL9RUzt15Z+aVFsP15B37Qo+qdFBXpnvD6ZMqsTp9uHRhUkHTq1khijGrvLy2Pf7Sen1MolfdsyqVcS0UYN0wekkBKtZ+GOfNrHmZjQPZE7Pt8ReFyby4taqcDj87LqUAkqhcTjk7vz9wW78cmgVSl4bloveiRHtDgPxqRVQTNbJzxeH6UWF0v3nBRVKz8hAqi0ubnvq118dO0gok2NT7TcXh92lxeH28s7vxxlw9EyhrWP5foRGQ1WL2rDJ8shJAAEMfLVqo5UO9yn7nbGKDU7ueGjrRz1V+mOFFu47oOtLLhlaL3n7fPJfLwxJ0CIALKKLazLKmNyn+R6H8Pi9AQIUQ0+XJ/DrCFpxNUzWYk1aXn/mgE8sngfO3IrGZwRzUMTuzbaj3Yqquxu3l97jJdXHkGWISFcy6fXD2bloSL25Zu569yOIVlHLUGV3UWZRfw7WWXnjs+DVuArDhSxcM5QLntrQ+D49TkE/poI06m569yOPLf8MCC+zu4dn8n8LblM6ZPcKDmrsLr4v6/3hJiRPLFkP+O6JPyhSJHN5eHHA3VNKDYdLadz4tnpJfu1UGp28uqqLH4+XELPthE8MKFzk6HZrWgaZRYnd30eXFiyu73c9flOVt87Gl3EH+e9+2dBc0jRIy05oCRJE4CXACXwrizLTzWw3aXAl8AAWZZbG4b+l+GtZ1Ij+4T8auenMOIe8Qt2urCWiUqI7BNOb801DWguJKUwEVCoYNoHsPR+kSkEkDkRRt0PR5ZD7xliO2MsnPekGHdUQ+EuYQzQfoyQdzmqg850GgPom2FvbSuF98aJ/pyIFCGLe22gkMWBqJBMeQvmToDZP9Rvwx2dAdctF1I3gNVPw+4vBCEa8xDsXQADrm+cFClUou9o/Stww2pB1HZ9Js7JFE9CeS7T+8Qzf0cxTo+Pe5bk8cWNF/Pfgq7s2Wtl49EDpETr6Z4UzsV+NzeARTvzWThnGI8tPsGLl31HzNpHUCT3h1+eD318l1Vcv5H3itdl3wLxvCa+INz0asHrkym3unB5fWhVQXmUUiFx9ZB0rp67mS5twukQb2Lp7gKGZAT7yI4Um7l27hZOVjmINmp46pIefLr5BKsPlfDVzUO4+ZNtgR+hXXlV2Fwerh+RQZRRw8SeSYzoGMfqQ8Vc/vbGQBUoIVyLQpKwu4VEqn2cEUkhcUGPNgzvEEuJ2UlihI6IFlZ6TgfFZicTXlqD2eGhW9LgOjbcWcUWPD5fA3sLlJqdfLzxOJkJJj7eeIINR0VP0978ag4WmXlpeu+Am1hD0CgVDGsfw9qsYD9UjFGD2yPOR6tSMKUB0nEmcHp9AUJUgxPlNlyeuvJHAK8sk19przNe3xgI2ZzV6akzbtCocLh9LN9XSNekcKINmpB+qKRIPc9f1gu7y4tBq8SkbZl8q8rm4qWfjgRuF1U7eWLJAXqnRvLNzny+2ZnPoxd1I1zXslV6q9PDp5tO8PSyQ/zjgi4s2xsqHKmyuzlwspovbx5CidmJ3eUlp8yGoZ7K668Fo1bFVYPTmNC9DQdOVpESZWDFgSK6JYczsgnXOlmGMmsoWXS4fbi8jX8Gfmvo1UoGZ8Sw5kioO2PvlKZlw78nqh1u/rloL9/vFeYwx0qt7C+o5rMbBp9x/tlfHV6fzKGi0IUlu9sb+J1pRcvQ5DejLMs/N/dgkiQpgdeAcUAesEWSpMWyLO8/Zbsw4A5gU92jtOJ3gdMiXMg0DQdfnhb0kcJ5beXjwbGUQcF+lLIsIQdTnaZ221oCC2+BrBXidtsBcPmnzc/maQ6UatGrYysX1tIngyukHFoCXScJQrHhNZizQVRTqvPgnVMkc9f/CNEdxLXYNleQuM6TYNKLQkqoaCSfKHdT0LCg22QR8uqt9SNeeULkExnjhUSuy4V1jyFJwetSXQC9rxD/1AbY97VwqRt0c+PXwlIEn1wCqUPEOS2aE7xv71dEXPUN/5eymTuGjMbplQlznkThdfHNrmJKLOL8z5GvZbkAACAASURBVO2SwJfb8qjdKmFzCectjywxZX4R1/V/iPHqMJLa9Ibj64IbqrSiKmSMg3P+CcPu8IfNhlbrPF4fewuquPnj7RRWO2gfZ+SdWf3JiDPh9vg4VFTNvOsHs3TPSWJMGkZ3Sud4mZWUaAOlZidzPtnOSb8tdbnVxQMLdvPyFX3YcaKSCpu7zmr7Z5tzubRfSqDKEK5XM7xjHPeNz2TRzgIy4ozcNqYD934h3jvhOhXPX9Y7QNRMWlWDq6YlZicWpwetSoFRoySiCaLRHHyxNZdqu5i0+2QhM6qoFTx7TueERs0LKqwu7vh8B+uzy/jy5iEBQlSDnw+VYHd7aWiqVmV34/b4iDSoefbSXtz71S7WZZWRmRDGc9N6svJgEZf2TWbOmA7En4VJk8PtpdruRqGQiDVp0SilOtbjCeFa1A3Iq9RKBbMGp/PNjmAukFIhMbGezCWr08PT3x+ie3I4F/RIZKk/bwng7vM68dh3+1mxvwiFBO/M6s/ozPiQ/q8w3en3stSEEtdGVomZiT2DstgP1udwQTOyomrD7PDwwgpRgbE6PXWkWmqlRPfkCJ5ffoglewoxaVU8eEEXfuvgqAiDhgiDhoxYI2VWF1cPSSfSoEGjUiDLMpU2N2qVVIds6tRKRnWKY3UtC/KubcIx/IGqRCCkspcNSGF9dilrs8pQKiSuH96u0cDqPwIcLm/ALbMGR4ot2OrpwWxFy6BRKRjSPoYN2cHv4FiT5g/33v2zoElSJEnSYOAVoAugQVSArLIs11erHQhkybJ81L/v58DFwP5TtnsceAa49/RPvRVnBQ4zlOwXK/Iqvd9AIF007Z8NqLTQfzYkdIM9X0J8FyHv+mKWuL/PVXBoKWSMbF7F5FSc2BgkRCDspvd9A4NuPDvnX4PwJJjwJCyp5y1bcggiU4T5wL5vYMgc2PV53e12fAqDbgpK1gAOfisqSJZiIdMbdFP9csKIlODfCnUoIaqBo1IQ0NoGBA1BbYBDy2DTG4KcqXRCythQlc3nFRWlI8vFsmrmBXX7pizFYC4ismwXkY58UQ1TqPCkdueVK3szd10Oh4ssON3eeqUsJq0Kp8dHXoWdR1fk8cF2AyuvfRXlp1MFidaGwcWvY1eZMJsdKFAQ20APVLnVxewPtlLuX/3NLrFy66fb+eS6QcSYtKRGG7n9s+0MbR9LboWND9fl8P3fRgLCHe7UKkKFzY1GqcDh9ta7yh5r0qJShlZ3oo0arh2azpQ+yejVSmTgrVn9MTtEH1JzZFGFVQ6ueGdjwIxhxqBU7jkv87RdvWrgrLWK+NJPh3ltRl+e/v4gR4otjO0cz78u7Nqo3Mjm8rLe/yPs9cno1Aoc7uCqukmrQlFP9dfjFcYSTyzZT0Glg8sGpDC1b1teu7IvLo8PpUIixqSlY0IYEtTbe9NSlFucvLE6my+25REfpuXxyd3pkRzBGzP7cd2HWyi1uIgxanhzZr9GrZs7JJj4cPYAXl2ZhUal4L7xmfUSNqvTw+pDxSzdc5LnpvXigu5tOFJsYXy3BFYeLGbFfiF/8snw4MK9fHv78GZJDZuDlChDnR610Z3i2XEi2O+jUkgtLsx7fL5AAPDCHfk8NbUH67NLA4/z2KRuWJweZgxKY0qftry1Jpv7F+ymf3rUb2bYURsKhRRyTSttLn4+XMKH648TF6bh/vGdSY0xBEhwhEHNs5f25KUfj7A2q5Q+KVHcf37mH9LKO9ak5ZUr+mJzeVEqxGftt7TMPx1IkjAEqS0/1SgVaFS/bkX8r4BIg4YXpvXi7i93sSFbLCy9eHnvM/6N+KuiOTX0V4HLEVK3/sAsoGMD2yYDtcMF8oBBtTeQJKkPkCLL8neSJLWSorMNaxnYSoTjW1S6qBw0FtBZngXvnRe8fWgp3L6tWQ3rzYYhGjLPh7YDRWVo+T9E/8eE/4j+mC9nwaxFkDG65cfO3153LG+zIGJN2Uu3BAqluJY9LoP9i0LvazcKdnwi/pb9k5HE7nWPkdgd8rfVHc9ZK67RlncFcbxhFYQlhG4TnSHc67J+FERq0ivC7KGm3GKIFsRTHyUIT1PQR8LI+2DAbJH/E9MR9PXYkFtLhHPeifWCwMb6P/oeZ/225BoDdJ0ijBBM8TDyflSyh0HKLAZ2PYTv3L54DYkUegws3lUQWClMjtQztnM8X27LRaNU4PL6GNwuhiOuGDpcswyV1w4qLVWSiQcWHGbFgSLSYww8N60X3ZLCMTs8FFU7cHtlkiL1uP1uPLVx4KQ5MLEbkhHDGzP78erKI0QbNSy8dRix/h8RtVJBt6TwECer+DAtdrcXp8fH8XIbF/Zsw3e7hYRIo1Tw8EVd69hFg1jZrT2xMmpVJDYzAsvh9vLKyiMh7nTzNp1gxqDUM/7Bmz4wlffX5eD0+Nh4tJzebYt5bUZfnG4faqXUYMWkBkqFqA64vTKLdxZwx9iOPPPDocD9D07sQmQ9k+Eyq4spr6/H4peWPbnkAADXDk1HZQg+ZksahGVZptjs5McDRdhdXi7o0Ya4MA1qpRKPz8f8rXm848+Z6poUjsvjxeJwkxajZ8VdI6l2etCrlUQbNSEVGxCvgdvrI0ynJlynZlSneHq2jUQhSfXaUoOQ/HVpE8barDJu/XQ76TEG2kbpuax/20C1JXg9nMhnsZyiUkq8PqMvzyw7RH6lnQt6JDK1X1uuqJWddd/4TGJa+P7Rq5X0SI5gT34VJ8ptfLg+hyV3DMfp8WHSqii3urhm7hZKzE7iwrQ8P60XXt8RduZWkhF3emGyZwuyLLP6cAl31eqBWnuklJ/uGR1ivx8XpuPBiV2xOP/4RgBRRg1Rp2U4/Psg2qjlqUt6cv1HWwO9ZvdNyPxDuvv9GdEmUs8bM0IXllpxemjWp16W5SxJkpSyLHuBuZIkrW9g0/pof+AbX5IkBfBf4JqmHlOSpBuBGwH69evXnNNshbUUvrsLDnwrbhui4fqVEN2u/u09LtjweuiY1yUm/UNvP/vnZ4wRE+kpb4m+kF2fw+a3xH3bP4K0oUIK1RJ0uUjYMddGr8vPLiGyV4j+FV24OMdzHoYNr4rem+F/EyTMWiLMC7pPEft0mgBtegeldok9ocukUBvrGqQNhb1fib+r86Eipy4pMsaK62YpEpWgyFSYuRB2zxcEp8c0WPYPGPeIkELWrjZZS4UlekUOpA4GQ6ywIjdEiX8xHep/3rYyWHB9MNto9xdw0y/CgW7PF8JwImdtMPg2sac49qu1Pq/GODAlIiX3RvLYUexfiKrLxaREtOWne0bx04Fiogxq+qVFkV9pZ/awdvRIjsDi9JBVbOGi19azcM5QuiUnYHV6ePSbvSzzyzCyS6zMeHcTK+8ZzY0fb2V3nqiQpUYbmH/TYOLDNBSbg8Soc2IYWpUElmLCcjczwFbK3EvOwa2PQ6sNTo5iTFpeu7Ivt8zbxoGTZtJjDLx8RR9W7Ctkev8UBqVHM7ZzPLeMbk9+hZ0eyRFNGhKcDuwuLwdOVtcZzy6x0jXp9MOFSy1Ovtqay7zrB7Fgex7JkXqGtI9h7HM/B3oopvVrK4hNA1K9MJ2aOaM78NJPR/h08wn+Nq4TS+8YzvEyG13ahBNt1NRb5ckutgQIUQ2+3Coa4ZubnXMqis1OLnx5bUCe+fzyw/zwt5GkRhuosrn5breQvA3JiOHuczuiVSt5b10OFTYXswankR5rrDM5k/09RK+tyiK33M6MQakMaR9DpEFTL/mtjQiDhicm9+DKdzZSUOUgv9LO9cPboVYq6BBv4nCRJbDtxb2SMZ7FHCilQmLZvkKuG9GOWJOWnbkVON1enp7agyPFFi7o0Ya2UfoGHfYaggjL7R8IRu3SJhyDRsXtn23hnvMyeWjhXkrM4vqXmJ38fcFuHr24GylRLZN1ybJMicXJrtwqlAqJHsnhDbr7NReVNjcfbzgeMmZ1edmdV0liRGilWa9R/qGMFf5XoFRIDGoXzS/3j+FoqYXUaCORBvUfmnj+2dBU/2YrmofmvCNtkiRpgJ2SJD2DsOZuaI0iD6il86EtUFDrdhjQHVjt/1JOBBZLknTRqWYLsiy/DbwNIry1GefZiqq8ICEC0QPz02MimLO+VX2Fov7em18zQ0itg6J9QflcDRK6gXQaX5DR7cTzW/kk+Nww7C5I6tvy4zj9Rg0ep/hfFyHkbCc2wPqXQRMG5/5LEIghtwlTBWRRqdn4Box6APrOAqP/R9YUDzO/EoQEWVxTY5wwKhjzoCByPo84TkSykAEGrlEDRgfGWFBqIdp/ncqPCtmbtRQ+nCSOdWSFICrJ/QQptpXBotvg8PdiH6UarvkeUgY0fU1c1tCwV4DPLhe9US5/D9ptW+DwcmGXndwPlv09dPuO48Tz/O5uIS8EWPciimuX0Sa6PTO7KCmXwrl3wR5W+vX8aqXEO7P6M3ddDi6vj6V7T9ItOQKr08OqQ8Uhh+8Qb2LTsbIAIQLRMP/l1lw+u2EwV7yziWKzk/QYA6/N6EuUXAUfXigkj4BCrUd70xrQdgo5brrJw7fXdMSFGrtShFB2TAhDKYHGb5Eca9LS7RRyUtO7olUrG6wkNBfhOhUTeyaxvZb0SSEFm6rNDjeVNjdlViexJi0SohLV1I/jqoPFvLoqm3mbTnBu1wS6JUfw6Lf7Q5rKv9yWx+1jOzR4LKNWxbXD0pnQPZESs5PUaAMmrbJRsubzyfVKBpMi9c228G7o+dQQIhBNxu+sOcrDk7qiVyvJTAhjX0E1148QxGT2B1sCPWFfbcvjy5uG0D89tCetxOxk8mvrAtutzSrluWk9uaRP2zomGG6vjwqrC49PRuevOKXFGFh023CsTg86dTDf58PZA3npxyPsya/i3C4JzBqSdlYnhtFGLbeO7sB1H24lu8RCnEnL0PaxnN89kYtUSpweL5U2N1V2d7NCfGsjIVzHgxd2xeb0oFMr+M/Sgxw4aSZMq6rTy1RQ5aBtlKFOEHJTKK52MunVtRT7CVZypJ6Fc4aeUfCqWqUgrp5Fi9Ml4a0Q8PpkKmwuNEpFsySSBq0KQyO9k61oxR8Bzfk2vgpQALcBf0OQnqkNbLsF6ChJUjtE1ehBoEiSpJnA27IsvyRJUidgPpAO2IAZre5zZwnV+XXHKnPE5L5eUqSCwTfDznmiGgIikPRsZeo0hNShkDIYcv1EILYT9J7ZuMyvIegjoecV0MEvAdRHgaoFKyZetyAXWSshKlWQSGuJkIr1uwbmzwgGkB5dFZQW1q7knPdY/ceuIUK1oYuAoXdA36sE6XCaQ/OP2g4IzW6SZXE+XnfQ3twYCyPvFzK1xB6iz2fKW6KC9O2dohpUsxJsLROEKDJVPG5CV9F7ZK9sRtBpPavJbpuomsXWIhGD/eYMTgvIpzTOqnRgPhkkRCCu56onOT7yvxgkJ5WyL0CIANxemVdWZjG1XzL7v6ume7KYaGtUCjq3CQ9pKI0P05JzSv8PQFaxlbZRBr67fThurw+NSkmsSQNH1gcIkXgwO6x6yr9w4F/Vri6AJfegylmLKqkPhoteBik9kBdUZnFy4GQ1x0qtjOwUR5xJi0GrCljO/rCvkA7xJh69qBvpMcbTdpJTKoXzWmGlnflbc4k2anj0om5EGzW4vT5WHSxhb0GVcCz74RBmp4fhHWL47/Teja6ubzsuPusVNjdfbs1jVMc4imtp/WtQU9EpNTs5UW7D7vbSMcFEvP/YkQYNsgxbc8r599IDxJq0PDSxCxlxxgBxrI0jxRaOFJsZ3y0x0HRt0qp4aGIXws9ARlOfy5LD7UVGTMTuGZ/J5pxy4kxa9hZUh5hkyDK8uiqLV6/oE9KXcbTUWsdM4/21OYzJjA+RpthdHjYcLefeL3dRbnXROyWSN2b0pU2kPhCqand5AlbPbSL0PDypGzZXy/KcWoL0WCPzbxyM0yPs36ONGlRKBTb/osIDC/ZgcXroGG9i7rUDaNuCao5erUSvVlJudbLLvxBRbnORGm3gRLkteA4xBqKMmhavXs/feiJAiEC4+y3bW8isoektOk5tmLQq7p/QmbVZZYH39KB2UaTF/LHNCf7IqLC6WLLnJPM2HSfG2PjnvhWt+DOhOe5zxyVJ0gNtZFl+tIltPZIk3Qb8gDBl+ECW5dskSXoKuF+SpBUI6dxPsiw/JUnSUf/tVWf4PFoBkNRHTEI9tVbt+lwFukYMDMKSYM5G4fClNojV/rPp3FYfTHFw+TxhM+31iMdr6DHdTrAWwb5FQurVYVxdaZlSVXesubCVgq0COp0Hrw0IEqB1Lwq5XKfzRa4SCGlh1o+iX6klcFSJybfbIaomXpcgNvOvEk58Vy0UhCu8LbQbESRSTivkbhDVF3sl9L5SkKkvrhLnNGeT6DWqPimkiFW5onoz5qGgaYXLAuHJcOn7IgR16b2C+E59B9r0CsoVvR5xLawlgixpw0FrEnlA+78JPpdRDzRsiKE1wdh/imvk9lsVl2UJg4RT4XGw4biZT/eYeXhiXXOHCqsLk1bNiI6xDPCv4kcaNPx7ipAlnaxyoFZKnNc1gT6pUbz405EQN7srB6WiVSuJP1XC5awrR8NZFZQA2srgx0dF7pLXBcd+FtlO134PpnjKLE7u+HwH6/wW0kqFxGc3DKJ7UgTPLT/E5/4w2JNVDqa/tZEldwwn1qTFK4tVVYAIvRptMycPsiwzunMc53VPRKdWkBplwKhVUVzt4Mml+3l9Rj+mvhFUM6/NKuO1lVn8/YIuDfblTO6dHDhPgDVHSrm0XzKvrsoOjMWFaYk1aSkxO5n1/iYOnBSWr/FhWhbfNpzECB0+n8zy/YX8c9E+/15mJr++jtX3jibxlNTNUouTOfO2U1Bp59GLuzFrSBrlVhf90qLO2F1ufLdEnvvhEFZ/f5pSIXHDyIxAX1RypJ4FtwzF65PrJSFqhRSQk/l8MoXV9dtsR+jVdcw0qhwebv54W6DKtjO3kke+3cdz03qhVirIKbPyyk9HcPtkbhvTgfZxJoxa1a8u0YoN04qUe5uLCpuLaKOWaoebOz/fGbBfP1Js4aFv9vLy5X1abIYQplNzbpd49uRX8fqqbJ65tCcPLtxDdomV9nEm3ryqLwktfF1lWaaoqi45L6rHUa+lSI028NM9o9iTV0WMSUNqtOFP0Xdhd3kwOz1IiCrgqT1vvwfE576Ih77Z6x9p+HPfilb82dAc97lJwHMIktNOkqTewGMNhbfKsrwUWHrK2N8lSeqCMGK4GBjtv2sYsPp0T74Vp8AQI3Jolv0fWIuh37ViUttYBUahhLBE6N5Q8e9XgjG2eXlClcfhreFBO+rIVCHfMjVBgtwOUYnRRTTcX2SvgG0fwsEl0O/qICGqwcEl4vrVkCIQJLIlsJaKLKY2PUXwaslBYZhw3hPQ60pY8ZDoJ0ruJwhJcq1+HGsxzJsWNG9Y95LYL2MMZK8UTntdL4JzHxayuYoc6Dkt9BzDk2HE3aLCVBOCWnEMPrkUbt0kXnuAssPw/vmiiiRJMOr/RAVo4vOiRyt3E3S+EGLaN16Ji2onqmnH1grym9BDyBrD2oiKkR+V/e9k/i8WdudVEW3UEGfShkigrhqSyujMWMZ1TQgxFUiPMbD4tmFYnV50GiVhWhUy8PHsgTzzwyFcHh9zRrenS4IBzIV+g4xa1bq0oeI9Uduhr3b/nMchnBAtncW13viGsFv3k7wyqytAiEBISJ5ccoA3ZvZj6Z7Q7JYSi5OCSgdv/pzN9AEpvL3mKCv2F3HjyAxmDEpr0n2uyu7in4v2hlg6T+mdzKOTu+GThRlBdomlzn7rj4oV8fpIkcXhJjXGwIq/jWTpnpN8vjmXXm3DGdctkcQIHSv2FxGuU3P/hM7EhWlZuqcwQIhA9O98sP4Y947PxGz38Nnm3JDjO9w+9uRX1Zkcebxy4Fzv/2o3YVoVJp2K+TcORtWEqUNTiAvTsuyukby39hh2l5frR7QjOSr08V0eH3fN38GL0/vQNkpPXoV4PVUKibvGdQpI2EqtTi58ZR1PTO7OgPQotuSIqppGqeAfF3SuY0VdanbWybLZfKwch8tLudvFpFfWBsw9ftxfxPd3jiDzNwjZrLS5WLgjn7d+PopaJfH38V1IizXUyaPamVspHBVrkSK310uF1Q2SeN4RenWdHiS1UsHMwWnkltv5Zmc+r67M4vUZ/TDpVGiVitPKnpEkiauGpPHplhOBBQ6lQmJqv7YtvwCnQKVUkBCuI6HrmfUn2VwezHYPTo8PvUZ51lwD60O5xclLP2Uxf+sJogyiSjy0fSymFmZMnW1U2d18vvlEyJjD7WN3Xt3PfSta8WdDc8NbB+InL7Is75QkKb0lD+Lfvg8ilyhBluWT/mOdlCTpVy5L/IWg0orV/+nzxERUH312DQd+a3icwojBU2v1MKajmOwqtQ3Lv6pPip6d/G3COrrf1fX3SZlPwur/iN6bqPS698d3FZWDGiT2gOQW9ivlb4Ok3qKHqkaiePgHQIILnoOfHhESuqOrod3o0IpZztogIarBkeViYp+9Mvj8TfHQZ0b9j2+KF6YP398fOu6oFI8blih6z769S4yB0BT9/B9RmYpMEc6BmefXf3xrGZQcEJXGjLGCNIUnQ6/podvdsBJ563tQcZzybtewKD+MHbl5ABzKLWThTf15eXUOx8vtXNY9jLFtqohSmITjXy1IkkRcmI642sWnqjyG535E12E9kCNSiU7QIa1/CnZ8JKpvF74gyJlaB8YEuGkN/PJf4dLY6wpBFje9DROfg89nQMEOcVylBq70h9v6q12OeqRaFv9Kbkq0IcSxTswjZd5fl8O8TSf49IbBrNhfxHPLD9M1KYKxnRv/6rM6vYGwwxos2pXPA+dnolJIXDkwhfaxdWWxA9Oj6+1TKbe6+O+Kw3y2+QQKSeLqYWksvHUosSYtlTY3mQnhdIgPo12skQR/D0d94aS55fZA1SUpUs/O3MqQ+xPCdVRaXdjcXhSSRJhOhVophTj6mZ0edBpli1zmGoJaqSAl2sBDF3ZBlqnXOW/D0TK2Ha/kyaX7+eT6Qaw5XEKJ2cklfZNJrNWvcrjQQrnVxYML9/DstF7MGuKlxOxkXNeEeifAcWHagAtfDfqlRWHUqZi3+UTIuE+GD9fn8MTkHr96OO/O3Eoe/TaYhHHrZ9tZ+8CYOnbdg9vFhFStnG4v+wqqUCgUbMwuw+3zMbl3MokRujrXNcak5ZGLu3L/+ZmikmHQoDxDgts22sCCW4by8o9HUCol7jqnY8jr83vC7HCzaEc+j313AJfXR3qMgU+uH9Qi+WFz4fX6+HpHPh9uyAFE5fmmT7bx872jf3dSpFEpSI7Ss6Oez30rWvFnR3M+XR5Zlqta6lZTA0mSTMAC4C5Zlqube5za7nOpqWfRHvqvAMNp5P38kWAthZO7BKHoNkW4mi17AMb/R0iaFt8uVvvHPQZxXUIzlawl8Ok0KNwjbudvExWUCU8JeVdtFOwW/9vKBZHqdXkwXygyDUb/XWQCpQ0RcrKYDi2XFh5dDZ0nBglRYHyVmDXfsQOOrRGPF985tHoW17nu8WI6ip6XxJ7iuTcFSRKSyja9Qu3L1fqgoYPXDeXZofvJsjjnyBQahKMa1jwDm94Ut1f9G8Y+BEn9xHPqfYWQ7+ljwBCFNPpBcsvNXDV3OzllghAZNEp6JUfQRmvj0bCFuOITCM/6AWnFahhwA5z3eMPGEyCykT6cBBXHiO49E7pfAlWysH/f+DoU7oYPJsIdO0GdBEqlIMAj7xOEe+UTonoX1kb8X0OIQFRedeGiX23bB9D1IjLCY0mO1IeQhdnD2hEfruM/l/Tg8rc3BmzGbxqZwfrsssBE9NtdBYzOjGfxrgIW7cxnZMfYBqskbq8Xl8eHShE64VYrFVQ7PDz67T6GZMQQF6bl9Rl9sDrFav/xUiuT/blIp2LT0TI+3ljjwiXzzppjjOoYj1Kh4PK3N5BdInqzUqL1LLhZNLeP75bA08sOBmx0AWYNTUOrUqJVwf3jM1mbVRIIgh2TGUd8mI5bP9vOuqwyNEoFt5/TgauHpPHalX25+ZNtHCw0kxpt4PUZfU/LWrzc6uJklZ2sIgt90qKIMWowalWoGqmIp8cI8rhsbxHL9xUxqF0Mk3q2ITlSH9IHEeafcFbY3Fz/4VZSow2MyYwjQq+ul8CF6VS8ckUf7l+wm2q7h25J4Tx2cXcMGlW9zy3GpG1xRtCpqLK5KaiysyWnnN4pkaREG0Ic8dxeHwu25dXZb/vxSt69uj93f7GLErOTAelRPHJR1xDnvUq7G4UkccNHWwNucm+szub7O0eQFlOXgJu06jpBqGcCk1ZF39QoXrmyj8iaPovHPlNUOzz8c/G+QBUrp8zGI4v38d/pvc+6tbTZ6WHZKQsisgzbTlSQWs/r8FvCqFVx7/hMfjlSSpVdBD6PyYwjJbq1StSKPz+aQ4r2SpJ0JaCUJKkjcAfQkCV3CCRJUiMI0TxZlr/2DxdJktTGXyVqAxTXt2+r+9xfFLZyWHof7Ps6ODbxBWEFXX0SPpoUHH9vHNy+PTRTyWUNEqIa7P5cTNZPJUW1qz5L74Fz/iXc6ySF6JupIUBhE07/+XSaICoOSk1o4Gp8V0G4whKgz8zQfRzVwtAgoq2w2t7zpRiPaS8swC1FonfH1EyXQH00XPC8qFZV5Yqqx6SXwWUHl03c7nIRbH1fbK82CNtxfSRU5gqTDkN03eO6LLDlndCxX16AK+fDuv/Chpfhyi+FrfewO6HndKJMBl6Y3pu3fs4mQqdmzugMYsNUULwb/cYXCflZzfpRkBe1XswILEWiegaQPlxIKJ0WYZRx/tNCEvfFLHGd+82GaXNF5cfjhNIjoTblx9cKV8EaqPXivVcbk14UFbRCP3le+Tima5ay6NZhvLkmm+xiK9MHpDA4IxqlQqJzYhir7h1NQaWdMJ0K4RNC7AAAIABJREFUPU7UJfuYPieTEiLxokRCTKS7tAlvVDZWYXWzcEces4ak854/YwfguuHt+HzzCdZllbEuqwxJgoHtYnh15T4Kqx1M7ZNcp+8FRB/AjweK6owfK7FwotwaIEQgKkFf78jn5lHtiQvTsuCWITyz7BAOt5ebR7enSy35V0q0gR//NoqsEgtRBg3xYVo+9Z8fgMvr4/nlhxnXNYHOieF8esMgHG4fTo8PjVLC4vS0qBm/yubiheWH+GSTkO8oJHjv6gGM6hTXaPWlfZyRsZlxrDxUgk+GnDIrYzrH12kMbxulp29aJNuPi1XwwioHl/VPabDnxqBRMbZzPCv+NgqPV4TY1vSqTOiWyBurszlZJXpioo0arhyU2mI77Npwur0s2J7HY98Fq0B3jO3AjaPaB8J2VQqJHm0j+HZ3qJxTp1YwNCOGJbcPxyvL6FTKOhJOnyyz8Wh5gBCBCOp9f+0x/jmpa6PE82zij5hfU1TlCOlbBNibX43d5T3r56vXiFyorcdDF9M6JdTTn/k7ICVKSHCzSyxEGjQkhOtaw0Jb8T+B5pCi2xEuck7gM4SJwuNN7SSJb/73gAOyLNcOklkMXA085f9/UT27t+LPAFkWK/VVeaA1giFOZBGdCVzWUEIEQuIWniT6OjJGB22ivW44+rMwH6iBUiNITW3ZmT6aepdntSZRifj5WTHBL8+BLkYhUavMFfKx8OS6ZKopWErE42sMQnJ39GfRn7Lin2KCbowTpMRRKaoxhpggwbGUwPf3iayoyBQhhRxxjzBBcFnhq2tg6nviOOtfFcdqPzq0x8pWLowCbOWCMBpiIGc9XPCsqEQZYmD7x7Dkbuh6sTBmGP2g2PfAYnH8nfNEdQ5EpWTy68FzrDGO8Hnq9mF5XeL6g7hvyzvQ7RL44UHoOB5TeBv6pkbx4vTeKCQpmGVT47gnSaJ3aeidwj7cWS1cEr1OeHuUeL+BeN43/SKqhBEpovrzaS3J3qY3BIlMHSzszsOTQ8+zTe/Q2+VHIaG7uDa2MnGdZDlIiEC8pj89Suzln/HA+M44vb7ARBSEVXdCuJKEcB3egl0oPzgfdJHkXrqEm+fvIqfMhlal4P4JmZzXtfGeOJfXx6ursvn3lB68fVU/duVVMbpTHEeKzYEGZ6VCYmj7WKa/tTHQ1/LO2mNEGNTcPKp9COlSKCRGZ8azYHuoQ2XftCgW7yrgVBwvsyLLMgaNit4pUbwxs1+9ltpKhUR8uC5gmWx2uEmPMXLveZl8vT2Po35nwL35VXRODMfrg5s+3saefNHTdVGvJB7xO+o1BxaXN0CIQEjS/rV4L1/fMqzR/o4Yk5bnLutNhdWF3e0lIVxbr0OfVqXklcv7Ynd7cXm8RBu1RBkbn/DWvO6nIj5cx6LbhrH9eAVur8ygdtEBG+gqu5tyq4ucUiudEsOI1Dcvs6XK7mbF/kKemtqDaIMGk1aJSqngwMlq0vzmAUqFxJQ+bVm0syAgVxzRMZa+aVEolYpG7a31KiVOb12JqN3trUMI/mpIitQHgqVrMLJTbMh3wNmCVqXk5tHtWZ9dxqEiM5IEVw9JJ+kP0rNz6ue+Fa34X0Fz3OdsCFL0YAuPPQxh571HkqSaKOl/IMjQF5IkXQecAKa18LitONuQZTERVKiaYdNcC9X58O45oscHoON5MPmN5hkoNHguvrpjHoeYIC/7u6iQ1M7OOVXepTGJak9NoKskCTKgr+ecZC9UHIdrl4neK5UWvrgaCvwys/Uvw+wfIGVgw+fr9YiJu9ogyEDRXlg0B8qyRT/TBc8IZzunWdx2VAmSVXFC2KUfWCzkcFctBBTC9W7fQnHsiuPw1giYvVxM+F3+1fzVTwv54KY3xO3oDJi9TBAjWzms+Bfs+Fjcp4sUxhTdp8Cr/WHmAnhrVNCFbdsH4rzPe1L8G/WACJzd/UXwOWYtF6YT/a8RpGTJvXDwW2HCkDkRDi0JbtvrcsheJSR73SYLUwlJ6SdQbqg8AUoNekOckLLVQBchjhfXRUj59n4l3k+HlohrrA0Xj922v8h5UmnFczDEiqrW8XqK1zm/CJlhcn9BdmojLFHIL1f922+uMEYQrRtWwdoXwWOrX7bncYDsRa1SoG7ITtlahnLJXeCyUj3sQR7+qZicMmFX7PT4eHLJAc7v3qb+fWsuh0pJeoyRBxbsJjlST0ackfFdE3j8uwMBe+ekSB3ZJZY6jf7f7jrJFQNT67hrDesQw9R+bVm4PQ9JkrhyYCpJkXqm9E3m7V+Ohrr3DQytaDQnc6nS5uKHfYV8tOE40UYNj13cnY835vDDviJ6p0Th9fn4fPOJACECWLyrgCsHpTI4o3mLKW5P3e+HCqsbmaZn7NFGTaPkq8rm4qONx3npxyN4fDJd2oTx/jUDcHt8zXYLPBXxYTomnPJaWxwe5m08zjM/+LOyJHj7qv6MyYwL9OTIsozT40OrUoS8DjJw7bB2vLDiMKUWJ5N7JzO8YyzXf7gVk07FwjnDaBdrJC5My0ezB1Jld6NUSITp1M0inkadksm9k3nr56MBGahSIXH9iIx6e7X+Sog0qPng2gHc99VuTlbZGds5nnvHZ2L4lQJIE8J1zLthEFanB7VSgUmrarFLYCta0YqWoTnuc/0RZCa99vayLPdsbD9ZltdSb9AJAOc0/xRb8avCXiEmsetfETKpcY9CXFfQNLEi5bbDmmeDhAhEhaUs+8xIkcYobKpzNwXH+s+GA98J4lZ7cps6BOK7he6vCxduYj0vg+IDIsjVGBM6Aa+B2igsy395DvI2i+ykSS/CioeFFbPsg1VPwmUfiUn7qahxljuwWFQeht8l+p2KD4j7938jKhkTXxCT8J8eFVWr6AxY/ZSofgy4XlRUdsyDLheKXiMQ0rl2I8XrU3pEEJ7yo+K+6nyIShN/x3YSwbelh8U21tIgIQJRjVr2f8KC+9YtUHWiri31gW+FvK3iuCCctWV+NchZI5zt1r4IB/zF3R8fgemfQPux4v5OE8TzXPI3mPWNOO6mN0V/z+wfhFveV7OFLHH6p8JCvsYIRBchKkSfThekDMS+F78GVfmiVyw6A8Y9Dl9d63eWU8H4f4s+IkOMcOerjbRhoidNqalL9vWR4tr3uEyQY7VBSASNMUKK53WB2ypeh6pa/RnD727y/e12u1BXimqGIzqTvWvNIff7ZCg2OxoNMYwN0zL3mv7c8+UuduVWkRpjID5cyz3ndeKJJeL9VWF10zG+rpymY4IpWIGrhWijlocv7Mq953VC+n/2zjs8irJr4/ezPdn0SkLvvfcmRbogRUAUQZAm9q6vr7723j4riopUC9UKIqBiQaT33jvpZZNNts33x73L7G56JcDzu65cyc7Ozs7OTJJzzznnPhAwG7UIMGix51wuZo1vjzl/H4fTpWBy9zolbppWFAW/H0zE48vU0tVNx1PwzfQu6NkwCtHBRuQ6XNhxJi3Pa/ecTS+2KAoy6lA/2uxT7jeuY81yKV9KtNjw1i+HLj3efz4T76w5hBbxoYgLM6FjnQg4XQrOpFpxOjUb7WqFI8JsKLFZRGauHW+vUd/HpQBPrtiNn+7rgehgE5ItuVi15wL+PJyE65vGoF/TGESYKXAdThfu/nLbpT6zz/46DrNRh/7NYrFqzwW8vHIf3hnbBkEmPSKDjCW2ndZrtagWYsLK+3ri87+PI8fmxLSe9VBDDtyESa9Fl3qR+PbublDc7o8VLVKigoxyyKykyuIZXG21OxGgZznulX7zpDi3OBYBeBTAbgD53MaXXNGc3cog08PnA2ipbKhT+OscuRRA/qQeB2p1Lvy1lgQKB3s2A2NzjGob7nIw0D2yhus0HEBh80lPoNMMCoDbf2TmIDQ+f1e5wAh+xRRhRKC42Et0ZguD6pY3UXC0uRXo+18KF0cu8q0bsWXzeU9PzZnN7FPp/STnCHk4/AuzRAYzULcX+3c+u17d5spHgTHzeCxyMpjZaDgQqNOTIiisFpdt+UzdZptbgV1LgJEfsy/p9EbOMbIk+NheXyLtJEsNw2oAUJg98/5MkQ0ochcMB0JrAYNeAf75QH0+IBzochdnRp3fqS7PSQcWjQbu3EAzCaHhtm/6gpm9rEQe2zNbmA3rMpMiKvkIS/fGL1EtwQFmuTyCyMM/H1LkxgykQPntJVWIuxzMHjYZSsvzthOBHQv42er3o1jK7/rwYDAz4+Ry+dqM6wz8MgYBU9YAWz4Hko9RRMU2L3h7bjIQiKAmo2DcOhvm8/+iZ/2BWLZD7ecx6jTFsq6tFWnG7IkdYHe4YNBpEBZowJj2NdGjYRS2nkxFm5phiA4y4vZudTBvwwkAQLUQEx4f1KTAkp6QAL1PIJeYmYv/LN+NsEA9hrWKh0Yj8Pmfx9E4NtinNCYr14HMHAdSs22INBsQFqj36cdJt9rxpZ9Nb67DhdOpVoztUPPSusNaxWPdft820l6NitkbB4rFRVM746Pfj2LvuQzc0DIOI9rG52ssUVKOJGTmWbb7bDqaxoVg2vyteGtMK5xOteL/1h4GQLvqJXd2ReuaJciuA7A7lDzW2MlZNigKTRT+u2IPfnYPt1299wLGdqiBp4fSEGHf+Qwf4w0AWHfgIka2rY5Vey7gdIoVOQ4XSljw64NRr0WdKDOeGdoMCvJ387tW0WhEoYORJZJrBafThV1n0jBl3hakZdsRHqjH57d3ROsaoWV2obycFEcUJSqK8n2F74mk8rFlAZs/913mcnDmTadphb/WFEqDgBN/qsu0et6dLwxLAjBvKJDI0hEERtIiObQGZwv98SawdQ7FUFgtlncFV6N9ddNhvEuv0TKIdzr4GQyldONxWBmwA8CN7wN/vQOc3sTHBjODdpFPlgEAbJm+GRmAIs7fnS66KQNvAKjWmkG+v8g68APQdDiw91uWB17YxQxT5jmWj9XuDoyZDyyfBrQZD0TUZ0bv/A5gxZ3cxqZP+VzPh7nvnlK7oFiaLCguChOtARi/guLiwk53dvB5zmJSFAqooGoc6GtNY+mbMQjY/BmP+fX/Y7/RtnnM1Ny8ENi+ENi5iOK271PsCdv3HTD8Iwqni3uBbvfw+J7cQJF7w1sUI954Bqh6oziZSdMH0hb8zzf9nncxgxjXiv1hfZ7gdgsyh7j0Xi4e342zKLK6zGTWzeQ3QyYknkLX5VDPYxFYXXokNpuJOloDzMdW4fHhE5BideH3Q4mIDw3Am2NaIayYd5jD/UwIQgP1CA3Uo4mX2cFD/RpiWs+6yLY5ERaoR3QRd5YdThdSsmxwuq9Do06LPWczsOesmkH07key2h1YvfcCHlu6Cw6XggC9FgumdEL72uGXSruMOg3iQ/MGi/FhJh/x1KtRNO7t2wDzNpxAoEGH/wxpUuKsVLXQADw5pCmsdidCTPpyG2jZKDY4z/2CrvUiL/XlzPn7BMZ2UMt1bU4XnvthHz6/vUORM6e8CTRo0Tg2GAcvqiLshpbVEGjQITPXfkkQeVi27Swe7t8YCpCvPXW9qKBLZg7DWsdz4GeOpszZs7LOj5JIJFcvyVk23LVoG9Ky6UCYmm3HzEVb8cM9Pa7oXrPiiKJnhBCfAVgHmi0AALzc5CRXKhoDraD98XZzKwghKFwGv05r44AIWmYHFlE6d/JvVRABDGg3fgT0e44iJWEfg+CDq9R1Mi/QeUxx8vuSydyOPgDo+wytn0vSC+VBo6e4M5gZXHsEEUBRsXEWMPTdAl4sKNC8S6uE4HHQ6BhEB1cDhr3LTIvTDhz6GQiplndTYXWA3YtZbhZZDzCFA5tmcxYRwO+JB3l8f30BOLqOAnT8MhoMpJ7geodWM4C//UeaOigCGPYO8MtTfE1sC/f+hAJdZ1Kc5GZR0HiMGlrfwl6n7+/lZ7hjNfB5P1Vk7f4GmPgDM2C1ugLnd9NpDqDgXTwBmLyKfVE/Pw6M+JhC65en1eGxR9cBGWeA21aox0BRWGwb01QtPwSAzjN5jRqDeL4aDgB2fqU+bwhSy9kCwop/HWQlAJ9cp86h2rMUmPQTXe380Wj5VUzMRh1e3JCCmMBRuL7TLbh4NBOPDWqCV29qBY0AIs3Gcp1TE+oWTgK49A8qOsiYr8tZjt2JTcdT8PDinUi05OL2rrXx+KDGmL5g66V1ejSIQmiA+q8hPduBJ1fsvpTdsNqdeHDxDh9zgwCDDg/2b4TfDiZesunt3iDykhW2h3CzAff0aYCJXfl3p7SzbUz68plx5E2gQYvXb2qF11cfREqWDYOaV8OgFnGY8DlLeYNNOlhtviYEKVm5ebI+RREVbMTcOzri7TWHsPN0Gvo2icHUnvUQZNLBkuuATiN8tqnXCui0AnvPpuNEcjZualf9kmFGXKgJ03rWw1Pf7cbdfRqgUWww+ry1HvMmd0L3BmUoYy4lDpeL9yQK6reTSCRXBXanCxczcn2WXczIhd15ZReUFUcUTQbQBIAeavmcAkCKoisdnZ6lSXuXU2wADJTj2xbv9YERQIcp7NvQaPM2s+dH5oW8yzLOubMBZlpDn/xbfU5o2Fz/z4dAi9HMHHmet1uB1U8ADfuXThQFhAND36H7nPeQVg9ZiaqTmj+BkcDgN4DfXgTaT2J2xeWkKHpgN8vhDMFq+ZY1hS56N74PVG/PskWADmmNBwMb3OIrJ53H3yOIPOxdxmxGUDQNG46spdFCi5uAP9/iOkPfYTYpOxEY+Cq3vfIRrgtwBs+i0RQqS++gsJq8mhm4gHD2MOkDgNm9VfOBw7+ogghw9z8tBGasBxx24Bu/obFOO3BxH8Va0mE68MU0VQWRh8SDvpkhl4N9VcPepVtf2kmg1c1AeF1gyxe0YvcMJnbk0Pghsj7NIfZ/z3UDSjCf68yWvOf8z7dYquifLSoKRy7Pr9MB6E0IN0fjpZEtsedsOvacS0e/ptUQF2qqsP6DtGwb3l13GF/8fQIAEBtixJI7u6FWRN6hkulWO6bN33JpgOe8f06ieXwIVj9wHdYduIjGscFoXTPsUg8LAOQ6nMix+/6jO5Nqhcsv41kjPBBrHroOhy9aEBaoR7UQU749LUa9FtHlLGjKgwizAR1qh+PdcW0QHxqAf44mY+q8zch1uKDXCjw+qAleW3UAAEVnhNmAsR1rXHKnsztdyLDaYdJri3SSiwsNwPM3NkeWjdkuj4gIMmoxuXsdfPqnasN+V+/60GoEPll/DP8cS8ajAxtj+czasNqdiAs1waTXYmKXOvjjcCI+WX8UDpeCN1cfRNO4kEqzSXa5FFzIyMHcv0/gYmYOJneri/ox5ipprS2RSMqOUadFvSjzJYdRgKMPSmtKU1UojihqrShKywrfE8nlISSe1sZJh5gxCatZeB+GP1pdyQaaNh7CLIbTri7rPJPlYrmZQLUWnMWz40sGub2fYD9HQDjXOflX3m1mJwOpOuDYH8y0RDdxZ37+5Rybuj3Zg+Qf7OqMQMNBNHZwOtjvk+vVV9BpRsGDcDVaZhVGzAJ+fJBBfPORQN0evvNwPAgtm/iXTwVuW87Pb7MwKyTAbEjyEWDPcgpDT7bJQ5e7KdB0AUBMDZbJbV/IzE6trsCOr3iMTm2gyMo8D+iNzMp4Y0lQh92G1QIUh2pcoNUzM9b9AWD9qzQb0OWTBtcZabjQcRoQ1TBvH1BYTRo+VG8HaE0UrMHVfAWxMZilfB60eqDJMOCLwRRjwdUonDbOAg6u5DrB1YCkI3QDbD+J4ig4DlgxA2g0uGSiSJ/f5wooWAQXhC2L5aY/3EdBW60VcMtXiNSZ0CvrZ/TSJgCZbYCQdgAKKecrA0kW2yVBBPBu3Sur9uON0a3yDL9MsuReEkQeXl51AEtmdMVdvRvku/1Agw41IwJwOkUdWNuzYVSeTI1WIxATbELMFdpzYdBpUTc6COFmAxwuF/o1i+XnTrWiZ8MoRJoNeGtsa5xKyYbDqSDJkouOdSPgcCpIz87FV5tO4cdd59EoNgiPDWqCGuF5Rak3AQYdAgy+/4KDTHrM7N0AA5pVw8bjyejRIAp1ohhohAbqketw4cWf9kMjAJ1Gg9kT2yMm2IiHl+z02Y5TUVAMQ75yI8mSi6Hv/4WULJq07Dmbjlnj2yO4mhRFkqqLy6UgOSvXPTdNg0hz6TLX1yJRwUZ8dnsH3PPlduw7n4Hm8SH44JZ2iCpkNMKVQHFE0UYhRDNFUfYVvarkikMIDhANLnxuSr5kJ7N06/xOdZhmfi5t3gTFAtN+ZxmYPZtuXjFN+JwxGMhKYYZmyBt0Sdv8KdD3fxxiaggBBr5EgSEEg9HjfzB4f7+dOjOnYX+gzQRgyUQ+NoXRslpRWDrmjdHML6fDvV8vApYLQOcZnIlUGPZs4IshFDcA+3o0Bvbd+Afd5ihg0Gu0Cj/5N7DuBQqrnHS6qg15E1g4Ckg6SNHR7T7VVjymKa2tP+2tNjzsWARMXQP89gptrod/SGEGAO0mAj/cz5LE6Ca+5Wg6E48fQOOANc9QrITVBoa+zaxHeG2gdleaQNTu7itoDGag7Xhg0Rhmnoa9yz6hDPf8m9a3cshuzS7A4FcpNHRGZqe+Gqfaqw98haJPUdQZUtVasA/pr7cp3ro/AKx9Rt337g8AX471Fa6NBwOdptNlzxLAa8jfStvpdFtsm1VDj2qtmGnymIVo9UDfJ0s+kyonHVg2RRWwF3YBKx8DGvQFfnpYXa//C0DnO30NHfxItuQi2+aEXqtBsElXrLk1AHAuzZpn2ZGLFuTYXfBP1ESaDXnKs9rUCMOJ5Cw0LGAwZFSQAQundMYTy3dj77l09GwQjf8Na1Ysm+4rEe9hstHBvjeIAuwuLNh4Eit38/fBoNXgmxldsPl4Ct785RBqRwZi55l0jP34H3x3T/dSNeVHmA2IqBuBjnV9RfT91zfEL3svwmp3wqUAtSMD0Tyef89qRwbipNv2HQDu69sQEUGVN0xzx+k0pGTZoNMIvD66FfRaDb7efAq9GkejZfVQn8xjZaMoCpIsNjicLuh1GunmJgHA6+JwggVT5m3GmVQrYkOMmD2hA1rEh0hhVEzqRQdhwZROcLgU6DSixG6XVRGhFDGRTQixH0B9AMfBniIBQCnKkrs86dChg7Jly5bKejtJcchJB359Gdj0sbps5Ccs59IWI1jKzXSXm/mVvWWnsB9l40fM7vR/ju5oGh0D6CWTmA3RaGnV3elOZl/ObffdzqQfgYWjGYQDXPe6x9QhoQVhy6LIKk7W4cwWOsl5E1IduNU94yckzrek0G6l4Fs0Bkg84Le/K2mH3eYWIDiegivtJHB6MwXRqkeAI35ZnxGzKKjWPsN+oc4zgLk3cPjqwlG0K+/3LDNB1lRmZga9ymO1fQEwbhHw7d0Un5NXMdvh6feKqAeMmctMj0ZD23aXnSV2a59R92XabxQkBrcYCQjjudIH+ApkSxL7iLKTuHz7QpbJTfqJmTWPMHK5WIoGMGvz9S0cvqrRAhO+BeYN8z0GBjMwdgFLOf98C4hpAXScwv4z/qliWd6pv5lNaj5S7UGyJPCYZ17gENug2PwzSIVxdhvwaR/fZeZoljIum0IXQaEBEvcDU9f5Dtn14kK6FXfM3YJ95zNg0GrwyMDGuLljzWIJjwvpVlz3+u8+84oe7N8Id/Wun8c5LDvXgXUHEvDk8t3IzHWgcWwwXhnVEkIAbWsVfs2nZdtgc7gQaNAiqALLojxOdzl2J8xGLaIK6I+6HBxLtKDvW+t9lrWtGYZJ3eugWogJZ9OsEEIgLtSEuFATakeW0gQmH+xOJ5IsNvx5OAkRgQa0rhl2qacrISMHK3acxbEEC27pXBv1os0IqcTStT8OJWLinE2Y1rMeHC6XT+ZyYtfaeHRg48tSSudyKTh4MRMzF27FieRsNIgJwuwJ7VEvuiz+fJKrgaTMXIz55B8c9yr/ig4y4qf7e1yx2W4JEUJkK4pSqj++xbkVOag0G5ZcJrISKTa0hsLdt4rcThKDYI0+/7ksNguw+RPfZb/8F6jfp8DAzwdjPnelczIpSJqNoM2yRseAcvOnLDdzOSiIAH7GTZ9SFOWk592W3cpj4BFFOekUBkWJIoMZQDF/l/I7LpENWLK25n/st7r+aVVg6QPoopZfSRoApBwHdn4D9HoU0Efw816cw2NdUFnXuueZVfrjDQboU9aynK3FaBoS/PUO5yxpjUBodYqOs1uAGh0BYygFl+UiSw29DTBSjlEwXNgN7FnGEkNjMGcOndvJzxTViALrp4coOIb9H899fgGsywbM7sXP7jknAI0qkg8zo3XsdyDxENByNN0ITSHAjR8CC0YA6ad57LR639LLaq0o4Kyp3Ld6vYFtc4E/36a1+J5lzCYCFHLnd3G5MYhln63G0mXPYSte6VxuJksyhaC4C66Wd59qdQWiGgMz/gL2LGEpZ7/nC3Svs9oceHvNIew7T5czm9OFl1fux4BmscUSReFmA76a3gVPf7sHFzJyMKptddzWuVa+VsqBRh26N4zC0pldkZHjQEJGDo4nZeH6pkWXwIYFVnzmITPHjmVbz+DFn/bD4VIQF2rCV9O75DFsKCsZVjuybU4IQYe/4hoDWHLzOiQmZ9nQqnoobvt8E866s3Y1wgOweEbXct1nvVaLuNAAHwc8DzEhJsy4rj5cLqVcTTyKS9O4ENSLMqNf0xhM+HyTz3OL/j2Fu3o3uCyiKDnLhjvmbr7kznckwYLpC7bi6+ldZMboGsfudPkIIgBItOQi135lGwVIykaR/wkURTmZ31dl7JykBLictD6eNwx4qzHvsKedLt22ko+yIf+tJvye3zwipyOvtXRORunr2LMSWW70TnPg425uq2yFg0B/e4k3/c9uzfu61JMsn/ImtCZFgGdIaVwbll6ZS1EiWBhaI+f3eAiMAHo9RjMIgPNtcjLUsj6AQqrfM77CoUYHZlD2LGEGyeVw25O/AWybT3HTabpv0B7v1dszAAAgAElEQVRWi2VuJ/9mcF6zM4N/rYFDVPs9x7JDm4WudqHVeW6MwcwW3fINZ+50mclyQ0/5mzfJRxjwKy4aJRz+hdmrid9xRtKo2TRTACiGzTH5CyKAJXuhNX0FkTGEA2xtWSyLWzED+OstYFZXzl4CWOI2bR1w3w5m4YbPUsvjQmsCw95j+eDn/VjGqdHR5KHhAAotjyDysPNL2qkDnDV14m9m12ZfRwGZn+GGh6wkuuj9XwvgvTbAhg94fG5epArkmp04CHfuEF6v53fRij1hLw0jLuyhEEw9ye0ByLI5seN03qGm/v+wC8Ko06J97XAsmNIJP9/fE48MbFxoGUNEoAF1o4JQOzIQHetGYFjr+EoRPMUhI8eB537cd6m873x6Dp7+dg/SrfkMFC4lSZZcPL5sF7q+ug793lqP5dvOIMNqL/qFAKqFmi5lZzzc2rkWDidYLgkigEYUP+/JZ2ZYBXM5BBEARAcb8c2MLogKNuYx4GA1SiU2OHmRY3deEkQejiRYYHfIwPdaR6/ToL5fxjA2xAijXpbOXcsUr2hdUvXJSgIWjFRd5E5tZFnZuK9KljGyJABf3awGu+e2sxdk0k++hgoGMxvpz25Tl7WdUPKeDIB36f/9hHbPAMuZFo8H7t0OHPyZy87vYt/Scd/SFYRVB6q35b5tX8jsRbd76YzW4iag+SgG6r+9xGC5232+5VplQaNlL87UtQA0DPB/fYFZFg+Z53kuGg1USwVrdATu3gTs+57BdHgdYNlUPtdxCrMpWckcCAvQBOPAShpi7FjE81mvN/Dd3W6zBIVlYbsW0+1NZ2SPWPf7gQ6TmWHxLguzZTFzlnaKltaBkdzeptmq0A0IB9pPVvcL4OOsJGB5D66nNQCjPqUNe4ub1H6d/DBHAzd9RpGdm8nPOPg1Gmq0HOM7FBZgb1d8Ox4f78xj06EUYPZsfk5FAb6dQdEb3RhYcjv7ojpM5ntqtL6iVB8IKmxQiM6/Ue0HWv8KUP96IPUUxVStzjSS8JRAHv4F2PoFf3Y56DxYrzdQvy/LCNPP8FwtmUSR/+ebwKjPKPT2/8DXrX2W/WPHfgOyU4Gx8xBsikTvRjE4dNFyaTc1gnNzSkJJ6rkNOk2VKRFJzbZBA4HQQD2SLbl5x3hdyOTd26Ln3RaJ3enCoo0nsWoPe4Iycx14YvludK4XUSx3wOggI1bM7Ia31xzCieQs3NS+Bga3iMMHvx7Os+7ZfHq9rmaig00I0NsxrmNNLPxXHeQ7vG11BBouT6hh1GkQHWREokW1Dq4dGShnMEkQFWTEJxPaYfr8rTiWlIUa4QH45Lb2iLyM/W+Sy48URVcL9ixVEHk4tZGBeklw5KqCyEPSIS73xhwF3PI1S9jObGa5W/ORpRukmpvBGTveKApwcQ9NBs5tY0Da+U66re1ZymC+33O0wg4IY1DeoD8DZU+Z0tB3gUOraFPtYe8KCjxTaMlc8/LDHM1A/IvBdGJz2mg64CGiHvttVkyncKrRkcuNwfzqeg+P9c+PsVxsyJssB/Os07A/S+Hq9KTL345FPAa/v8Kv0FocnmrLptDp86RvH49Wl1cQKwpL5RaNpli4eSG3YwwBxi4ENn5IA4bwekDqcWDUJxQuW+YArccB84erwslpY8nk5FWAzQqkbWcWJyg2r2ufRkORc89mil6njYODD60GWozKe2yddt9MZFYikH6On+nMZpanRTVkiScEywC/GKyuv/ZZHv8+/2WJoYfr/6eWM57e7Ovw134ycHQN8Pur6rKu9wK9Hqd9vffsLA/HfgNqduTx935/gCWcRrMqiDz8+Rbney2eAOxZAWPn6Zjeqx5Op2Vj9Z4LiDQb8eKIFggLvDqNDDxkWO3YdDwFH/1+FCa9Bo8PaoLYECMC9FpY7aqQ7dM4GkHFNJ0oCkuuA+sPJeZZvut0OupGFX1DRwiBGhGBeGlkC+TYXQgN0EOjEbi5Y018seHEpUtWCGBcx2LMe7vKCDLp8dCARuhaPxJr9yegV6No9GwYVWF29EURaTZg9sT2mD5/KxItuagWYsLHt7VHVCWaUEiqLg1igrF4RlfYnLTdL+8ZcpIrDymKrhb0AXktpaMaAaKEp1hrYFDrLbA8fRP+BMUyYPTM5CksU1DovgcyYL6wy3d5VCOg43TguztZwvXNeDbVX/8/lmMFhPu6eflbbjtzOd/IG8tF9slsmQOMnlM2YSQEy9bu28FSqWqtWdK1/3uKpQ5TgO/c5XU7vlZF0aXPbQLiWgLjvuYxFBpcymLoDEC7yXRzO/wLy9fq92V5WOcZNI7ITqE19g1vFT8bmJXI2UUQdOX7621g5KcM6EPigP7PA/t+4BwjgPs0Zh5FSGCUb/kbwLI7ayozK3FtODspOB7oNJXlbt4ZOZ2BFtoQLFlLPsLlxhAKHG8xft2jakladjJL1eJa07xAcZe+NB8JDHmLJXQHfsr7Wfeu4DDbpjeylDQkjteyRzRH1PNdv/lI4MubfZf9OwvoehdgjGNWaP/3vs/X7sbvphCW63kbaLSfRMHqj92q7sPpjUCHyYgKMuK1Ua3w7LDmEKADWYXfzbZb2U/lzOXvYFlvEpSQAxcyMXW+aqAzatYG/Plobyya2hmPLt2Jk8nZGNC8Gh4d2BiB5SSKzAYdOtaNwLZTvuWKTeJKlpWjnbb6uHp4IJbM6Ip31h6CgMCD/RsiPqxqZOIqmwizETe0isegFtWgLe3/hHJCq9WgVfVQ/HRfD+Q6XDDqNYg0Vx3jDsnl50q3kJaUL1IUXS2YIug6tvQO9pGYo91BfwlmDgEMfMfOZ3CYk0bhMWYeEFjAdrR6QFuEDXdRKE7gukeAs5vZF6XRAj0fY5DWdAhQcwvL9OJaMagt7jwalyP/cj6DGUjYR2ODsgaChkB3yVoge2Li2zCDtf97YOFNPIYAA/r8UBQKle9mUqzV7UXnssRD7N85+iuw71uuu3cFM2VhNYH1r3OZzggMfLn4+6u4gPZ3sPclO4nDZm2ZLPPLPE8L7c2zfddf8zRwxy8UOJENVDEDMEOTdhqIqA/MG6ou3/klMP33vDObci0ABLN1HgfCpIO07D78C0v6mg3ncfQELjkZQHQjzk5SvHoB9q5g35Q5Goiok/ezxrZgBnX9ayxz7HYfhaCHsFos3du9RD2WTr/eFZeD7ykE0OxGno8DP/Ia7TgNiG7K9YzB/P3bvZg9eE2HUTBbEjiM19sdsf3tqohrMeqSsA8J0FfeHXVbFrN039/DnyPqcX5WRN1KeftchxPz/znhs8zpUvDDrvOY0as+vpneFS4oCNBry7VB36DT4I7udbH9VBo2HU+BQavB9F71cCEjB9XDA0udkQoy6tChTgRmjW8PCJTa+S3H7kRiZi7W7r+IuFAT2teOyNPDdKVwuQWRB61Wg5iQa1OgSiSSkiFF0dWC3gjU6wXcu4V3gPVmXzvo4uKy8a7xrV8zYDeYecdf655tk5PBsqqt8xmoNh9RPLe5grBbGfT/+RYD3JA4CrDAKGZSrGkUXg2uB6CwF8aWxf0qShwpYF/NqY1qmVT19iy5yk52l16VElsWA3ydkeV75ghg5CwKUq2BRhEeQRTfDmhcgIljVgKwYDj7UQDgxF8UJwtHsiztx/t919+9GLj9B1UUdX+ImRaAJWfZyTxvHntsfzQ6Zss+78/HxhBgxnoG/YrCY+Lf1GFJAKDwPI9fBvz8OHuA6vcBej7CDF9kAwo6T8+X5SKzZxojkHqMzzuswOqngBN/8JgMeQNwZgGLJ3K/GvSjSN29mILCg8sBBFfP32UwKwH45f+AAS8Bda7jtgFmbVqN5XHtfj9wehNNSCavUmdymSNZxtbnv8zUBUZSdG5foG6/0SD+LgGAIuhcN/BlZtBMoWp20hjCbJ0ugAYY+75jCWJ8W+DWb4BtC1gG2mQo1/3+HvZB1eiQ72VR4eSks6zT45qXcgzY/BnQ9W6WNwZG8vPldw2VA1qNQM18hptWD2fjUEXevRUARraNx6MDG8OlKPh5zwVMm78Ffzzat8xlemUVtUcSLBj50d+wO/k72DQuGAvu6CzvZkskEkklIEXR1YTO5C5PKgPWFOCzvr4Ww70eA7rczcAxK4kBVdIBYMtntMuetLL0GRdrGrDqCYqJpZO5zBRGI4IjfzP74sjl8NWVj6oOdG0nMCNjLkT4KU5gz3Jgyhr20Xj6iFbcyTK3iPpA+lmW/ZlC3U34xSDzIntWjqwBqrUEbnibZgnmKLXka/xiNtID7K8xhTPYzDjnG3DaslVBBNAR7th6d0ZEYZmg4tX3otEBITU4CLZWZ2ZAjGYKtCNr6dZnTQUaDgRufD/vebFnAxveUx/nZvD9uj/IUrrslLzZoLa3qRbq4bUpZhy5zJh82pfizxgC3LYM+GqP6uCmKIDlHDNBOWnA3+8CJ/7kc4dXA1+eAEZ/wbLAo78Ch36mAJ682rccMDCSPWRtJ9CRz0NEPV6LB1fx/N7xC/ffmcvzu3sZ8PvLFHpNhtIyPPmw76DiwAjf9+r3LLNoB1cCdXsDLW/i+bNc5NwrT4ln48E8vt6ExLO00ZHLTFJgFI9F+nlmjlqMYnYm0J3VNYXRsa8ysFt5XSQdYobMlu37Ox7ViML9oy6q+Oz+ANDjwQoRRjqNBrd3q4Nl284gIZP9ik2qBaNL3VLcyCkhLgX474o98Jpfi6rQRpCRY8frPx+4JIgAYP/5TBxPypKiSCKRSCoBKYokviTs9w2WAEAfxGb7NU+x3CkwgiV1WUnsoUg7VXpRpDgoiLzJSWMgu/QO9rA0H8lmdW9L7u0LgDbjAXMhs0CMwRQfc29gRiCsFgd5dpoBtLmVZgXb5lEM9XuOmYWiAsCcdAoPT/nT0V/pYDZ1rW/GzBzNLw8J+4E5A30Dzm73UZDpAylWAAbfkQ348+G1QLvbae3todMMAALocqfvfllTgaWT1CzPoZ85q6ffs8y4KQoDdKeN2YkzXsOQ179G04xGAzgr6rZlwB9v0eii2Y0UIx4DDSF4HPf/SGHoITeDzmzNRzLjENWQgu3CXoqnga+ogshD4kFmHttPYo9U+hlmiEKq+67nsgPf3gUMfpXH9MBP7HFqfTPwrfs4ZKdQdGm0zFaN+BhY57V/+39gCWOzESgUcxQ/b7ORNHXQB/Ca377Qt+ft4Cpmyxr08329t8CyXATmj2CpJkARN/E74OQ/FF7mKO5vRaMoLN+bP1wtD7zrX9/rrv0k4LeXfbNxf/8fz0sFZYuqhZrw0309cOiiBSa9BrUjzZUyO8Zs1GJ0+xpYvEW9GXFTuxowGyvhXBSC06Ug2+bMszzblnc2kkQikUjKHymKJL6E5eOY1PB64OOeaj9HdgodvTpOVZv2S4sugAHiaa+Bf3V6Uih5mvrD67DXyJ/zO4DablHktLNHJukIMwGBUercoBajObDUHAMMeZ3zhda/RkFkCmPgn3aSAaEnALRcBI78ynkyLUfT5U5v5PwgfxeytFNAbhZQkHlVdgoHnPoHnO1vB/6ZxblBKx9hwJqdwuxT4yHAhneB4R+yLO3Cbgb1OWnAl2NYQuctRNPPAC3HMhPisUk/9iuQ+zCP47HfWaKo1QHd7mdmZe8Klnc1G8FyQAEg9QSw+klmDW5ewB4uTT5/JrJT8i6zptHUILI+TSUCI/g5h77NbFFwNWbLPBjMFMWLJ1IImaMolAa+5Pdeqcz+eMw1+j7F62P+cF9BHRTLfqsOU5j98uf0JorMwlAUmkds+ABIP8X5UHGtfXuCPJzdCtTsUrAN/ZmtPJ4eUo4Be78Fut9X+D6UN1mJwA/3+fZL/fYycOtiisr0MxSZKe/nfW12CrODFUR0sAnRpbAGd7kUJGflwukCDDqBiBLY6Aab9Hh8UBN0qx+FXw8koG+TGFzXKOqyDBf1JjzQgDt71fcxn4gKMqBpXEghr7o2SbbkIjXbBqdLQaTZKDNpEomkXKgwUSSEmANgKIAERVFauJc9C2AaAI8n6pOKoqysqH2QlILAaPZgbHiPAWJEPX73bnAH6BQWWp1lN2F5J6wXG7Pb2OHXl+iwVqcn0Ps/7pIst5ve2W2c83P4F9/X1uvjtT8Hgc8HMLgHGPxe9wgD+pimtE32kJ3MDE+trsCAF9jvkXaSvVIBYSx/mjuUpUYA8MdrwIRvKSzajqdI855FpDUwG5N5nrbRhkBmGEzhQEAog9GU43k/e1YS0GIE3++eLQzwdUZuY8hb7MGxZzF7Y02h4UHaSZ4L7wA3O1md/dN2Ah0Bl94B1OhE4XF+B+f3eFg6iZmCRgP5mXRGlhp+M4FiZuQsYNdSCpD8BBHAHi/vTANA44HwOkB4XWborClAg77MHFnTmC369k61vOyGd3iMzDEUIuG1gd5P5LV1N5h5nj7rS2EpNMCUtRRdHlEUFMMs1da5PD51uuWzz/0olgvDkgDM7k0hATArdfuPQKtxea21a3bm+Yht7rs8K5nXUuY5YMIKGjls/ozPJR0CXK7SOzWWBkVhmajPMgfP1aSVPBf6IJb3ebs1mkLZ41fFsDmc2H02A/d/vR1nUq1oVysMH9zaDvFhxR9kFBlkxIi21TG0VVyVmlnTsW4Evp7eBXM3nED1UBOm9Kx3xRotVBRJllzMWLAVW0+yPLlRbBAWTe0ij5NEIikz5S6KhBCDALwLwAzgawB9/VbZCqABAAeAh4UQexVFOVne+yEpJYHhQM+HeYfcnuPuJVEYIFtT1fUaDmAfyaQfy+7gFhzHQZ62LPaOGAKZjRn1KbDqMZZDXfcI5/ps+Zzr9H9BDdisqcDKx1RBBDAL1Hoc8Oc7wMAXGeSa3QYOxmDaKzcZAiwao36u/T+wvCkgQhVEAIPsP99UB6YOexf4ciz7NISGmR4hGHj+8wFweA1NKIa+C7ji2ajffCSw8SN1m6ZQ7sdHXfh4ylrg5N8M8g+uAtJPc1irOZb7WLs7ZwY53PbJHov07BRgw/vAX++on7v5KJYL1utNUeMZOOqh0WCaT/zglbGo3xcY8CLw3T3M3g15o/CZU+ZoYMYfnOmTk8byq6QD/Go1joJFCGZSdiwCjq7jskk/UQxGNmCG7dBqYPpvgEbvnquUT09JQASwba6aaVNcFFe3Lqb4sCRQ+H53NwWgwQzcs5V23H+9TQHZbGTRA2YBlrp5BJGHdc9xnlOfJyludAFAz4eYBQqOBw6tASLrUviZozlHaflUihGh4XWceIAmGu0nV64gApjJajEa2D6fj1uPA+r3A2Zfx+snrg0w7kv2DwHMIIbXdVu9FyEiLwOp2XZMmrMJmbksK9t2Kg2PLd2JD25th7DAks2fqUqCCABCA/ToUi8SrWuGQacR0Fex/asKbDyWfEkQAcChixas2H4G03rWk1bbEomkTJSrKBJCaAF8CKA/gDMAdgDwr0k4C2CcoijZQoiZAF4H4DccRHJZcLmA7ER+1wVwoCgAOB3AxO+BH+5neVbDgexVCQijcHLYfOcFlQaD2TcIr9sT+P4+uoqZI1kW1/Vu9uEIMFD2CAOHjZkGfxxWBq+f91cD6uY3ATe8AXS7Bziw0lfoAexL8S/fAhhYa/QUE4fXAPduZTBujqE4PP0v+5w89tlnt7HX6M6/KNYaD+E2Dq7kHfrBrwO/v8Z1u9zNz5K4n+JnzDzu74GVQIdJzFIl7GO5mN3KLNS4Lyl40k4DG2f57uu+FQzgl03leYps5Pt8q7HAL0/5Ljv6K7M0QnAgaVHoDOwbuvF99twoDn6+gEiKG4DlcrW7s0Tx0M/MmOxeQiFx8wKWAbqcHBg78++C3RKNZl6T3iQdAnZ+zUD+i8Fq3w7A60hoeI7bTQSgUEgWpzcmPyFoCGIWLq4NTTWcNpbB9XgAWPkwM6ufXOcuQRScsdTtfpYOKi5aifd7juc5qkHR+1DeGMxAv/9RlB74kQNpP+2jZhvP7wB+fJDire//uO86Q/Gt7yuZrFzHJUHk4d/jKbA5XQW84sojQH95+5uqMgcvZOZZtvdcBpwuBTqtFEUSiaT0lPdtqE4AjiiKckxRFBuAHwD4T8UbDGCju7xuL4Aa+W1ICDFdCLFFCLElMTHvBHJJOeO0A+e2Ap/1B95uAnx1MwNugOJizzK6kN30Gee/WBKANc8AC0cBf7wOWMr5HAXH8071gR9p/12rM4O04Fj2jngPkw0IB1r56eqAcNo4//W2by/P3mXsFwqMzL80yBAEBETlbfbvMAXY/x1/PrOJojG+LUsIjUF8vyNrfF9jTWVZ246vKAAUhdmYJjcA+1cC8a0pcFrfTMHTdgKHoH7UGVgyEQirwcxQQBid9+xWbtduBZZPBzLO0+AgP6wpLEecNwxoM453/gEG7caQvGYagFoiGducJYHFwRAImIL5+YNiKYisaewdsqZR0Ma3oRFFs+E8jrd+w+yLy91Unp0MHPUTYg4b+7nWvcBsX7sJFCYedEagg9utMK6N72v7v+B2rDPzHIfEF98sILyu70wprV69ARDfDtj4MUsTtXo6G7Ycy98DT5ZSUYA/3qTbnAdrKrfZZAgzhAXhctLZMO00f7/8rdHLgjmaQnnyqrzllwBFvcPKMtDg2CoriADAbNTBpPf919Wyeih0VWQuztVGts2BUynZmLfhBH49cBFJltzLuj9DWub9uz2uY80ql/WTSCRXHuVdPlcdwGmvxxfgmymaBeAFcILMCwA+BvBlURuNji7hAFJJyclOdg8bdQuIM5tZjjR2HgPzbfPUrMrIT+jA5mk+P7+DAyuHvavObSkrhgAgpgkw7D0AgiYHBaEzsNxPowd2f0PXs54PMfPibXftIfMiENMMqNYKiG7M5n6AgXaf/wLBMQzit85jz0iL0Rwse2YLRUXf//m6jAnBx1GNfBvyNVoG5o0HA/u/Zemfx0mu+/1AfCuWzR3+hULpwI/qINH0M+wDun+X6hznTVYizQcOrqRDmHdpXrORzGgBDH5TT7F3xJlLQRUYxWb/1f9VXxPfjiIrOA648QPfz1cUWUkUmk4Hg/4fH+D1U7MTz19YTXev0if0Q179H4q/grAksoww+QiP5+l/mQma+Tfw7yc8Hl1mAkFxvC4GvEjB7pmdFBKvZqtKSlA0MH4pTRTSTnNOkTmSvVNB0cDN82l/bgplSWBoDZbweaO43MYQ7tlP7af4OhHmh9MJXNjBvq6MszSrGPc1yzDLC52Rpa4uJ0WvtzCq2ZlC/wogNECPD25ph4cW70BGjgM1IwLw1tg2iDCXMVstyZcDFzIx5uN/4HR7mLetFYbPJnZAZCU4BeZHjfAAzJ7QHm+sPgi704W7+tSXZhQSiaRcEEo53o0UQowBMFBRlKnuxw8CeEpRlDx1MUKIBwC8DCBcUZRCbz116NBB2bJlS2GrSMpK8hHg/fa+y4QGeOgAA6jFt7EnAuDMoDmD8ll3H8varKkMvPQmlnjlZDCoD67GO/jaCnJ5ctrd7+1ihshykVmt315U1/H0m3iyRJYECgjLRXcAHKMKMEXh58hJZwCcfAxoOYoZKKNfmZUtmyVdC0ZwHzRaoN/zDHCPrAFGzGKGIe0U78LftoxmDo2H0PAgN4P9Kgn7fbd76xIOnJ0/zNeBr1orYOj/AXMGcNuKCzi5Aah7Hbf/zW0M5Hs+4h6q+jv7jhQXhc+UNexz2fU1BVHzkTx+ehPNNgq66+5yUiQb3DOdshKBJZNptz1qNssPvfczrjXtvkPi1WUJB4BPergt08OYTZvxJ89J6kngq3EUQUExLOnSm1kyabMCdXoAUCrHyhrgXKmNs2is0XEqs4MuJ6+HPcvYI7R3ObDrG/U1QbHA+CV08Ws5BmgyrPB5WgCF+sfdffuZYpoCE3+gGMsPp5PDa09vpEiLbVG8/j6blUNuv73T3VPUmuWYofkm7askuXYn0qx25DpcCNBrERVkkP0kFUBatg3T5m/B5hO+ZcY/3tsDLaoXkvWsYBRFQXKWjV5AZgO0VWHQlEQiqRIIIbIVRSmkKbpgyjtTdAaAtxVZNQCX6nSEEHGKopwXQvQD8B8Aq4sSRJJKwmDO6yYW39Y9hDKcWaB5N7p7dzQUNt4lWIERFBH7vqO9dE46+y9yMoBfn+NzxmA22nuXJ5UnWr0aFPZ9Sv0sOgPnzITEA4NeUQesAly/2Y35b08IZhzMkezDKQxDILNPd/7Fz+zMZdbHk8FZ9wIwei5L2mp1YcBszwb2LGV51u4lfL2/KIqoR8E5/EOWaXkyMP2eZYlhrW7A8mm08e7xEN37FozgtjU6lqw5cmjH7SHzPPvDxsxTzRiKE1BaEtjHc2oDA/1GA90GAu75Q6E18lqnn99JYeHI4WcBmMm7dzuzcJZEOgMGRDBAXzFD7Q+yJABfj2e53byhQJ+ngOpt1UGyFU3mRQ6nzc1k75LOSNGSeZH7qbh4Pid+x9K+Qz8D0U143YfVBG5eRLFSnGPrsOY1eEjYzxlNBZFxmr1MnuxuTFP2/hUljAwBNNaY+Q+3rwvw/Z24AjDqtYiVfTcVTkGzk6z5LKtMhBCVMtNKIpFcW5S3KNoMoKEQoi6AVwGMAgAhxBkAzwDoLYToAqAWgL8A3FXO71+x5GQw2NQaSlZedCVgCgdGfwGsmM4gK6w2y508wVJEfWDab+yd0AcAvZ4Afn2BzwkBDH6DwfuK6WovRHwb4LN+6uPcTJon3Las4oMwU4haytf1bqD1LTxvFTSIEgDFV2gNwLqHts7enNvOXo0Lu4C1/1P7aQBeU20nMFt0YRftzjVaoOdjFGS2LJZVdZ5B84CEA8wE3bEaGDPXLYC0FAvGYOD271nipdGyXM6az0yhxAO0+zYVU2BkJTPTdeJP9t2YYwCXgyWDQbG8Juw5/L3wnmFkjmLm7NuZFMRBMdzfVY+x9A+gGJ+6jlnEM5t839djua0owO8vc+huRYii7GTVTdAYykxgyjqckksAAB1mSURBVFHAcgG4bQWwbT7w20sU3l3vpfD58QH+rswbBty9iT07OqPaj6MrQdCmM7HEzlsYRTcpOKtqz+GAXe9+uYT9LPtrPLjo99PqmbmVSAohwmzAtJ718MA3Oy4tiw0xok5U4GXcK4lEIqkYylUUKYriEELcA2A1AC2AZxVFeUkI8TyAREVRJggh1gIIARAJYJUQ4pSiKAXcqq9CZF4AVj0BHF3LMpUbP+Cd76uluVdv4tyfu/9VbZ+9+yCEYFDvoeNUZlgSDjDzExDBgMwjgDRaBvP+841SjjKYrkw0urLbhpcEc1TerFudHvxet5dvqVVscx67oGh+TVrpnldkoumDKYTnIzfT1zHOM0PIHAn+Knlht9Ju+/h6ltkN/5AZJE9GB2APU2FN//7Ys/j6Pv9lVmrfdxyWG9aPDnQ56czEDXmLAsiRw88w+HVg86csLXS4k8KWC6ogAnicfvkvMOJj9h55+qEAHgNPpsXl9LVdtySqNykCwnkNe3A6it9XZElQBZ9WD/R4BOh8JzMo9foy27V3Odd15NKe/ZavKIDTz/DcKC7fEsHiYMvilzGEfV63fA0snsDMWkQ9YOyCgnuRXA6Wzvnjn2261rFb3bOttAWXIUoKRAiB3o2j8cXkjli08STqRJkxpUfdUg3clUgkkqpOuc8pcg9jXem37H9eP/cr7/escKxpzHAcXs3Hp/5hj8e0332FwpVIVhIzCYrCu/zBxRzWGBDGryivRvDIempzuScTYo7ie3hoOqzoO/2WBOD0JgbdDfoxK1FWy+/KxBTGGTorpjPArdWVc5jWPQ9c9xgwcwOw6TMgtinQbIRvsBYUA8BPwAVEUHgsncxgWKOjKA/IJ1vpKUHz9H+d38k5R5N+BBbfztk6TW9kr5G+BI31Qkt77dDq7PkBgNuWs9fs7DY+DowEpq+nXXnKcZ6zfz/hLCJztNdspaS827dc5Oca8TG3n3iArxnyJh3fPMfGnk077Pi2au+RIQgY+g77s+xWCq6Tf7FPqmaXwrO6Tjuw6VNVMDrtwPpXgGZD6f5Xvy/nR/lzZiuv/fQzzEIagop/LAG+bs2zNFdoNIhW8/Ft+TfFaWOWqTBzBmMQ53Yd+lldpneXxUlIVhLw59vAzi/5d+2Gt5m9Lsl1L0FYoAF9Gsegc90I6DUa6HVXyY1AiUQi8aPcRdFViSMXOPKL77KMc+7SnitYFHl6NjwlS3Gt6bxV2qyKKRwYPgtY9Sjvnl/cC9z+E2e5JB0CGt/AEqPChoJaEtg/4nGE0wdwSGhUObpwlQeWBODgzyxZajOOs4c8mRe9iSVmw95jr1HiQSAnk9m1fz8GIuoCXe6kgUBBs3lsWSyBE6DxQYPrgQd20SEuJJ7vlZ9QdNpUQeQh8zwzJ6PnuB3rVudv92zL4nnT6PMaAxiC6Ji3/lU+jmrIrIRHEAEsQVv/GnD9M8wULhzNkkBjMEszPYNAoxpz/71Lv9pNosg2RwK3/8hMkxDA/p9oJFCnJ9DnP+xXa9AP2PmV2ntks9A04P7dvHlxdC2X71rMmUE9H+ZxsVl4HAxmtXzTlpW/6Dm3g452bcZTrB1c6ft8g+vZN9TzYZa5laQs05IALBipDghOOsy/J73/w8xgWM3CX++hWivOsNrwHkv++jzJGwgSitstczgDC2AJ5/xhwP07AX31wl8ryZdAgwwXJBLJ1Y38K1cchGBPTfIRdZnOyBKpK5mjv/n2cJzfybKoTtNKtz1TMNBiFG2RodCt7bu7eMe+y10sFStKcJ3fqQoigHf+f3sVGP6B6nh2ubEkMqi9uIeP//2I7l2Nh/BasaYySPdkH+pfT2GwbKq6jd1LgP7Pu2cc+QXUWYnA2udpLx4UyzvctbpxdpL//CR/hIaCJemwusxgBqzJwBdD1GUtRvl9pgRmsvb/wNKtG9/z7WkJCGUQrnH/yQiIYHYnz7G5wCxNg/7APZspRAxm97Bd92sDo9mftuZpioG2E4HmI1RHOVMwkG1nVqvRAKDpDRyY+909dIHrched+rxxOSmkPILIw8aPgPZ3AH+/wzI+RaFRxc0LeWwNQUDD/nmFUY2O7n0NB1qOZknf/m8pGLvdx2NTu1uhp6JAPE6F3uz7lnOXFowEpvxSvFK8gFD+rlVvr9q/S0hOmjpI2YPTDlzYW/TvkEQikUiuSWQevDgExdB0wFP2pdEBN7xTfjN5LhcXdudddn4nLa1Li87obuAWwDfj2Wf0y1PA17cCX47NO+TV4+ZldWcN8htGmptW+X1IhWG5QEEUXA1oOIBZrN9eVsvCHLm+x7bFKGD9677b8MwzcviZLzpsLK3bPp/PpZ3iIN38zBLyQ6uniPKUjOkDgOEfAYe8Mp1BMcws2LIYoNuyaSKwfQGDyXPbgLk35J2NFBLHGU1C8Dqp3S3vkNcWN9EaXFF4fCIbsHTJ23RAq+UcnpGzmZlsP8m3xO3sduC9NsAXg/l9x5cUminH+PyFPRSJPp/boAo2b4SW2bFNs9Xs2OlNzCJ4+o7aTuB+Cw37e4a+AwR5mRCYo4Bh/wc8sJdzo3o8VDajFV0++xpUjWW66aeBf2dz34qLKUQKIn90AUBUk7zLw2tX/r5IJBKJ5IpAZoqKS1xr4J4tDM5MoQwqr/RApOVNwD/v+y5rM758zCPsVnXYq4fEg6rFsNPB4aorZrB/pEF/zt2p1S1vaVX3B8omQB02ICeVd/nLwzVQUZjliWnGUrWWo1ka5qlI05t5B3/vCj4WIq/hBMCA3X/eTm4GcPAn32UuJ3Bxd/HKqtJOA3+8SftvjXv7x/5gv4rOBMQ2A26aQwGXkMBMlTkqr+jMSWf2yN+hrHp7lqlt+hTITOS8o3XPU0y1nUCHxvp9i+dqZwzilzeWBOCHe33F4u+v0N1t3XN8vPULYMIKfoYTf1HkDZ/F38cWN3F+kIdej7G/yZ/Tm9wmDSH8/EPfAQa8xHMVEJ7XOc7TQ1ceGINpWOH5PBotr6ctc/g46SDL/Uo7gFbC66r/s8CZf9UBzp3uLHqIrkQikUiuWeR/3eLisbC9mmxsw+sCN31Oq2OXC7juESAmn7urpUEfyGDV4uWQFddazSxkJ9HK2COcDv0M/PQQMPJjDvL88226a3W7l+KjtGQlsdRqx5fMdAx+g6VPZTFuCKnOQHbRaHVZ85uAG9ryZ1MwMOhV9gQdXQuc3Ehjg2/vVNev1hIIrZnXmlwfwDI1/yxeRIPi7Zs9m65zx9ery2JbAO2Wsp9Co6eAyU1Xe71MoTQ0cDnZqwOo4sCDNR1IPgRs+QKIbgx0ns5zpDUCA16kwD3xN1CnO+cwlRZFobDzWeYWlJNXcU5S9fY8B2MXuHuPtBSlWi3d7lqOYblb4yHM4uVX5tdkqK85gim0ZG58ZcEYDHS4g2WlyUd4nLfOBY7+yuc7TK46paJXMqE1gWm/MgNnCAQMwRVryS+RSCSSKxqh5NdwXcXo0KGDsmXLlsu9G1cnLhcFiqLwTrvOWPBslJLgdAIJe9yOZ8fZT3TzQnWAZ9Jh4IMOvq/RGoAH9tDRz5HLYObwat7V73AHS65KErg6HcA/H3IukAd9AAeHhhTTZS8/Mi8Cs7rmLS97cC9tmj1YU/k5hIafLekgsH0Rj0XTYWyKzy8bkH4WWDCcx0homCnrdh/7W4qzb7Ovo4W8hxGzgFbjmAFUFPbnbHjP16JbZ6Qd+GfX8z37Pg10nMLjrSjAgZ9YDukhoh7nDrkczIxptIDiLNg4orjkWmim4BFnAIPbqetK7/SYk85eqTVPs2Sw7USg9xNVY2CpLZullJ5963Yv7dIDwjmLKCeVx8QYnH8GSyKRSCQSySWEENmKopSqlEtmiq51NBoGwQe+p8lCjY40Wggqo6ueVsuMx5TVFCc6g2/pisFMoeC0qctim6vlZDnpwJwBbLYH2O9y62Kg0cDi74M1Fdj1te8yu5VZjbKIIoG8vUCA70BWwDfTAgA1O/OrKEKru+cVZfG4GYKLXz4YFANM/ZWiJ+UYxWStLmpJpBA8t+e2+b7OkUvBeNdG9tUYvd4zOxn4w68nKuUYnfBqtC/efhUXYxBLyQLC6fgW0xwY9HLZ5kyZQoFWN7NE0/MeVaX01RDI7Nr4JbxBERjJc+W00/zhm9uY/TMEAbd+A9Tsyt8tiUQikUgk5YoURdc6tmzgjzdoFQ0Ax34Hjq4Dbl1S9jvpngA8P0yhtKz+4T4KI3MUMOIj9T1TjqmCyMP614DqHfLaRReEzsgSQY91s4fgEg7Z9McYCnSZyePmoVa3ks+qKYzSigAhKKr6v8Dj6t+zA1Cc1uoCHFmnLtMHMiDPtzxU5O19AipucHFQDG29ezzAhvnyMDTR6qv2TDH/DFt2MrB8qjoA2GYBlk3hHKirqYRXIpFIJJIqghRF1zq5mexn8ObsNmYpKrK8yGAGmt0I1OsN2LOYDfF+P5FfEK5j0F9cTCHAgBeA0/9wqCkAtL617JPt9SaKotiWwN5lFBgtRhdfrFUGOkPBfVMhcTS1WDoZOLOF7nCjZnPobH6YI1lOt3CU6uAW27xirY31Jn5dqzht6jXrIfNCXkMMp5Plr/ZsZvoCIq6sQccSiUQikVQRpCi61hFgqZQjx2uZyN/euLwxmAsuYwqvTUOExAPqPvV9uuTuceF1gJn/0IEqIJxf5eFAFxgJNB8ONBrEILQkYu1yIwQQVgu4ZTHPu1YHBEQVXpZVvSMwcwOwawkQ1YClaGUpaZMUjs5EkwjveUZxrbncg6Kwb2/hTbS2N4XSfKJWVymMJBKJRCIpIdJo4VrH6QD2LgeWew1s7TAVuP7py+/UZEkADq1mKV2rsTQxMBbD6vlKIieDfU7G4NI7jlkuAunnmCkwR1etjFVpyc2kacSJP9hXFNmg8j9XTgZgy2S/lSGo8kVgynHg25nA2S1AzS4sLw2rpT5vuQjMGaTObwIo+u/aKEvsJBKJRHJNIo0WJKVHq2O2457NnPlSrRX7cC63IAIYhLabcLn3ouJIOwWseoIziBr0B/r8h2YNCfspboLjihYCGWeBzwdy6CcA1OsDjPq07CWClxOXk71t39ymLmt9Kw0X/M0rKgprKvDPB7QdV1x027v9B193wYomoi4w7kuaLmgNed0HXU5fQeTZb++sr0QikUgkkmJRQZ3SkisKUwhLdTrcAdQogZGBpPRYEoD5wzmoNe0UcGQtkHqSNuULRgAfd+cQ06zkgrfhsAEbPlAFEQAc+y2vscSVRnYy8PN/fJft/JJmA5VFVhKH4HpmJKUcA9Y+x167yiQwggYR+dmxaw0cyutNSHWaU0gKRlGkcJRIJBJJHqQokkguB7Ys37v8bW4B1r/KsjEPB34CMs8XvA1nrm/PiYeUo+W3n5cDRQFyM/Iud9orbx/8nQ8BZvQqWxQVhjkKGDOXw2wBIKYpcNtSX+t7iS9ZScDWecCyacD2hXwskUgkEglk+ZxEcnnwDMn1BPqBkb4DVz1kJRS8DWMw0HYCs0weNFqgXt/y3dfKxhQKdJgC/PW2uiy2OR0KK4uYpjQb8XZ7a3JDwQ59l4vwOpzf5bSzFFYKooKxpgE/PQLsW8HH+78H2owHBr1aPrbvEolEIrmiqbBMkRBijhAiQQixx2tZhBBijRDisPt7JTUISCRVDGMIZwl5OP4n+2a8MQQB0U0L307d64Ab3qYRQXw79r1cyf1EAK24u94D3PgBUL8v0OMh4Lbllfu5AiOA25axv05nAtpOBDrfWTVd3cxRtFmXgqhw7NnA/m99l+36umpl/yQSiURy2agw9zkhxHUALADmK4rSwr3sdQApiqK8KoR4AkC4oiiPF7Ut6T4nqRJYEljOpjUyEC3rHKecDDbGZ5yjBblWD+xZAWybB4TEc8ZSRH0uLwynE7Amc7bT1dQPpigsJ9SZLo8YURRaXSsKh+AWZB8vuTLIOA/8Xwvf7J/OCNy/k6YmEolEIrniqZLuc4qi/CGEqOO3eDiA3u6f5wH4HUCRokgiuexkXgC+GKz2AdXpAYyeW7bshSmEX+G11WUdpgAtRrKJ3hRavO1otVfnzCAhLm9ZkxBX53G9VjEGcejyhvfVZd0eYNZWIpFIJNc8ld1TFKsoynkAUBTlvBCiwIhDCDEdwHQAqFWrVkGrSSQVj8sBbP7M1xjhxF/AuW1Ao4Hl+15arSyDkkgqAmMw0ONBoPEQ/v7W7QVENZQZQIlEIpEAqMJGC4qizAYwG2D53GXeHcm1jNMOJB7IuzzxUPmLIolEUnEERgK1u/FLIpFIJBIvKtuS+6IQIg4A3N8LsdaSSKoI+gC6vHkjBNB48OXZH4lEIpFIJBJJuVLZouh7ALe7f74dwHeV/P4SSemo0QkY+i4QWR+o1gq4bQUQXO1y75VEIpFIJBKJpByoSPe5r0BThSgAFwE8A+BbAIsB1AJwCsAYRVFSitqWdJ+TVAlcTiA7GRCasjvPSSQSiUQikUjKlarqPndLAU9dX1HvKZFUKJqr1OVNIpFIJBKJ5Bqn3MvnhBCDhBAHhRBH3LOI/J83CiG+cT//bz623RKJRCKRSCQSiURSaZSrKBJCaAF8CGAwgGYAbhFCNPNbbQqAVEVRGgB4B8Br5bkPEolEIpFIJBKJRFISyjtT1AnAEUVRjimKYgPwNTiw1Zvh4OBWAFgK4HohhCjn/ZBIJBKJRCKRSCSSYlHePUXVAZz2enwGQOeC1lEUxSGESAcQCSDJeyXv4a3ux9nlvK+SqwsdAEcV3JZEAhR+TcnrTVLZ+F9z8hqUVCRlvb7k9SkpCQGlfWF5i6L8Mj7+9nbFWcdneKsQYouiKB3KvnuSq5XyvEbk9SYpbwq7puT1Jqls/K85eQ1KKpKyXl/y+pSUBCFEqe2qy7t87gyAml6PawA4V9A6QggdgFAARdpySyQSiUQikUgkEklFUN6iaDOAhkKIukIIA4Bx4MBWb7wHuI4G8KtSUcOSJBKJRCKRSCQSiaQIyrV8zt0jdA+A1QC0AOYoirJXCPE8gC2KonwP4HMAC4QQR8AM0bhibHp2ee6n5KqkPK8Reb1JypvCril5vUkqG/9rTl6DkoqkrNeXvD4lJaHU14uQSRqJRCKRSCQSiURyLVPuw1slEolEIpFIJBKJ5EpCiiKJRCKRSCQSiURyTVOlRJEQYpAQ4qAQ4ogQ4ol8njcKIb5xP/+vEKJO5e+l5HIjhJgjhEgQQuzxWhYhhFgjhDjs/h5ejO0Udb09JITYJ4TYJYRYJ4SoXd6fRXL1UcD1+awQIkkIkSOEyBVCfFHI60cLIRQhhLSglZSa/P6+CSFqCiF+E0LsF0LsFUJ84f4bd0AIcb4kfz8lEn+K8T+1lvv62+7+vzrE73n/6/N+9/JnhRBnhRA73F9D/LctubbI7/+s3/NCCPGe+1rcJYRoV5ztVhlRJITQAvgQwGAAzQDcIoRo5rfaFACpiqI0APAOgNcqdy8lVYS5AAb5LXsCwDpFURoCWOd+XCDFvN62A+igKEorAEsBvF72XZdcA8xF3uvTM5+tGYBgAO3yud4ghAgGcB+AfytyByVXN4X8fXMAeFhRlKYAxgO4BcAdoCvsZ8X9+ymR+FPM/6lPAVisKEpb0GTrI7/nva/PLgDu9trGO4qitHF/raywDyK5UpiLvP9nvRkMoKH7azqAWcXZaJURRQA6ATiiKMoxRVFsAL4GMNxvneEA5rl/XgrgeiFEfsNgJVcxiqL8gbyzrbyvjXkARhSxmSKvN0VRflMUJdv9cCM4d0siKZQCrs/qAJKL+PsGAC+A4junYvdScpWT7983RVHOK4qyzb3OrQD2gyJ9ONQAtTh/PyUSf4oTwykAQtw/h8JvjqX39akoSiZ4fVav0L2WXJEU8H/Wm+EA5itkI4AwIURcUdutSqKoOoDTXo/PIO8vw6V1FEVxAEgHEFkpeyep6sQqinIe4B9WADFFrF+c682bKQBWlWkPJdcyIQDi3Wn8OeAfc5/rTfx/e/cf6lddx3H8+UqdgyabNYhiymTZb3EDGWK/FlqQ1cpq0A9tlpH/KDkW/ZF/ZAtCsCJqhOKyIMZwtsAxJc1slpY5UdnaEpS25kxmf4RiobTt3R/nc9t3t3t3v967u/vj+3zAl3u+537O53zO5XM/57w/n885J1kGnFVV26aigJpV+mnflgJL6ALxJcD50Hf7KQ3XT527Abg8yQHgbuDa0TJrt0cs4+io+TVD7afTO9WHV3uNB0yvoGikEZ/hzwvvJ43Uj77rUpLLgQuAmya1RJrN7gU2012IPkfXS/+/+pbkNXRTgtdOSek02xy3fUsyj65nfw/wXuDfwIYkC05O8TQL9XNO/Szws6paBFxK987K/7sObfVzC3BdVb1IN/VpCUfbz++dyIJrVhpXvDCdgqIDwFk93xcxbGi1N02SU+mGX483fKbBcXBoaLT9fH6M9P3UN5JcAlwPrKyqV05QWTV4dgOLquoIcCvwVo6tb2cA7wK2J9lHN59+qw9b0DiN2r4lOY3ugnMPcHNV/YfuQnMvcG6f7ac0XD/n1KvoOoeoqj8Cc4GFvQl66ufGqvplS3uwqg73tJ/LJ+UINJv0dY033HQKinbQNcjnJJlDdxPe1mFptgKr2/KngfvLt8+q01s3VgN3jpF+zPrWpjPdQhcQeZGgiXiGVt/o2q7T6alvVfVCVS2sqsVVtZjuHraVVfXolJRWM92I7Vu7B/cndPdqrAM+0NL/GjgP+Cv9tZ/ScP1cw+0HLgZI8na6oOgfQ7/srZ9V9f2e9b33glwGjPjEManHVuAL7Sl0FwIvDN1icTynTn65+lNVh5JcA9wDnALcVlW7k6wDHq2qrXT/LD9P8jTdCNFnpq7EmipJNgErgIVtbvI3gRuBzUmuomt4Vx0vjz7r203APOCO9jyP/VW1cpIOS7PEKPVzBV0n1JN0T1j64Qj1TTohjtO+/RS4AthFVyfflGQ/8BJdz+rD9NF+SsP1eU5dC9yaZA3dVKYrh3Vsv5tWP5M80dZ9g+5JdkvbNvuAq0/KQWnaGuU8expAVd1Md8/apcDTdNODv9hXvg60SJIkSRpk02n6nCRJkiSddAZFkiRJkgaaQZEkSZKkgWZQJEmSJGmgGRRJkiRJGmgGRZKkgZJkX5KFbfkPU10eSdLUMyiSJM14Scb13r2quuhEl0WSNPMYFEmSxiXJ4iRPJtmQ5M9JNia5JMlDSZ5Ksryle22S25LsSPJ4ko/3bP/7JI+1z0Vt/Yok25P8ouW/sb3tfvj+tyf5TpIHgK8m+ViSP7V93JfkDS3d65Pc29bfAqQnj5d69rmtZ/36JFe25RuT7EmyM8l3J+0PKkmaMuPqWZMkqXkzsAr4CrAD+BzwHmAl3dvoPwFcD9xfVV9KsgB4JMl9wPPAB6vq5STnApuAC1q+y4B3An8HHqJ72/2DI+x/QVW9HyDJmcCFVVVJvgx8HVhL97bzB6tqXZKPtLL2JcnrgMuAt7V8F/S7rSRp5jAokiRNxN6q2gWQZDfwmxY87AIWtzQfAlYm+Vr7Phc4my7gWZ9kKXAYeEtPvo9U1YGW7xMtr5GCott7lhcBtyd5IzAH2NvWvw/4JEBV3ZXkn6/i+F4EXgY2JLkL2DZGeknSDOT0OUnSRLzSs3yk5/sRjna8BfhUVS1tn7Or6i/AGuAgcD7dCNGcUfI9zOideP/qWf4RsL6qzgOupgu+htQYx3GIY8+JcwGq6hCwHNhCN+r1qzHykSTNQAZFkqTJdg9w7dB9QUmWtfXzgeeq6ghwBXDKBPczH3i2La/uWf874PNt3x8Gzhxh278B70hyepL5wMUt/TxgflXdDVwHLJ1gGSVJ05DT5yRJk+3bwA+AnS0w2gd8FPgxsCXJKuC3HDvqMx43AHckeRZ4GDinrf8WsCnJY8ADwP7hG1bVM0k2AzuBp4DH26/OAO5MMpduxGvNBMsoSZqGUjXWjAJJkiRJmr2cPidJkiRpoBkUSZIkSRpoBkWSJEmSBppBkSRJkqSBZlAkSZIkaaAZFEmSJEkaaAZFkiRJkgbafwE9PKX+hlppPAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"from sklearn.svm import LinearSVC\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"\n",
"fig, ax = plt.subplots(3, figsize=(14,12))\n",
"classifiers = ['LinearSVC', 'LogisticRegression', 'KNeighborsClassifier']\n",
"for idx, linear_class in enumerate(classifiers):\n",
" fig.add_subplot(3, 1, idx+1)\n",
" fig.subplots_adjust(hspace=.5)\n",
" LinearClass(X_twofeatures, y, linear_class)\n",
" plt.title('Linear classifier: ' + str(linear_class))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.1 Support vector machine\n",
"\n",
"Chooses the line which maximizes the \"margin\"\n",
"\n",
"Margin width = $\\frac{1}{||w||}$\n",
"\n",
"Upper margin: $x^T w =1$\n",
"Lower margin: $x^T w =-1$\n",
"- Changes the y int\n",
"\n",
"- The margin width depends on the norm of w. \n",
"- If w is tiny then you need to change x a lot to get $x^T$ from 0 to 1\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.1.1 Python example\n",
"Code refrence: [Pythonprogramming](https://pythonprogramming.net/support-vector-machine-intro-machine-learning-tutorial/)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"#Import oop module\n",
"sys.path.append('/home/user/Modules')\n",
"from L3_SVM import *"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Optimized a step.\n",
"Optimized a step.\n",
"Optimized a step.\n",
"[1 7] : 1.271999999999435\n",
"[2 8] : 1.271999999999435\n",
"[3 8] : 1.0399999999995864\n",
"[5 1] : 1.0479999999990506\n",
"[ 6 -1] : 1.7439999999985962\n",
"[7 3] : 1.0479999999990506\n"
]
}
],
"source": [
"data_dict = {-1:np.array([[1,7],\n",
" [2,8],\n",
" [3,8],]),\n",
" \n",
" 1:np.array([[5,1],\n",
" [6,-1],\n",
" [7,3],])}\n",
"\n",
"svm = Support_Vector_Machine(visualization=False)\n",
"svm.fit(data=data_dict)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.1.1 Hinge loss\n",
"\n",
"$$\\sum_i h(x_i^T w)$$\n",
"\n",
"For class 1:\n",
"$\\sum_i h(x_i^T w)$\n",
"\n",
"For class -1:\n",
"$\\sum_i h(-x_i^T w)$\n",
"\n",
"In general:\n",
"$\\sum_i h (y_i * x_i^T w)$\n",
"\n",
"Combined objective:\n",
"\n",
"$$min \\frac{1}{2} ||w||^2 + h(\\hat{X} w)$$\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.3454905619336187"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.metrics import hinge_loss\n",
"from sklearn import svm\n",
"X = cancer_df[['mean radius','mean texture']]\n",
"y = cancer_df.target.values\n",
"est= svm.LinearSVC()\n",
"est.fit(X,y)\n",
"predict = est.decision_function(X)\n",
"hinge_loss(y, predict)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.2 Logistic regression\n",
"- Industry prefers more than academics\n",
"- Similar to hinge but more smooth\n",
"\n",
"$$f(z) =\\frac{e^z}{1+e^z}$$\n",
"\n",
"$$p[y=1]= \\frac{e^{x^T w}}{1+e^{x^T w}} \\\\\n",
"p[y=-1]= 1-\\frac{e^{x^T w}}{1+e^{x^T w}}= \\frac{1}{1+e^{x^T w}}$$\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2.1 Python example: Logistic regression by hand\n",
"User created\n",
"#### 1.2.1.1 Fit model"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Iteration 0\n",
" Gradient: [-0.56 -1.6 ], Loss: 0.693, Theta: [0.06 0.16]\n",
"\n",
"Iteration 250\n",
" Gradient: [-5.81 -7.5 ], Loss: 3.908, Theta: [-1.8 2.09]\n",
"\n",
"Iteration 500\n",
" Gradient: [-5.8 -7.5], Loss: 3.909, Theta: [-1.8 2.09]\n",
"\n"
]
}
],
"source": [
"#Import oop module\n",
"sys.path.append('/home/user/Modules')\n",
"from L3_Linear import *\n",
"\n",
"#Import data\n",
"from sklearn.datasets import load_breast_cancer\n",
"cancer = load_breast_cancer()\n",
"X_cancer = cancer.data[:,:2] #First two columns\n",
"y_cancer = cancer.target\n",
"\n",
"#Fit model from imported module\n",
"model = LogisticRegression(verbose=True)\n",
"model.fit(X_cancer, y_cancer)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-1.80453427, 2.08825091])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Model_weights = model.theta\n",
"Model_weights "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.2.1.2 Predict label\n",
"\n",
"$$p(y_i=1|x_i)=\\sigma(x_i w)=\\frac{e^{x_i w}}{1+e^{e^x_i w}}$$"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" mean radius | \n",
" mean texture | \n",
" target | \n",
" Probability | \n",
" Prediction | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 17.99 | \n",
" 10.38 | \n",
" 0 | \n",
" 0.000021 | \n",
" 0 | \n",
"
\n",
" \n",
" | 1 | \n",
" 20.57 | \n",
" 17.77 | \n",
" 0 | \n",
" 0.497237 | \n",
" 0 | \n",
"
\n",
" \n",
" | 2 | \n",
" 19.69 | \n",
" 21.25 | \n",
" 0 | \n",
" 0.999856 | \n",
" 1 | \n",
"
\n",
" \n",
" | 3 | \n",
" 11.42 | \n",
" 20.38 | \n",
" 0 | \n",
" 1.000000 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mean radius mean texture target Probability Prediction\n",
"0 17.99 10.38 0 0.000021 0\n",
"1 20.57 17.77 0 0.497237 0\n",
"2 19.69 21.25 0 0.999856 1\n",
"3 11.42 20.38 0 1.000000 1"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_cancer = to_df(cancer)\n",
"prob, predict = model.predict(X_cancer)\n",
"df_cancer['Probability'] = pd.Series(prob)\n",
"df_cancer['Prediction'] = pd.Series(predict)\n",
"df_cancer.loc[:,['mean radius', 'mean texture', 'target', 'Probability','Prediction']].head(4)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([2.06551109e-05, 4.97237199e-01, 9.99855784e-01])"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#The model in 1.2.1.2 yields the same as are user generated function\n",
"prob_y = (np.exp(X_cancer@Model_weights ))/(1+np.exp(X_cancer@Model_weights))\n",
"prob_y[:3]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.2.1.1.2.1 Predicted labels are different than Sklearn model"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"67.14% of Sklearn & User generated labels match\n"
]
}
],
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"clf = LogisticRegression(random_state=0).fit(X_cancer, y_cancer)\n",
"df_cancer['Prediction_sklearn'] = pd.Series(pd.Series(clf.predict(X_cancer)))\n",
"diff = ((df_cancer.Prediction == df_cancer.Prediction_sklearn)*1).mean()\n",
"print('{:.2%} of Sklearn & User generated labels match'.format(diff))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.2.1.3 Evaluate model"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Pred neg Pred pos\n",
"Acutal neg 14 198\n",
"Actual pos 5 352\n",
"Precision: 0.99\n",
"Recall: 0.64\n",
"F1: 0.78\n",
"Accuracy: 0.64\n"
]
}
],
"source": [
"from sklearn.metrics import confusion_matrix\n",
"def user_confusion(actual, predicted):\n",
" df = pd.DataFrame(confusion_matrix(actual, predicted), index=['Acutal neg', 'Actual pos'], columns=['Pred neg', 'Pred pos'])\n",
" true_neg, false_pos, false_neg, true_pos = df.iloc[0,0], df.iloc[1,0],df.iloc[0,1],df.iloc[1,1]\n",
" \n",
" precision = (true_pos)/(true_pos+false_pos)\n",
" recall = (true_pos)/(true_pos+false_neg)\n",
" F1 = (2*precision*recall)/(precision+recall)\n",
" accuracy = (true_pos+true_neg)/(true_pos+false_neg+true_neg+false_pos)\n",
"\n",
" print(df)\n",
" variables = [precision, recall, F1, accuracy]\n",
" varnames = ['Precision', 'Recall', 'F1', 'Accuracy']\n",
" for var,varn in zip(variables, varnames):\n",
" print(str(varn)+\": {}\".format(round(var,2))) \n",
" \n",
"user_confusion(df_cancer.target.values, df_cancer.Prediction.values)\n",
"#from sklearn.metrics import classification_report,confusion_matrix\n",
"#print(confusion_matrix(df_cancer.Prediction.values,df_cancer.target.values))\n",
"#print(classification_report(df_cancer.Prediction.values,df_cancer.target.values))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.2.1.4 Graph evaluation of model"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKAAAALKCAYAAAAF5im6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzde3gU5d3/8c9kN8GEUzhuSACTRQgnD4kCSdAKtCGA9sEDSPHQ9lFaqPKohV9La718rNVaa8HaosVabKnSgqigWBVi0bYPIBYTkVBOZrMKCS6NmKAEQnYyvz9oVmJOu8lONpu8X9fFpczcO/PdsJPNfnLf3zEsy7IEAAAAAAAA2CQm0gUAAAAAAACgcyOAAgAAAAAAgK0IoAAAAAAAAGArAigAAAAAAADYigAKAAAAAAAAtiKAAgAAAAAAgK0IoAAAAAAAAGArAigAAAAAAADYigAKAAAAAAAAtiKAAgAAAAAAgK0IoAAAAAAAAGArAigAAAAAAADYigAKAAAAAAAAtiKAAgAAAAAAgK2ckS7ATmVlZZEuAYi4/v37S5LKy8sjXAmAUHH9AtGL6xeIXly/QNOSk5Nb/VhmQAEAAAAAAMBWBFAAAAAAAACwFQEUAAAAAAAAbEUABQAAAAAAAFsRQAEAAAAAAMBWBFAAAAAAAACwFQEUAAAAAAAAbOW046B///vftXz5cknS/Pnz9eUvf7nBmHfeeUcbN25USUmJamtrNWTIEE2dOlWTJk2yoyQAAAAAAABESNgDqPLycj311FM655xzdOrUqUbHvPbaa3rqqafUs2dPXXbZZXI6ndqxY4cef/xxffjhh/r6178e7rIAAAAAAGhXfr9fJ0+e1OnTp2VZVqTLARowDENxcXGKj4+X02nLHKWAsB7dsiz95je/Uc+ePTV+/Hht3LixwZijR4/q6aefVo8ePfTggw9q4MCBkqRZs2bphz/8oV5++WVlZWVpxIgR4SwNAAAAAIB24/f7VVlZqfj4eCUmJiomJkaGYUS6LCDAsizV1taqurpalZWV6t27t60hVFh7QL366qsqKirSd77zHXXr1q3RMW+88YZqamo0bdq0QPgkST169NDVV18tSdq8eXM4ywIAAAAAoF2dPHlS8fHxSkhIkMPhIHxCh2MYhhwOhxISEhQfH6+TJ0/aer6wBVCHDx/W6tWrNX36dI0ePbrJcUVFRZKkiy66qMG+jIwMSdKePXvCVRYAAAAAAO3u9OnTTU7MADqabt266fTp07aeIyxzq0zT1PLly9W/f39df/31zY4tKyuTJA0aNKjBvj59+qhbt276+OOPVV1d3eLFumTJkka3P/TQQ5Kk/v37B1M+0KnVTaHkegCiD9cvEL24foHoFa7r99ixY4qLi2PmE6JC3Sw9O9+3wjID6rnnnlNJSYluu+02xcXFNTu2qqpKkpSQkNDo/rrtdeMAAAAAAIhGhE+IFu3xWm3zDKiDBw9q/fr1+upXv9rujcPrZjo1pby8vJ0qATquugSb6wGIPly/QPTi+gWiV7iu39raWvn9/nCUBLSL2traFl/3ycnJrT5+m2ZA1S29GzRokObMmRPUY1qa4dTSDCkAAAAAAABElzbNgDp16pSOHDkiSbrhhhsaHfPEE0/oiSee0IwZM/TNb35TycnJ2r9/v44cOaKePXvWG/vJJ5+ourpa/fr1o1kbAAAAAABAJ9GmACo2NlZTpkxpdF9JSYlKSko0cuRIJScnB5bnjR07Vvv379e7777bYMleYWGhJGnMmDFtKQsAAAAAAETYoUOHlJWVpdmzZ+uXv/xlpMtpd4WFhXrttde0Z88eFRUV6d///reSkpL0zjvvBH2M559/Xrfffrsk6eGHH27xxm8dWZsCqLi4OC1YsKDRfc8++6xKSkp0+eWX68tf/nJg++TJk/XSSy/ptdde06RJkzRw4EBJ0meffab169dLkqZOndqWsgAAAAAAACJq/fr1WrlypWJjYzV8+HD9+9//DunxpaWluvvuu9W9e3edOHHCpirbT5ubkIdq4MCBuvHGG/X73/9eP/zhD5WdnS2n06kdO3bo448/1pVXXtnuzcwBAAAAAADC6brrrtN1112nESNGKC4uTikpKUE/1rIsLVq0SH369NH06dO1YsUKGyttH21qQt5a06dP1/e//30NHjxYf//73/XXv/5ViYmJuvXWW/X1r389EiUBAAAAABA1LMuS5dkvc8XPZN42W+a3Zp7574qHZJUckGVZEa1v6dKlysrKkiStW7dOKSkpgT9r166VJG3btk0pKSlaunSpioqKdNNNN2nUqFEaNmyYrr32Wv3zn/8MSy1r164NnHfr1q2aNWuWRowYofT0dN100006ePBgWM7zRWPHjtXYsWMVFxcX8mNXrlyprVu3atmyZZ3mJm22zYCqS/qacskll+iSSy6x6/QAAAAAAHRKlt+v2qcekXa9LdWclurCptPVUsE21e7eKV04XjE3f1eGs90XPkmSsrOzdcstt2jlypUaPXq0pk2bFtj3xb7Pu3bt0uOPP66LL75Yc+fOVWlpqV555RV97Wtf06ZNm3TeeefVG183k6i0tDSkml5//XVt3rxZkydP1k033aQDBw5oy5Yt2rVrl95880317du3lc82vA4ePKgHH3xQt9xyi7KysrR169ZIlxQWkXklAgAAdCGWZcnn86mgoEBer1d+v19Op1OpqanKzMyUy+WSYRiRLhMAEAUsy/o8fDpd3diAM9t37VDtU48o5lv/LyLvMTk5ORoyZIhWrlypMWPGaPHixU2O/etf/6ply5Zpzpw5gW1PP/20fvCDH2jlypV68MEHw1LTpk2btHr1al122WWBbQ8++KCWL1+uNWvW6NZbbw1sLyoq0qZNm0I6/rx589S7d+821ej3+3X77bcrOTlZP/jBD9p0rI6GAAoAAMBGpmkqPz9fHo9HpmkGlkT4/X4VFxfL6/XK7XYrNzdXDocjwtUCADq8kgNNh09nO336zDjvQSmtY/dZHjduXL3wSZK+9rWv6e6779a7777bYPzf/va3Vp1n5syZ9cInSbrhhhu0fPlyFRYW1tu+Z88eLVu2LKTjX3fddW0OoB555BEVFRVp/fr1io+Pb9OxOhoCKAAAAJtYlhUIn/x+f6P7/X6/PB6P8vPzlZeXx0woAECzajdvOLPsLhg1p1W7eYMc879vb1FtdMEFFzTYFhsbq/79+6uysrLBvi8uyWvLeZKTkyWpwXnmzJnTIBSzW0FBgX79619r/vz5nbJlUUSakAMAAHQFPp+vyfDpbHUhlM/na6fKAABRa/fOz3s+tcSypPfC08jbTk3NGnI6nTJNM2zn6dWrV6PnkKTa2tqwnac1/H6/7rjjDrndbn3ve9+LaC12YQYUAACATQoKCoL+wdk0TRUWFmr69Ok2VwUAiGqng5z9VCfY2VKop717QJ04cUIej0eS5Ha7Gx3zve99T9/73vd0yy236L777mvVeSKJAAoAAMAmXq836NtgW5alkpISmysCAES9uLiW+z+dLTbOvlpaEBNzZtFVOGcxtZf27gEVFxenuXPnNrpv9+7dKioq0vjx4zVs2DBdfPHFrTpHpBFAAQAA2KSlpXdtHQ8A6ILOv0Qq2BbcMjzDkC4YZ39NTUhMTJRhGCorKwvrcd9//31Jre8FFYz27gEVHx+vX/ziF43uW7p0qYqKijR79mxdf/317VZTuBFAAQAA2MTpdIYUKtX1oQAAoCkxU69S7e6dwc2Cio1TzNSr7C+qCd27d1dGRoZ27NihhQsXyu12KyYmRlOnTtXo0aNbfdzLL79cklRaWhquUm3x/vvva/ny5fW2VVZW6s477wz8/Z577lHfvn3bu7SI4KccAAAAm6Smpqq4uDioZXiGYSgtLa0dqgIARLW0EdKF46VdO5rvBxUXd2Zc6vD2q60Rv/rVr3TvvffqjTfe0IYNG2RZlgYNGtSmACpaHD16VOvWrau37eTJk/W2LV68uMsEUIYVbGOCKBTuaX5ANOrfv78kqby8PMKVAAgV12/0++ijj/TCCy8ENQvK6XTqmmuuUVJSUjtUBrtx/QLRK1zXb3l5eeBY4Wb5/ap96hFp19tnmoyf/bHeMM70fbpwvGJu/q4MZtciSMG8ZpOTk1t9fF6JAAAANnG5XHK73fJ4PM2GUE6nU263Wy6Xqx2rAwBEK8PpVMy3/p/kPajaTeul3TvPBFGxcdIF4xQz9WoZaZGd+QR8EQEUAACATQzDUG5urvLz8+XxeGSaZr3leIZhyOFwyO12Kzc3V4ZhRLBaAEA0MQxDShshx4IlkS4FCAoBFAAAgI0cDofy8vLk8/lUUFAgr9crv98vp9OptLQ0ZWZmMvMJAAB0egRQAAAANjMMQ0lJSZoxY0akSwEAAIiImEgXAAAAAAAAgM6NAAoAAAAAAAC2IoACAAAAAACArQigAAAAAAAAYCsCKAAAAAAAANiKAAoAAAAAAAC2IoACAAAAAACArQigAAAAAAAAYCsCKAAAAAAAANiKAAoAAAAAANhm5cqVmjRpkoYNG6aUlBQ9+eSTkS4JEeCMdAEAAAAAAKBzevHFF3XPPfdo7NixmjdvnuLi4pSZmRnpsmy3du1aLVq0qMn9Dz74oL7+9a+3Y0WRRwAFAAAAAABs8frrr0uSVq1apaSkpAhX0/7y8vI0ZsyYBtsvvPDCCFQTWQRQAAAAAADAFh999JEkdcnwSToTQM2ZMyfSZXQI9IACAAAAACDKWJal/eUn9dDfD+u6Nft11ep9um7Nfv38H6U6UH5SlmVFtL6lS5cqJSVF27ZtkySlpKQE/tRJSUnRrFmzdOzYMX3/+99XRkaG0tLSNHnyZK1duzYsdRw6dEgpKSm68847dejQIX3nO9/R2LFj5Xa7NX36dOXn54flPGgZM6AAAAAAAIgi/lpLv9xWprcPf6bTpqW6qKnatLTtw0+1s/QzjR/cQ3fmJMsZY0SkxuzsbC1atEjPPvusDh8+3GQ/pMrKSs2cOVNxcXG64oordPr0ab388statGiRDMPQddddV2/8rFmztH37dq1bt045OTlB13P48GFdccUVGjp0qK699lpVVFRo48aNuvnmm7VmzRpNnDixTc+3KXv27NGTTz6p6upqJSUlKScnR8nJybacq6MjgAIAAAAAIEpY1ufhU7XZcJaTpTNB1I7Dn+mX28q0eGKyDKP9Q6icnBzl5ORo+/btOnz4sBYvXtzouH/961+aO3euHnroITkcDknSvHnz9JWvfEWPP/54gwCqtbZv367FixfXC8Kuvvpq3XDDDVqxYkW9AKqyslK/+93vQjp+Xl6exo4d22D7ypUr6/3d4XBo7ty5+vGPf6xzzjknxGcR3QigAAAAAACIEgc+PtVk+HS206altw9/poMfn9KI/vHtVF3o4uPj9b//+7+B8EmSRowYoXHjxumtt97SiRMn1L1798C+Rx99VCdPnqy3lC8YgwcP1h133FFv26RJk5SSkqLCwsJ6248fP65ly5aFfPyzA6ihQ4fq/vvv15e+9CUlJyfr+PHjevvtt/Wzn/1MzzzzjD777DM99thjIZ0j2hFAAQAAAAAQJV7ce0ynWwif6pw2Lb2495i+d1loYU17SktLU8+ePRtsr1umVlFRUS+ACjV4qjNmzJh6IdfZ53nnnXfqbRsyZIhKS0tbdZ462dnZys7ODvw9Pj5eX/3qV5WZmampU6dqw4YNuvXWWxu9Q15nRRNyAAAAAACixM7SzxRse3FL0j9LP7OznDbr3bt3o9vrwqLa2tqwnKdXr16Nbnc6nWE7RzBSUlI0ZcoUSdKOHTva7bwdATOgAAAAAACIEsHOfmrteIS3B1Rj+vbtK0mqqqoKubZoRgAFAAAAAECUiHMYLfZ/+uJ4hCYcPaCaU9dzaujQoSHXFs0IoAAAAAAAiBKXpPTQtg8/DWoZniFpXEoPu0tqV6WlpYEm5PHx9jRXD0cPqF27dunCCy+st622tlaPPfaY3nnnHfXt21eTJ09u0zmiDQEUAAAAAABRYuaovtpZ2vJd8KQzs59mjurbDlW1nzvuuEPbt2/XunXrlJOTE+lymjRjxgyNHDlSo0ePVlJSko4fP66dO3dq3759io+P1/Llyxttvt6ZEUABAAAAABAlRvQ7R+MH99COw581298pzmFo/OAeGt7vnHasDnUWLFigd999V1u3blVFRYUMw1BKSoq++c1v6tvf/rbOPffcSJfY7gzLsjptR7KysrJIlwBEXP/+/SVJ5eXlEa4EQKi4foHoxfULRK9wXb/l5eWBY4Wbv9bSL7eV6e3/hFBnf6g39Hn4dGdOspwx9IBCcIJ5zSYnJ7f6+MyAAgAAAAAgijhjDC2emKyDH5/Shr3HtLP0TBAV5zA0LqWHrhrdV8P72dMfCWgtAigAAAAAAKKMYRga0T9e378sJdKlAEGJiXQBAAAAAAAA6NwIoAAAAAAAAGArAigAAAAAAADYigAKAAAAAAAAtiKAAgAAAAAAgK0IoAAAAAAAAGArAigAAAAAAADYigAKAAAAAAAAtiKAAgAAAAAAgK0IoAAAAAAAAGArAigAAAAAAADYigAKAAAAAAAAtnJGugAAAAAAAND5HDp0SFlZWZo9e7Z++ctfRrqcdrdmzRpt3rxZ+/fvV3l5uUzTVEpKisaPH6/58+frvPPOa/CYCRMm6PDhw40eb8CAAXr33XfrbfN4PHr11Vf15ptvqqSkROXl5erdu7cyMzM1b948TZw40Zbn1hoEUAAAAAAAAGH2/PPP6+jRo8rIyNCAAQMUExOjAwcOaO3atXruuee0cuVKTZkypcHjevXqpXnz5jXY3r179wbbHn74Yb300ksaMWKEpkyZoj59+qi4uFibN2/W5s2bdd999+mWW26x5fmFigAKAAAAAAAgzJ5++mmdc845Dbb//e9/19y5c3Xfffc1GUAtXrw4qHNMmjRJt912m8aOHVtv+/bt2zV37lzdf//9uvLKK+VyuVr3JMKIHlAAAAAAAEQZy7L0ycd+7dx6Qq88V6GNayv0ynMV2rnthD752C/LsiJa39KlS5WVlSVJWrdunVJSUgJ/1q5dK0natm2bUlJStHTpUu3cuVNz5szRyJEjNWLECF1//fXatWtXWGpZu3Zt4Lxbt27VrFmzNGLECKWnp+umm27SwYMHw3KeL2osfJKkL33pS+rdu7e8Xm+bzzFnzpwG4ZMkZWdnKzs7W6dPn9bOnTvbfJ5wYAYUAAAAAABRpLbWUuGOKvlKa2San283TenIoRodLauRKyVWGRMSFBNjRKTG7Oxs3XLLLVq5cqVGjx6tadOmBfaNGTOm3tjCwkItX75cl156qb7xjW/I6/Xq1Vdf1Y4dO/SnP/1JEyZMqDc+JSVFklRaWhpSTa+//ro2b96syZMn66abbtKBAwe0ZcsW7dq1S2+++ab69u3bymcbmrfffluVlZU6//zzG91/+vRpPf/88yotLVVCQoJGjRqlrKwsORyOkM7jdDrr/TfSOkYVAAAAAACgRZbVePh0NtOUfKU1KtxRpcysBBlG+4dQOTk5GjJkiFauXKkxY8Y0u6TsjTfe0P3336///u//DmzbtGmTbr75Zi1atEj/+Mc/FBPT9gVcmzZt0urVq3XZZZcFtj344INavny51qxZo1tvvTWwvaioSJs2bQrp+PPmzVPv3r0bbH/55Ze1f/9+nTp1Sh6PR1u2bFFiYqLuv//+Ro9z9OhR3X777fW2DR06VMuWLVN2dnZQtRw+fFhbt25VfHx8gwAvUgigAAAAAACIEhXHzGbDpzp1IVTFMVN9+nXsj/6pqan6xje+UW9bXl6esrOztX37du3YsaNe8PK3v/2tVeeZOXNmvfBJkm644QYtX75chYWF9bbv2bNHy5YtC+n41113XaMB1F/+8he99NJLgb+npaXpscce04UXXthg7Jw5czR+/Hilp6erR48e+uCDD/T73/9eq1ev1o033qiXXnqpwQyyL6qurtbChQtVXV2tu+++W4mJiSE9D7vQAwoAAAAAgChRvL+6xfCpjmlKnv3V9hYUBhMmTGh0hlNd6FRUVFRv+3nnnafzzjsv5PNccMEFDbYlJydLkiorK+ttnzNnjkpLS0P6M2TIkEbP+5vf/EalpaXat2+fNmzYoKFDh+qqq64K9MI626JFi3TppZdqwIABio+P18iRI/XQQw/p29/+tk6dOtViKGaapm6//Xb985//1H/9139pwYIFwX55bEcABQAAAABAlDhaVhPSeF+I4yNhwIABzW7/9NNPw3KeXr16NdhW1x+ptrY2LOdoTs+ePTVu3Dj94Q9/0LBhw3TXXXeprKwsqMfedNNNkqS33nqryTGmaep//ud/9PLLL+urX/2qfv3rX0dk+WVTOvY8PAAAAAAAEBDs7KfWjo+Ef//7381u79mzZ3uWIym8PaC+KC4uThMnTtTevXtVUFAQmIXVnH79+kmSTp482ej+mpoaLVy4UC+//LKuvvpqPfrooyE3LbcbARQAAAAAAFHC4QgtVIpkBlG3rM5soeC3335btbW1DZbhbd++XZI0duxYewpsRjh7QDXmo48+khT8HeoKCgoknWlG/kWnT5/WggULtGnTJs2aNUuPPPJIWJq2hxsBFAAAAAAAUWJgcqyOHAp+WZ0rOdbGapqXmJgowzBaXGZWUlKiVatWNbgL3vbt25WamtrgLm7vv/++JLWqD1Sw5syZozlz5rT68ceOHdOnn36qc889t8G+/Px8vfbaa+revbuysrIC2w8ePKiUlBQlJCTUG3/o0CH96Ec/kiRdc8019fZVV1dr3rx52rJli+bOnauf//znHTJ8kgigAAAAAACIGsPSu+loWct3wZPOzH5yp3ezv6gmdO/eXRkZGdqxY4cWLlwot9utmJgYTZ06VaNHjw6Mmzx5su677z5t2bJFo0ePltfr1auvvqpzzjlHy5YtaxCoXH755ZKk0tLSdn0+oSgrK9P06dN14YUXyu12a9CgQaqsrNSePXtUUFCg2NhYPfzww/XuUPfSSy/piSee0IQJEzR48GD16NFDXq9XW7Zs0alTpzRlypQGTcV/8IMfaMuWLerbt6+SkpL0yCOPNKglOztbOTk5tj/nlhBAAQAAAAAQJRL7OuRKiZWvtPkQyuGQXCmxSuwb2T5Av/rVr3TvvffqjTfe0IYNG2RZlgYNGlQvgMrIyNCdd96phx9+WH/4wx9kWZYmTpyoJUuW6KKLLopg9a03ePBgLVy4UG+99Zb+8Y9/6JNPPpHT6VRKSopuvPFGzZs3T8OHD6/3mJycHBUXF6uoqEg7d+5UVVWVevXqpXHjxunaa6/VrFmzGjQVP3TokKQzM64aC5+kM3fW6wgBlGFZlhXpIuwSbDd5oDPr37+/JKm8vDzClQAIFdcvEL24foHoFa7rt7y8PHCscKuttVS4o6rJEKoufMqYkKCYmI5zF7Qv2rZtm2bPnq1FixZp8eLFkS6nywvmNRtMw/SmMAMKAAAAAIAoEhNjKDMrQRXHTBXvrw4syXM4zvR8GpbeTYn9+LiPjoVXJAAAAAAAUcYwDPXp59QlOXysR3TomK3RAQAAAAAA0GkQlQIAAAAAgHaXk5PToe9kh/BiBhQAAAAAAABsRQAFAAAAAAAAWxFAAQAAAAAAwFYEUAAAAAAAALAVARQAAAAAAABsRQAFAAAAAAAAWxFAAQAAAAAAwFYEUAAAAAAAALAVARQAAAAAAABsRQAFAAAAAABss3LlSk2aNEnDhg1TSkqKnnzyyUiXhAhwRroAAAAAAADQOb344ou65557NHbsWM2bN09xcXHKzMyMdFm2Kysr07p167Rnzx7t2bNHH3zwgSzL0v/93/8pLS2tycdt3bpVK1asUEFBgaqqqpScnKwrrrhCt99+u3r06NFgvGmaevHFF/X000+rpKREn376qQYNGqRx48ZpwYIFSk9Pt/NphoQACgAAAAAA2OL111+XJK1atUpJSUkRrqb9vPfee/r5z38uwzA0dOhQ9erVS5WVlc0+5o9//KPuuusuOZ1OTZ8+XYMGDdJ7772nxx57TFu2bNELL7ygXr161XvMbbfdpo0bN2rQoEGaPn26evTooX379mndunXasGGDnn76aV166aV2PtWgEUABAAAAAABbfPTRR5LUpcInSbrgggv0wgsvaPTo0erZs6dmzZql7du3Nzne5/Ppxz/+sRwOh9avX6+MjIzAvl//+tf62c9+pocfflg/+clPAtvfffddbdy4Uenp6frLX/6i+Pj4wL61a9dq0aJFevTRRztXAPXMM8/I4/HoyJEjOn78uOLi4jRgwACNGzdO06ZNU8+ePQNjjx49qoULFzZ5rJycHN15553hKAsAAAAAgE7Jsiz5fD4VFBTI6/XK7/fL6XQqNTVVmZmZcrlcMgwjYvUtXbpUy5YtC/w9JSUl8P+lpaWBbdnZ2Vq+fLkeeOAB/e1vf9OJEyc0fPhwzZ8/X1dffXWb6zh06JCysrI0e/ZsLV68WD/96U/1j3/8Q1VVVUpPT9eiRYuUm5vb5vN8UXJyspKTk4Me/8Ybb+jUqVO64oor6oVPknTrrbdqxYoVWrNmje66665A0PTBBx9Iki699NJ64ZMkTZ06VZJ07NixtjyNsApLAPWXv/xFbrdb559/vnr37q3q6modPHhQ69at0+uvv64HHnhA/fv3r/eYc889V+PGjWtwrKFDh4ajJAAAAAAAOiXTNJWfny+PxyPTNGVZliTJ7/eruLhYXq9Xbrdbubm5cjgcEakxOztbixYt0rPPPqvDhw9r0aJFjY6rqKjQzJkz1atXL82ZM0eVlZV6+eWXtXDhQn300Uf6zne+U2983UyidevWKScnJ+h6Dh8+rCuuuEJDhw7Vtddeq4qKCm3cuFE333yz1qxZo4kTJ7bp+bbV0aNHJZ3JSr7I4XBo8ODBKioqUkFBQaDWuv5OW7du1cmTJ+uFUHVLHzvK7CcpTAHUqlWrFBcX12D7n//8Z61fv14bNmzQvHnz6u1LTU3VddddF47TAwAAAADQJViWFQif/H5/o/v9fr88Ho/y8/OVl5cXkZE66xkAACAASURBVJlQOTk5ysnJ0fbt23X48GEtXry40XF79+7VlVdeqd/85jeKiYmRJC1cuFDTp0/XQw89pBkzZjQayoRq+/btWrx4cb0g7Oqrr9YNN9ygFStW1AugKisr9bvf/S6k4+fl5Wns2LGtrq9v376SpA8//LDBvtraWh0+fFiSVFxcHKh15MiR+ta3vqUnn3xSl19+ub7yla+oR48e2r9/v958803NnDlTS5YsaXVN4RaWAKqx8Ek6k3iuX79eR44cCcdpAAAAAADo0nw+X5Ph09nqQiifz9eh+y85HA796Ec/CoRP0pmVUTfffLOWLVum559/vl5o9Oijj+rkyZP1lvQFY/DgwbrjjjvqbZs0aZJSUlJUWFhYb/vx48frLR8M9vhtCaAmTZokp9OpTZs2adeuXbrwwgsD+1asWKGKigpJatDI/N5779WwYcN07733atWqVYHtF1xwgWbPnq2EhIRW1xRutjYhf+eddyQ1PoXsk08+UX5+vj799FP17NlTI0aMCEuqCQAAAABAZ1VQUCDTNIMaa5qmCgsLNX36dJurar2UlJRGW/FkZ2dLkoqKihqMb40xY8Y0uhwxOTk5kF3UGTJkSKBPVXsZPHiwvvvd7+rhhx/WVVddpRkzZigpKUm7d+/Wtm3bNGrUKO3du7deUGdZlu655x6tWrVK3//+93XNNdeod+/e2rNnj+69917deOONeuCBB/TNb36zXZ9LU8IaQL300ks6deqUqqqq5PF4tG/fPp177rm66qqrGox977339N5779XbNmbMGN12220N+kUBAAAAAADJ6/UGej61xLIslZSU2FxR2zT1+X/gwIGSzsxGCodevXo1ut3pdKq2tjYs52irO++8U8OHD9fKlSuVn58v0zQ1evRorVq1Slu2bNHevXvrfb2effZZPfXUU/rWt75V72Zv48eP1x/+8AdlZ2frpz/9qWbPnq3u3btH4inVE9YAauPGjfWmg1100UW69dZb6/1Dd+vWTddee63GjRsnl8sl6Uzn9nXr1mnPnj2677779POf/1znnHNOi+drai3jQw89JKnpFzLQlTidZy5zrgcg+nD9AtGL6xeIXuG6fo8dOxY4Vji1tPSusfF21BGsuv5TTdVQXl7e6L6PP/5YktS7d+821V836ykmJqbR4zRWX2VlpX7729+GdJ7p06c3uwTv7PM093xmzpypmTNnNtj++OOPS5IyMzMDj9+yZYsk6bLLLmtwzOTkZA0fPly7d++W1+utt6SvKTExMba+b4X1Vfjkk09KOtPF/sCBA1q9erWWLFmiJUuWyO12Szrz4pkzZ069x40ePVp333237rnnHh08eFBbtmzRjBkzwlkaAAAAAABRz+l0hhRCRTJ8CkZpaak+/PDDBsvwtm3bJkk6//zz272myspK/eIXvwjpMUOGDGlTD6jmeL1evf322xo1apRGjRoV2F5dXS3p87Dui+q2x8bG2lJXqGx5JSYmJmr8+PFKS0vTHXfcoccee0xLly5t9jEOh0NTpkzRwYMH9a9//SuoAKpuplNTysvLQ6ob6IzqEmyuByD6cP0C0YvrF4he4bp+a2trQ56tFIzU1FQVFxcHtQzPMAylpaXZUkew6upsqgbTNHXffffp8ccfD/Q3+vDDD/W73/1OTqdTV111Vb3HlpaWBpqQx8fHt3j+un5ZTf17NFZfcnJyq3pANfd1Pvs8TY2r65F9tmPHjmnBggWqra3VXXfdVe+x48ePV35+vlasWKFp06bVW332xz/+UWVlZRo4cKCGDRsW1Gugtra2xdd9cnJyi8dpiq1R6IABAzR48GB5vV4dP368yTWXder216V4AAAAAADgc5mZmfJ6vUEFCg6HQxkZGe1QVeuNGjVKhYWFmjZtmi6//HJVVlbq5ZdfVmVlpe6++26lpqbWG3/HHXdo+/btWrdunXJyciJTdJDuvPPOwP+///77kqSf/vSngX5M119/vcaPHx8Y88gjj+jNN9/UxRdfrH79+umjjz5Sfn6+Kisrdc8992jKlCn1jv+Nb3xDL7zwgvbu3avLLrtMU6dOVa9evbR7925t3bpVDodDDzzwQKPN1yPB9rl4n3zyiSTV69TelIMHD0pSoDcUAAAAAAD4nMvlktvtlsfjaTaEcjqdcrvdHf7zdWJiop555hk98MADWrt2rT777DMNHz5cDzzwgK6++upIl9cm69ata7DtlVdeCfx/dnZ2vQAqJydHu3fv1qZNm3T8+HElJiZq4sSJmj9/vi6++OIGx+revbtefPFF/fa3v9Urr7yi9evXq6amRv369dOVV16pBQsWdKgA0rCCbZ/fhLKyMiUmJiohIaHe9traWq1du1br169Xenq6fvKTn0iSPB6PUlNTGwRSu3fv1s9+9jPV1NToJz/5idLT09tSVqA2oKtjCQAQvbh+gejF9QtEr3Bdv+Xl5bY1dDZNU/n5+fJ4PDJNs95yPMMw5HA45Ha7lZub22FmvzQmJSVF2dnZeu655yJdChTcazaiS/AKCwv1pz/9SSNHjtTAgQPVs2dPVVRUaO/evfL5fEpMTNT8+fMD4//4xz/qyJEjSk9PV9++fSWdWd9ZVFQkSZozZ05YwicAAAAAADojh8OhvLw8+Xw+FRQUBJbkOZ1OpaWlKTMzs8PPfELX0+YA6vzzz9eUKVO0b98+eb1enThxQt26dVNycrIuu+wyzZgxQz169AiM/9KXvqS3335bxcXFKiwslGma6t27t7KzszVt2rR6Hd0BAAAAAEBDhmEoKSmJO8gjarQ5gBo6dKhuueWWoMdPmTKlQeMsAAAAAAAAdF62NyEHAAAAAAD4otLS0kiXgHbU8q3pAAAAAAAAgDYggAIAAAAAAICtCKAAAAAAAABgKwIoAAAAAABsYFlWpEsAgtIer1UCKAAAAAAAwswwDNXW1ka6DCAotbW1MgzD1nMQQAEAAAAAEGZxcXGqrq6OdBlAUKqrqxUXF2frOQigAAAAAAAIs/j4eJ08eVJVVVUyTZPleOhwLMuSaZqqqqrSyZMnFR8fb+v5nLYeHQAAAACALsjpdKp37946efKkKioqCKDQIRmGobi4OPXu3VtOp70REQEUAAAAAAA2cDqd6tmzZ6TLADoEAigAUcuyLFUcM1W8r1pHj9TINCWHQxqYHKth6d2U2NdheyM9AAAAAEDLCKAARKXaWkuFO6rkKz0TPNUxTenIoRodLauRKyVWGRMSFBNDCAUAAAAAkUQTcgBRx7IaD5/OZpqSr7RGhTuqWG8PAAAAABFGAAUg6lQcM5sNn+rUhVAVx1oYCAAAAACwFQEUgKhTvL+6xfCpjmlKnv3V9hYEAAAAAGgWPaAARJ2jZTUhjfeFOB7o7CzLks/nU0FBgbxer/x+v5xOp1JTU5WZmSmXy0UDfwAAAIQVARSAqBPs7KfWjgc6M9M0lZ+fL4/HI9M0Az3S/H6/iouL5fV65Xa7lZubK4fDEeFqAQAA0FmwBA9A1An1MzGfoYEzLMsKhE9+v79Bg37LsuT3++XxeJSfn08DfwAAAIQNARSAqDMwOTak8a4QxwOdlc/nC4RPzakLoXw+XztVBgAAgM6OAApA1BmW3i3oWU0Oh+RO72ZvQUCUKCgokBnkmlTTNFVYWGhzRQAAAOgqCKAARJ3Evg65UmJbDKEcDsmVEqvEvqzBAyTJ6/UGvazOsiyVlJTYXBEAAAC6CgIoAFHHMAxlTEhoNoSqC58yJiRwNy/gP1paetfW8QAAAEBTuAsegKgUE2MoMytBFcdMFe+v1tGyGpnmf4Kn5FgNS++mxH58iwPO5nQ6QwqVnE6uIQAAAIQHP1kCiFqGYahPP6cuyeFbGRCM1NRUFRcXB7UMzzAMpaWltUNVAAAA6ApYggcAQBeRmZkpR5Ad/B0OhzIyMmyuCAAAAF0FARQAAF2Ey+WS2+1ucWmd0+mU2+2Wy+Vqp8oAAADQ2RFAAQDQRRiGodzc3EAI9cUG/YZhBMKn3NxcGvgDAAAgbGicAgBAF+JwOJSXlyefz6eCggJ5vV75/X45nU6lpaUpMzOTmU8AAAAIOwIoAAC6GMMwlJSUpBkzZkS6FAAAAHQRLMEDAAAAAACArQigAAAAAAAAYCsCKAAAAAAAANiKAAoAAAAAAAC2IoACAAAAAACArQigAAAAAAAAYCsCKAAAAAAAANiKAAoAAAAAAAC2cka6AAAAAKC9WJYln8+ngoICeb1e+f1+OZ1OpaamKjMzUy6XS4ZhRLpMAAA6HQIoAAAAdAmmaSo/P18ej0emacqyLEmS3+9XcXGxvF6v3G63cnNz5XA4IlwtAACdC0vwAAAA0OlZlhUIn/x+fyB8Onu/3++Xx+NRfn5+g/0AAKBtCKAAAADQ6fl8vkD41Jy6EMrn87VTZQAAdA0EUAAAAOj0CgoKZJpmUGNN01RhYaHNFQEA0LUQQAEAAKDT83q9QS+rsyxLJSUlNlcEAEDXQgAFAACATq+lpXdtHQ8AAJpHAAUAAIBOz+kM7ebPoY4HAADNI4ACAABAp5eamirDMIIaaxiG0tLSbK4IAICuhQAKAAAAnV5mZqYcDkdQYx0OhzIyMmyuCACAroUACgAAAJ2ey+WS2+1ucWmd0+mU2+2Wy+Vqp8oAAOgaCKAAAADQ6RmGodzc3EAI9cXleIZhBMKn3NzcoJfrAQCA4NBdEQAAAF2Cw+FQXl6efD6fCgoK5PV65ff75XQ6lZaWpszMTGY+AQBgEwIoAAAAdBmGYSgpKUkzZsyIdCkAAHQpLMEDAAAAAACArQigAAAAAAAAYCsCKAAAAAAAANiKAAoAAAAAAAC2IoACAAAAAACArQigAAAAAAAAYCsCKAAAAAAAANiKAAoAAAAAAAC2IoACAAAAAACArQigAAAAAAAAYCsCKAAAAAAAANiKAAoAAAAAAAC2IoACAAAAAACArZyRLgAAAABAeFmWJZ/Pp4KCAnm9Xvn9fjmdTqWmpiozM1Mul0uGYUS6TABAF0IABQAAAHQipmkqPz9fHo9HpmnKsixJkt/vV3Fxsbxer9xut3Jzc+VwOCJcLQCgq2AJHgAAANBJWJYVCJ/8fn8gfDp7v9/vl8fjUX5+foP9AADYhQAKAAAA6CR8Pl8gfGpOXQjl8/naqTIAQFdHAAUAAAB0EgUFBTJNM6ixpmmqsLDQ5ooAADiDAAoAAADoJLxeb9DL6izLUklJic0VAQBwBgEUAAAA0Em0tPSureMBAGgtAigAAACgk3A6Q7vJdajjAQBoLd5xAAC2sCxLFcdMFe+r1tEjNTJNyeGQBibHalh6NyX2dcgwjEiXCQCdSmpqqoqLi4NahmcYhtLS0tqhKgAACKAAADaorbVUuKNKvtIzwVMd05SOHKrR0bIauVJilTEhQTExhFAAEC6ZmZnyer1BLa1zOBzKyMhoh6oAACCAAgCEmWU1Hj6dzTQlX2mNCndUKTMrgZlQrWBZlnw+nwoKCgIfNp1Op1JTU5WZmSmXy8XXFeiCXC6X3G63PB5PsyGU0+mU2+2Wy+Vqx+oAAF0ZARQAIKwqjpnNhk916kKoimOm+vTj7SgUpmkqPz9fHo9HpmkGltr4/X4VFxfL6/XK7XYrNzdXDocjwtUCaE+GYSg3N7fR7xF1+x0OR+B7BEE1AKC90IQcABBWxfurWwyf6pim5NlfbW9BnYxlWYEPln6/v0GfF8uy5Pf75fF4lJ+fH/Tt2AF0Hg6HQ3l5ebrmmms0bNiwQKNxp9Op8847T9dee62mTZtGQA0AaFf8yhkAEFZHy2pCGu8LcXxX5/P5WlxaIykQQvl8PiUlJbVTdQA6CsMwlJSUpBkzZkS6FAAAJDEDCgAQZsHOfmrt+K6uoKBAZpBfNNM0VVhYaHNFAAAAQMsIoAAAYRXqig5WgITG6/UGvazOsiyVlJTYXBEAAADQMgIoAEBYDUyODWm8K8TxXV0wt1Zvy3gAAADADgRQAICwGpbeLehZTQ6H5E7vZm9BnUxdM2G7xgMAAAB2IIACAIRVYl+HXCmxLYZQDofkSolVYl/W4IUiNTU16NumG4ahtLQ0mysCAAAAWkYABQAIK8MwlDEhodkQqi58ypiQEHSYgjMyMzODvnW6w+FQRkaGzRUBAAAALWNePgAg7GJiDGVmJajimKni/dU6WlYj0/xP8JQcq2Hp3ZTYj7eg1nC5XHK73fJ4PM32d3I6nXK73XK5XO1YHQAAANA4fvoHANjCMAz16efUJTm81YSTYRjKzc1Vfn6+PB6PTNOsd1c8wzDkcDjkdruVm5vLDDMAAAB0CGH5VPDMM8/I4/HoyJEjOn78uOLi4jRgwACNGzdO06ZNU8+ePRs8Zv/+/XrhhRd04MABnT59WoMGDdLkyZM1ffp0xcSwMhAAgKY4HA7l5eXJ5/OpoKBAXq9Xfr9fTqdTaWlpyszMZOYTAAAAOhTDOvvXpq00d+5cud1upaSkqHfv3qqurtbBgwdVXFysPn366IEHHlD//v0D4//5z39q6dKlio2NVU5Ojnr06KF33nlHZWVlysrK0qJFi9pakiSprKwsLMcBolndtVdeXh7hStAcy7LOLFfbV62jRz5frjawbrlaXwczWbogrl8genH9AtGL6xdoWnJycqsfG5YZUKtWrVJcXFyD7X/+85+1fv16bdiwQfPmzZMkVVVV6YknnlBMTIzuvfdeDRs2TJI0Z84c3XfffXrrrbe0detWTZw4MRylAUCHV1trqXBHlXylZ4KnOqYpHTlUo6NlNYGG3TExhFAAAAAAok9Y1ro1Fj5JUnZ2tiTpyJEjgW1vvfWWjh8/rpycnED4VHeMr33ta5KkzZs3h6MsAOjwLKvx8Olspin5SmtUuKNKYZi0CgAAAADtztbOsO+8844k6dxzzw1sKyoqkiRddNFFDcaPGjVK3bp104EDB1RTU6PY2Fg7ywOAiKs4ZjYbPtWpC6Eqjpnqw93juiTLshrt+ZSamhro+cQyTQAAAHRUYf0U89JLL+nUqVOqqqqSx+PRvn37dO655+qqq64KjKmbDdXYukGHw6GBAwfq0KFD8vl8Gjx4cLPnW7JkSaPbH3roIUmq13cK6KqczjOXOddDx7R75xGZtcGNNWulw15peDr/ll1F3fXbp08fvfDCC9q3b5/8fn9gJpzf71dxcbE++OADjRw5Utdcc40cDkckSwbwH7z/AtGL6xewR1gDqI0bN6qysjLw94suuki33nqrevXqFdhWVVUlSUpISGj0GHXb68YBQGd26IMqKdhVdZZ02HvC1nrQ8ViWFQifampqGt1fU1OjvXv36oUXXtCsWbOYCQUAAIAOJ6wB1JNPPilJqqio0IEDB7R69WotWbJES5YskdvtDuepJH0+06kp3LUA4C4eHZ3pD62nk99v8W/ZhfTv31+HDh3S3r175ff7mx3r9/u1d+9e7dmzR0lJSe1UIYCm8P4LRC+uX6BpbbkLXliakH9RYmKixo8fr7vvvluffvqpHnvsscC+lmY4tTRDCgA6k1BXS7G6quvZtm2bzJaahP2HaZoqLCy0uSIAAAAgdLYEUHUGDBigwYMH69ChQzp+/LgkadCgQZKksrKyBuNN09TRo0flcDjkcrnsLA0AOoSByaHdbMEV4nhEvwMHDgR990PLslRSUmJzRQAAAEDobA2gJOmTTz45c6KYM6caO3asJOndd99tMHbv3r2qrq7WiBEjuAMegC5hWHq3oGc1ORySO72bvQWhw2ms71NzWlqqBwAAAERCmwOosrKyRpfT1dbW6s9//rMqKyuVnp6uHj16SJKysrLUs2dPbdu2TcXFxYHxp0+f1po1ayRJU6dObWtZABAVEvs65EqJbTGEcjgkV0qsEvu2bg2eZVn65GO/dm49oVeeq9DGtRV65bkK7dx2Qp987A96hg3aX6i/kKm7cw8AAADQkbT5p9TCwkL96U9/0siRIzVw4ED17NlTFRUV2rt3r3w+nxITEzV//vzA+ISEBM2fP1/Lli3Tvffeq4kTJ6pHjx7auXOnysrKlJWVpZycnLaWBQBRwTAMZUxIUOGOKvlKa9RYq5+68CljQkKr7m5WW2s1enzTlI4cqtHRsprA8WNiuHtaRzNixAj961//CiokNAxDaWlp7VAVAAAAEBrDauOvvT/88EPl5+dr3759OnbsmE6cOKFu3bopOTlZGRkZmjFjRmD209n27dun9evX68CBAzp9+rSSkpI0efJkzZgxI7Bcr60a6zMFdDWd9S4elmWp4pip4n3VOnrkTLDicJzpqTQsvZsS+zqi6lb0geezv1pHyz5/Pq6659Ovdb8vsCxLBW81HW7VqQu5MrNaF3LBHnV3wfv9738f1NI6p9Opa665hrvgAR1Ae73/WpYln8+ngoICeb1e+f1+OZ1OpaamKjMzUy6Xi+/rQIg668/PQDi05S54bQ6gOjICKKBzvoE2NaOnztkzhkKZ0dPZQi1J+uRjv7a/8Vmz4VMdh0PKntxDfVoZdiH8+vfvL8uytHr1ank8nmZDKKfTKbfbrby8vKh7nQKdUXu8/5qmqfz8fHk8HpmmWW+mpGEYcjgccrvdys3NlYPbqAJB64w/PwPh0pYAyvYm5AAQTpbVfPgknVla5iutUeGOqqB7G9XWnpkptP2Nz3Tk8OfHrlumtv2Nz1TwVpVqa6Mrsy/eXx1U+CSdea6e/dX2FoSQGYah3Nxcud1uOZ3OBuGSYRiB8Ck3N5fwCegiLMsKhE9+f8NefpZlye/3y+PxKD8/n15/AICI49fcAKJKxTGzxeVk0uchVMUxs8UZPaGGWtG0TO1oWWh3UPOFOB7tw+FwKC8vr9FlNmlpaYFlNgC6Dp/P1+LMSEmBEMrn87E8FwAQUQRQAKJKa2b0XJzT/Lc6O0KtjiLYr1Vrx6P9GIahpKQkzZgxI9KlAOgACgoKZAb5Tds0TRUWFmr69Ok2VwUAQNNYggcgqtgxo6czL1MLteUHLUIAIDp4vd6gl9VZlqWSkhKbKwIAoHkEUACiih0zejrzMrWBybEhjXeFOB4AEBnB3BmzLeMBAAg3AigAUcWOGT2deZnasPRuQX/NHA7Jnd7N3oIAAGHhdIa2FDzU8QAAhBsBFICoYseMns68TC2xr0OulNgWa3Y4JFdKrBL7RtGTA4AuLDU1NegbYhiGobS0NJsrAgCgeQRQAKKKHTN6OvMyNcMwlDEhocUQqrZWKvuwRq8+X6md207ok48b3tIbANBxZGZmyhHkG6LD4VBGRobNFQEA0DwCKABRxY4ZPZ19mVpMjKHMrARlT+6hQUPqf+3qfnlelzWZpnTkUI22v/GZCt6qUm0tIRQAdEQul0tut7vFpXVOp1Nut1sul6udKgMAoHEEUACiSjAzeurCp4wJCUEtT+gKy9QMw1Cffk5dktNd06/treShZ55vU5OcTFPyldaocEcVM6EAoAMyDEO5ubmBEOqL73eGYQTCp9zc3KCX6wEAYBe6EQKIOnUzeiqOmSreX62jZTUyzf8ERMmxGpbeTYn9gv/2VhdqFe6okq+0ptEm46GGWh1ZxTGzyed5troQquKYqT4hfD0BoKOzLEs+n08FBQXyer3y+/1yOp1KTU1VZmamXC5XVHyvdzgcysvLa/S5pKWlBZ4LAAAdgWF14l9tl5WVRboEIOL69+8vSSovL49wJR2fZVlhC7U6sp3bTujIoZqgxycPidXFOd1trAhN4foFws80TeXn58vj8cg0zXqzPA3DkMPhCMwaCrbHUmO4foHoxfULNC05ObnVj+0cn6YAIAw+X6bWub81Hi0LPnySJF+I4wGgo7IsKxA++f3+Rvf7/X55PB7l5+crLy8vKmZCAQAQDegBBQBdTEtL79o6HgA6Kp/P12T4dLa6EMrn87VTZQAAdH4EUADQxYS6oqQNK1AAoEMpKCiQGWSqbpqmCgsLba4IAICugwAKALqYgcmxIY13hTgeADoqr9cb9J09LctSSUmJzRUBANB1EEABQBczLL1b0LOaHA7Jnd7N3oIAoJ20tPSureMBAEDTCKAAoItJ7OuQKyW2xRDK4ZBcKbFK7MsaPACdg9MZ2k0mQh0PAACaRgAFAF2MYRjKmJDQbAhVFz5lTEjgDlAAOo3U1NSgv6cZhqG0tDSbKwIAoOvg1zoA0AXFxBjKzEpQxTFTxfurdbSsRqb5n+ApOVbD0rspsR9vEQA6l8zMTHm93qCW1jkcDmVkZLRDVQAAdA18ugCALsowDPXp59QlObwVAPj/7N1rcFTnmS/6/+q1hEACI0BIQkjQumBxcWIj7BiTxAY7hEtqJjsiY08yX3alamrOeCY5k9RUUqmT8vHJp0nVzJ6q+cDJ1M6eJDOVueRklKQmZluQxIljgyE2+IoQICQhoRsXCQGSWurV63yQV9Nqdfd633Xpden/70ti1Ope3b261e+/n+d5S0NtbS2am5tx5cqVgiGUpmlobm5GbW2tK7drGAbGxsZw9uzZdACmaRri8Tja29tRW1vLalMiIoo8rjqIQsAwjIVKlQsJjI/cr1SpMStV1qr84BogfL5y4+NCRH5TFAX79+/HiRMncOXKFei6vmhXPEVRoKoqmpubsX//flfek3Rdz3l7yWQSvb296O/vT9+eKrpDBBERUQgphuhetCE0PDzs9yEQOZZKGTh3ehpj1xYW7NkyZ/XEYks/KFdXVwMAbty44fWhEqyfLwBYvkLBrj0VWLNOK5nAxel5XKr4+iXyRr6KpKampnRFklPV1dUwDAM/+tGPhCuuDhw4UDJ/F4iCjH9/ifKrr6+3/busgCIKMMOwDjN0HRi7No9zp6fRvpsDo/0k8nwBwOyMgZO/vocNDRp27q6MfODC85iIgkZRFNTV1eHw4cOe3s7Q0JBl+AQsVENduXIFY2NjqKur8/SYiIiI/MIAiijAJm/plmEGcH/xPnlLxxoO3LKcIwAAIABJREFUjvaN6PMFAIYBjF5LhjpwEW2p43lMXuN8HQqqkydPQhf5o4CFVr1z587h0KFDHh8VERGRP/gJnyjAensSQmEGsLB4v9KTwC4OlPaNzPMFAKlUeAOXfC11ug6MDM5jfHg+3VLH85i8FPX5OgzXwu3ixYsQnXZhGAb6+vo8PiIiIiL/xPw+ACLKb3x4XuryY5KXJ3fJPl/A/cAlTGRb6sau8TwmbxiGkQ6fksnkkoW+YRjp1qYTJ04IBwFBoes6urq60NnZid7e3nQblxmudXZ2oqurS7jChopvfl7u/cyqVY+IiCjMGEARBZjsmoJrEH/ZffzDFrjIttSlUnLXz/OYRI2NjUnP1wmLqIdrpaKsrEzq8prG6k8iIoou/pUjKgK728+rqtxiPITdJZEi+3yZwha4yLbUySrWeWz3dUnBcfbs2cjO17ETrnF4dfA8+OCDOH/+vFBAqCgKmpqainBURERE/mAAReQxmVk52buh1dSXYWRQvDqmtl7um1Zyl+zzZQpbcCjbaqgoC0PXRRXjPHbyuqTg6O/vj+x8nSiHa6Vkz5496OnpEWqtU1UVO3fuLHgZzgQjIqIwYwsekYdkZ+VkL6Ra2sqFwwlVBZrbyh0eMTkh83xlCltwKFvVZBjiIVsxzmOnr0sKDtl5OWGarxPlcK2UNDQ0oLm52bK1TtM0NDc3o7a2Nu9lOBOMiIjCjgEUkYfsbD+fqWqtitqNZZaLd1UFajeWoWptyEppIsZ8vmIS76xhDA5lQzbz/AzKeez0dUnBITsvJ0zzdaIcrpUSRVGwf//+dAiVXZ2kKEo6fNq/f3/e6iXOBCMioihgAEXkITvbz2dSFAU7H68ouHg3F+07H69g2b3P7j9fYovcsAaHNZIVW7X1ZYE6j52+Lik44vG48PkStvk6UQ7XSo2qqjhw4AA6OjrQ0tKSfq40TUNrayuOHDmCgwcPQi2Q0kd54D4REZUOfloh8pDsrJxcu6HFYgrad1csDEvuSWB8+P6w5FpzWPI6d17KHMrsXCymYNcTlbi1JYmzp6YxO5P7W+gwB4ctbeXp89CKWeFVzPPYihuvSwqG9vb29BwcKyLzdYIkHo+jt7eXw6sjQlEU1NXV4fDhw7Z+nzPBiIgoChhAEXlIdgxDvssrioI16zQ8use7lyyHMrtHURSsW1+GT/3BA4EIXNxmthpatbFlV3gV4zwW4dbrksOA/VdbW4vm5mbLyhCR+TpBE+VwjeRxJhgREUVBOFc/RCGhqnKLXb92Q5Mdyty+O3xVO34ISuDiNrPVsNA5E+QKLzdel7qup+ex6LqeXhiaw4D7+/vTM10KtdWQM+Z8nVzPhflzVVUt5+sEUZTDNZLHmWBERBQFnAFF5CE7s3L8wKHMJMtsqXti30psaLw/20lVgfrGMuzZtxK7nqgMZLWc09clhwEHixvzdYLIreHVFA2cCUZERFHAv05EHrIzK8cPdoYy74pYVQ/JC2uFl9PXpZ1hwHV1dU4OmSw4na8TVGa4lqvVs6mpKd3qSdHHmWBERBQF4Vo1EIWM3Vk5xcahzFRKnL4uOQyYiimq4RrJ4UwwIiKKArbgEXnInJUTlO3n83FrKDNRGDh9XXIYMBEVmzkTzKq1jjPBiIgoyFgBReSxIG0/n09YhqUTucXJ65LDgImo2KI8cJ+IiEoHAyiiIgj6rJya+jKMDIq31fk1LJ3ITXZfl5qmSYVKHAZMRG7gTDAiIgo7fiomotAMSyeSYRjGQoXThQTGR+5XONWYFU5rVVtVAhwGXFoMw8i54I/H4+kFP6tNqFg4E4yIiMKMARQRhWZYOpGoVMrAudPTS85pXQdGBucxPjyfnvEUi8mFBxwGXDp0Xc/Z8pRMJtHb24v+/v50y5PK3mQiIiKighhAEVF6KHOuBbspCMPSRXhV9ULhYRi5w6dMug6MXZvHudPTaN8td06bw4CvXLlSMITiMOBwMwwjHT7lep4Nw0AymcSVK1dw4sQJHDhwgO8t5Air7YiIKOoYQBERgHAMS7fiZdULhcfkLd2ymg+4H0JN3tKxJs+5nS/QrK77OOY2pjB0rZ/DgCNqbGzMMmQEkA6hxsbGUFdXV6Sjo6hhtR0REZWCYK8miaiogj4svRCvq14oPHp7EsK7Ouo6cKUngV05zvlCgebYNR1q7Als37Id9+bOY2CAw4Cj5uzZs9AFTyRd13Hu3DkcOnTI46OiKGK1HclitRwRhVX4VplERDm4WfVC4TY+LL6jIwCM5bi8SKCZSimYvl2Fuo1P4fDhQ/ywHzH9/f1Cg+aBhfOlr6/P4yOiqGK1HclgtRwRhRlXX0QUCW5VvQQBv9l0RvQ8KHR5BpokMmTeyeWJTKy2I1GsliOisOOnZSKKBDeqXoKA32w6p6pyIVSuhzFKgSbZo2maVKikaXz+SUyuLxlkfpfVdqWL1XJEFHYxvw+AiMgNblS9+C37m83s9p/sbzZF24NKTU19mdTla3NcPiqBJtkXj8eFKwcURUFTU5PHR0RRoOs6urq60NnZid7eXluVc6y2K112quWIiIKEARQRRYJsMVAQi4fsfLNJS7W0lQs/v6oKNLeVL/n3KASa5Ex7e7twlaGqqti5c6fHR0RhZ/UlgyhW25UuzqYjorBjAEVEkeBG1Yvf+M2mO6rWqqjdWGYZQqkqULuxDFVrl14wCoEmOVNbW4vm5mbLxb6maWhubuauh2RJ9EuGQlhtV9rszKYbHR1lxTQRBQa/QiGiSGhpK8f4sPXQaCB/1Yvf+M2mOxRFwc7HKwruYmeGTzsfr8jZZlVTX4aRQfG2uiAGmuSMoijYv39/zpls5s9VVU3PZOOg3+II8yYNMl8y5MNqu9ImO5sOADo7Ozk7kogCgwEUEUWCWfVitXNZoaoXv3HXLffEYgrad1dg8paO3p5EOpxU1YWwqKWtHFUFdq2LQqBJzqmqigMHDuQMPJqamtKBBxVH2DdpkPmSIRc/qu3CHPhFUTweR29vr9R5xF3xiChIGEARUSS4UfXiN+665S5FUbBmnYZHbexOF4VAk9yhKArq6upw+PBhvw+lpEVh+3m7Xxr4VW0X9sAvitrb26V3TgS4Kx4RBQdnQBFRZJhVL0/sW4kNjfdnAKkqUN9Yhj37VmLXE5WIxYK1KDFx163gMAPNQrOkgh5oEkWJzCYNFy9exNGjR3Hs2LFAzb+x86WBpmlobW3FkSNHcPDgwaIFPdyVNZhEZ9PlwtmRRBQE/PqciCLFSdWL32S+2eQcEO85beMjIvfIzk/SdT1wVToy7VOKoqC1tRWHDh0qwpEtZWdXVlbWeC97Np1MJRRnRxJRELACiogoILjrVvDcDzQrcfjzVfiD56pw+PNV2LWnkuETURHZmZ8UtCqd9vZ24RDM7y8ZuCtrcJmz6To6OqR/l7MjichvDKCIiALC/GbTDKGy27oURUmHT9x1i4hKhRkk2ZVZpeOnMH3JwF1Zg82cTSfbisfZkUTkN74LEREFCHfdIiK6zxyE7cb1nDt3zreWNmBp+1TmYG/z534MG8+Fu7KGg2xbJ2dHUinhLp7BxACKiChguOsWEdHiQdhuXFcQqnTC8iUDd2UNB86OJMqNu3gGF/9aEBEREVHgiA7CFhWUKp0wfMnAyppwMNs6rV4nQWjrJCqW7F08c/08cz7ggQMHWAlVRJwBRURERESBI7vznRVW6YgL08D0UsbZkURL2dnFk4qHARQRERERBY6dne/yYZWOnDANTC91mbvitbS0pJ8zTdPQ2tqKI0eO4ODBg2wzopLBXTyDjV8FEREREVHguNkyxyodOWEamE7haOskKhbu4hlsDKCIiIiIKHBkB2EXuh5W6cgLy8B0IqJM3MUz2BhAEREREVHgyAzCzoVVOs6xsoaIwoa7eAYbZ0ARERERUeDIDsJuaGjg/BsiohIXj8eFv3DgfMDiY9xHRERERIEju8U8t9ImIqL29vZ0y7AVzgcsPgZQREREAWYYBkZHR5fMYInH4+kZLFx0UxRxEDYREcmS/fKCs+yKSzHc2t82gIaHh/0+BCLfVVdXAwBu3Ljh85EQkaw1a9ags7MT3d3dlotvthhRVBmGEcpB2Pz7SxRefP2Gm67rwl9e8POTvPr6etu/ywCKKOL4B5QonAzDwG9+8xtcuHAB8/PzeS/H9iOiYOLfX6Lw4us3/ML65UUYOAmg2IJHREQUQGNjY5bhE7CwffCVK1cwNjaGurq6Ih0dERERUXBxF89gYgBFREQUQGfPnhXeRljXdZw7dw6HDh3y+KhIVr5vYDnDi4iIiEoNAyiyZBgGJm/p6L2QwPjIPHQdUFWgpr4MLW3lqFqr8sMzEZHL+vv7IdolbxgG+vr6PD4ikpVvBkUymURvby/6+/s5g4KIiIhKBgMoysswDNy6kcTZU9OYnVm8CNJ1YGRwHuPD86jdWIadj1cgFmMIRUTkFtHqJ7uXJ28ZhpEOn3I9N4ZhpNsnT5w4wRleREREFHkMoCinVMrAuTfuYWQoiUJfwOs6MHZtHudOT6N9dwU/PBMRZXBSQappmlSopGn8k+6XXG12qqoilUpZVrFxhhcRERGVCn5apSUMw8C509MYvVY4fDKZIdTkLR1r1vGUIiICPgzyT09j7NpC8GQSrSCNx+Po7e0VasNTFAVNTU1uHj4Jytdmp2c+6QLXwRleREREFHUxvw+Agmfylo6xa/NIpcR/R9eBKz0J7w6KiChEzCA/O3zKlFlBmitkam9vF65qUlUVO3fudHLIZEN2m53ozK5c18MZXkRERBR1LFehJXp7EnkXTIWMDRfeKpyIooUbFORnBvlW76WFKkhra2uxdetWdHd3F2zF0zQNzc3NqKmpwejoKHdbK6KxsbG8M55kcYYXERERRR0DKFpi3GaQZCe0ouhhKFEanLaXRZ1MkG9WkO7ao+WcJaQoChRFWVJdoygKVFVFc3Mznn76aRw/fpy7rRXZ2bNnpVrtCuEMLyIiIoo6ftqhJex+luaahhhKlAbZ9rJS3KBANsgfG57PO0vI/F/zMTQMA5qmoampCe3t7aipqUFXVxd3W/NBf3+/7ba7TJzhRURERKWAARQtoar2Qqja+jL3D4ZCg6FEdFhVsRmG4bi9LOpk30OTycWzhHIxg6fm5uZFIdLo6KhQGxh3W3OfW21zUZjhlat6L0otoFG/f0RERMVQWisCElJTX4aRQblv71UVaG4r9+iIKAzcmHlD/hOpYitbpthqLyslskF+MnUDQzZDJJk2MO625i5N0xyHUGaoWFtb69JRFV++6r2otIBG+f4xWCMiomJyvCK4c+cOzpw5g7Nnz+Lq1au4desWNE3Dpk2bsG/fPuzduxex2P3N9sbHx/GXf/mXea9vz549+Ku/+iunh0UOtLSVY3zYOkgwxWJA7cYyVK0N14cucpfdmTcUHKJVbPqMXMtRKW5QIBvkz+jdtkMkmTYw7rbmrng8jt7eXltteJkzvPbv3x/aRX72ToC5fh7kFlCrAKampibU96+QKAdrREQUTI5Xf6dOncL3vvc9rFmzBjt27EB1dTUmJydx5swZfPe738W5c+fwta99bckf482bN+Oxxx5bcn2bNm1yekjkUNVaFbUby4SqWQCgdqOGnY+znarU2Zl5Q8EiWsUmS+T6wvAtvMyAfZkgX1WByakh2yGSbAUOd1tzT3t7e/p8taIoCmKxGHRdXzTDK8yVT4D4ToBBbAEVCWA2bNiA4eFhy4A4iPevkLAHh0REFE6OA6j6+np8/etfR3t7+6JKpy9+8Yv45je/idOnT+P06dPYvXv3ot+Lx+N49tlnnd48eUBRFOx8vMKyEmL5CgW7nqjA2vWc/UTyM2+4a2LwyFSxybD64jwM38LLDtgXDfJVdaGC9PKw/RBJtg2Mu625p7a2Fs3NzZYBTK7ZXVER1hZQ0QBmaEg8HA7S/bMS5uCQKAjC8MUZURDFrC9S2EMPPYRHH310UfgEAFVVVdi/fz8A4Pz5805vhoosFlPQvrsCT+xbiQ2NZekFpKoC9Y1l+OSnVmL/H65m+ERpsrlAVKv5DcPAxM0k3nz9Ho79ZBL/9R+TOPaTSbx58h4mbiZd2THLK7JVbKIKbVCQvQjMfnyyv4X34/GTHbBvGEY6yK/dWJb3XDfDp52PV0iHQpmXj8fjwh9yuduauxRFwf79+9Hc3AxN05Y8D4qipMOnMLfZFRLWFlDRAEbmPSdI98+KneCQiBbouo6uri50dnait7c3/T5ifnHW2dmJrq4u4dcYUSnx9GtQ8wNydjgFABMTEzhx4gTu3LmDVatW4cEHH8TmzZu9PBySpCgK1qzT8Cjn9JAA2Zk3Udw1UbZKJmi8qn4qtEFBGL6Ftztg3wzyJ2/p6O1JpFvyVHXh/G9pK0fVh4P4ZWYJZYdIMm1gUdhtLWhUVcWBAwdyfhMelTa7QrxsAc1XYWC+B4yMjKRbGmWrDmQCGBlhaXENa3BI5De2rxI541myoOs6fvvb3wIAHnnkkSU/f/fdd/Huu+8u+rcdO3bgL/7iL1BdXS10G9/4xjdy/vt3vvMdABC+HqIoM4Ngr18Puz62Ei+PXEMyaf2BVtUUtD9ei+rq5Z4eUzEZhoHfnhjD2HCycJXMcBLn39bx1P7glWar2m3oAs+f+PUp2NRUidYH89/XX/3qV1Lfwp8/fx4PPfSQa8co4r03R6CnxC6rp4ChfmBL2/3X2/r1wJa2wr+3b98+DAwMYH7eOsTVNA379u1Lv6bXrVuH7u5udHd3W7aBbdu2DTt27AjcuRcF69evL/q5GQRlZWVC523m5UX+Hum6js7OTly4cGFRdaTZFpfJrDoYGBjA1q1b0dHRYdmuOzAw4ElFZeb9K9bfXztkgzJd1wN5P4i8ku/1Ozg4iL6+PqEvzvr6+pBIJNDQ0ODZcRKFjeMWvHx+9KMfYXBwEDt37lwUQJWXl+PIkSP4m7/5G3z/+9/H97//fbz44ovYsWMHPvjgA3z729/G7OysV4dFRB6pri1HY1MlVK3wwtYMJapr8lfFhNGNsQQG++5ZBjh60sBg3z3cGE8U6cjENW6uAERzCQWoWKlC05Slv6Pcf56ffKZw0Hbx4kWpb+F7enoED9A9gwPTgOg61QCG+u9J30ZDQwO2bt1q2YqnaRq2bt2KjRs3pv9NURR0dHRg27ZtKCsry9kGVlZWhm3btqGjo4PhE7nqwQcflGoBbWuzSGOx8Fo3w6f5+Xmh9wjDMDA/P4/u7m50dnZa/o5MaCZK9P4FQVmZXBUyZ8cRLTh58qRwgJtMJnHy5EmPj4goXDz5a3Ls2DH84he/wMaNG/HlL3950c9Wr16N5557btG/bd++Hd/61rfwwgsv4NKlS/j1r3+Nw4cPW96OWemUz40bN+QPnihizG9uivF62P6IikRCy9uutNB6pGH7Iypu3rzp+fEU01tn7glVfwFAMmng7Okx7NpT6fFRyWloUjDYL9aKp8aAnY8vh6IoBdvLbk0Ufp5lF4Hz8/NFf2+XrQpLJg1bx/jkk08ikUgsGcYOLCxsVVVFc3MznnzyyZyvn71792Lbtm0F28AmJiakj4vcEdWBtTt27EBPT49wC+j27dstXx+jo6OWFX35JJNJdHd344MPPijYris7vF9E9v0r5t9fWZs3b5Zq+43H44G8H0Reyff67enpkfri7MKFC3ztUOTU19fb/l3XA6iXX34ZP/jBD9DQ0IAXXngBK1euFPo9VVXx9NNP49KlSzh//rxQAEVEwSIz8yZqZAd4j3k08NsJ2Z3b1qxbGLrsZE5cGHZwU1W5+Vh2B+znmiWUa75NPoqioK6ujn8/AygMOz3aJbsToMg8LKfzmUR2o5OZuwYsvL4KXVbm/gUBZ8cR2ePl3DuiUuDqJ/mXXnoJP/zhD9HY2IgXXngBq1evlvr9Bx54AACQSASvNYWIxJTq8HrZtVIQN0Yxd24rtONb5s5tblRrmN/Ci4rH445vU1YxB+xnh0hBrqAgMVEfWGvuBJgrYDN/blbvie4E2NfX52g+k8jQbJkARtM0bNiwIT303On9CwIvgkOiUhCGL86Igsy1V8TPfvYz/Ou//ivi8Ti+9a1vpcMkGZcuXQIA/pELIMMwFqpaLiQwPnK/qqXGrGpZq4bmQxeRF4pVJeO1YlexmVUIovzYLbWlrTz9OFix2vWPokGmnS4MOz065eZOgLquu7I7ndXjLRvAfPrTn8b4+Hhkdjr0IjgkKgVOdq0lIpcCqJ/85Cf48Y9/jObmZnzrW98q2HZ35coVxONxxGKL55+/9957eOmllwAAn/zkJ904LHJJ2LeWJxLhNGQtZpWM14pZxTYwMCB9+XXr1hV1jo5sa2LV2oCmi+QK2XY6mXYykdaxbEGZLeVGC6hZLeYGq6oD2QAmFotFrsXVzeCQqFSwfZXIGceri9/85jf48Y9/jFgshq1bt+LYsWNLLlNTU4O9e/cCAP75n/8ZIyMjaGtrw9q1awEAV69exfvvvw8AeO6550Kzg0gpMIzc4VMmXQfGrs3j3OlptO92py2HqJisQlYzWCoUSLFKxp7+/n6py5sL/GLO0fGjNZGCyU47XX9/v9TAWqvWsUxRmy1lVos5JVp1wACGs+OIZLF9lcgZxwHU+Pg4ACCVSuUMn4CFXe7MAOrJJ5/EmTNn0Nvbi3PnzkHXdaxevRpPPPEEDh48iG3btjk9JHLR5C3d8lt/4H4INXlLx5qIDpmmaBIJWU2Fqv5YJWOP7HBOc4Gf79+9mqNTygP26T477XReDayN4mwpp8PHTTJVBwxgiEgG21eJnHH8afnZZ5/Fs88+K3z5p59+Gk8//bTTm6Ui6e1JCM+10XXgSk8Cu0ps+DSFm2jImilX1R+rZOxxeyt0L+folOqAfbrPTjudVwNrozhbSqZaLB9WHRCR11g9SWQfP0VTQVHYWp6oEJmQNVOuqj9WyciT3QpdhJ05OkQi7LTTeTWw1uvZUn5wEkaz6oDIWlBmxkUBqyeJ7OFKiAqKwtbyFCxB21FRNmTNlKvqj1UycmSGeYqSnaNDJMpOO51XA2u9nC3lF7sVkaw6ILIWtZlxRBROXCFRQVHZWp6CIYg7KjoNTVn154zoME9Zbl4XkclOO51XA2u9mi3lJ9lqsdbW1sBXdREFQRRnxhFROMX8PgAKthrJreKDvLU8+Ut2R0U3W7IKcRqasurPGXOYZ3NzMzRNW/KBV1GUnP9uRXSODpGMeDwufC6a7XSi57hs65jsOR6G10R7e7tw5QW3NycSZ2dmHBGRFxhAUUEtbeXCC3RuLU+F2NlRsRhkQ9ZsrPpzzhzm2dHRgZaWlvRCWdM0tLa24siRI2hpaZFe+BO5zW5AInKOHzx4UKrtxU4YFnRmtZhVWMZB40Ry7MyMIyLyQvC/DiNfcWt5cktQd1RsaStPDwu3o5hVf1EeHmo1zNOrOTpuCtp8M3Kfk3Y6twfWhuE1IYvbmxN5I4oz44gonBhAUUHcWp7cEtQdFUVD1lyKWfUnMjy0qakJH3v0afRdTEYuAPFqjo5bgjjfLJubAWaUw1Cg8P175JFH0gs0PwOSoL8m7CqF7c2j/vqh4InizDgiCifFKNagFR8MDw/7fQiRkf5mn1vLh051dTUA4MaNG74ex3/9x6T07/zBc1UeHEnuShVFAWTeDc3gtX2398GrYRjo6uqyXGjGFBUV5Y2ofuCTS44pMyj2KwBxKl8IByxd+BdzBx/DMHD2jcLzzQzDQDJ1AzN6N27fGRJecLr1+nXzsQvq8+AWkfvX1NSEhx9+GG+//bavAUnUn4uwy/X65XNGfjh69Kj0BgrPP/+8h0cUfEH5/EwURPX19bZ/l6kBCeHW8uRUUHZUzFepYq4BRIKoYlf9iQ4PTRk67s0O4oGKmygvq170s8wB78UIzbwQ1MoIq/lmhpHC9anXMD07CAP3L1Ssra/d3P0o6jspid6/vr4+KIqCQ4cO+Xr/gvqaoPsMw8Do6Oii56fQZcP8+qHgkt1hMgwz44gonJgmEFFR1NSXYWRQvK3Oi9lKIjvxGYZZ3aeh6cFyXLk453vVn8zwUAM6Ju6+j6qVO3D73nnMJIZgQIcCFSvKGzA7twNNWzZjbXU4d6x0a46Omy0wheabGYaRM3zK/LnXC047ux/V1dV5fl1BFMb75/ZsKXKPruvo7OxEd3f3kmqnQoJ0flE0RHFmHBGFEwMoIioKmWHfXs1WktqJbziJ5rbleHRPpevHIUtmeCgAzMxdxeyta4sCDwM6phMDmEkM4eX/vRnPffFQaNo7Mlsmx4bnMJ24ganp85iZG0IqpUsHRyLztGQqkgrNN0skb+QNnzJ5ueC0s/vRoUOHPL+uIIr6/aPiMQwDnZ2duHDhgq15Ojy/yE1RnRlHROET8/sAiKg0mMO+rdbzXu6oaGcnviCws3jJF3gY0HFzYgAnTpyQCrX8kkotzFc69cpdDA8mMDrxO4zeOo57swNIpRbuoxkcdXZ2oqurq2CAkN1ilf0YZFckiTxGhc6p2/fOW4ZP96/Hm62v3dz9KOo7KUX9/lHxjI2N4cKFC5ift7ehBs8vcpO5w2RzczM0TVvyRY2iKOnwiTtMEpGXGEARUVGYOyoWCqG8nq0U1J34rGiau8WqBvR0tU2QZbZMJpNyrWz5QgQ7LVZWCoWqM4khy983ebXgdHP3o6jvpBT1+0fFc/bsWcfnB88vcpM5M66jowMtLS3pzxaapqG1tRVHjhzBwYMHQ1MdTUThxBY8IiqaWExB++4K33ZUlBmCbufyXpEZHioqDO0dmS2TbrWyedFiVWi+mWj1k8mLBaemadK7HxXjuoIo6vePike2dToXnl/kNs6MIyK/8S8bERWVnzsqBmUnPlkyw0NFhaG9I7Nl0k4rW67gyIsWq0LzzRSoUiGUFwtON3c/ivpOSlG/f1Q8Tt+2OXyCAAAgAElEQVSvi3l+ubkpAxERUSEMoIioZARhJz47RIeHygp6e0dmy6RbrWxetFiZ881yDbhfUd6A6cSA0G15teB0c/ejqO+kFPX7V2r8DFZkq+myFev8cntTBiIiokI4A4qISkZLW7lwVZNXO/HZITI8NBbTAMgtpILe3pEZ5rjVyiZ7n0UuX2i+2erK7VAgdtJ5teA0A0yr+yKy+5Gb1xVEUb9/pUTXdXR1daGzsxO9vb3p9wSZTQuciMfjtsOtYp1fXmzKQEREVAgDKCIqGUHYic8u6+GhHVi3ZrPw9YWhfSjzeRINcUz5AgSZRaHMY2TON3ti30psaLx/jlWUV2Pdms1QVf8CDTd3P4r6TkpRv3+lIgjBSnt7u3TgXezzy4tNGYiIiAoJ9tffREQuMitVzJ3Vcn3x7fVOfE5YDQ99+lOPobNzCLoejfahzJZJt1rZvGyxyjffTNcP5WxxMX9HVVXPF5xmgJmrHampqSndjlTs6wqiqN+/UmAnWMm1aYETtbW12Lp1K7q7u4Xfb5qbm4t6fnmxKQMREVEhDKCIqKT4vROfl+rq6tDSYj0rKiztQ5nDvVdXbsdMYkioFa9QcCQ6T8vNxygogYabux9FfSelYt8/DoF2VxCCFUVR0NHRgc7OTnR3d1uGz37MV/JiUwYiIqJCwrnKIiJywM+d+Lxktg/5XW3jlszh3uVGNSqWN2J6drBgCGUVHHn1GIkECFEObNxWSoEMh0C7LyjBiqqq+PznP48PPvggkNV0XmzKQEREVIhiRHii4PDwsN+HQOS76upqAMCNGzd8PhIqlnyL9yAseAoxDGOhMu1CAuMj9yvTypYpmEsY0PUUrk+9ljOEkq0mcPMxyhcgFDou0YCl2K9ft4IfJ9dj5/EMK8Mw0NXVJVyRd+DAgcgEb176h3/4B1u/53bIGfS/v0ePHpUKlTRNw/PPP+/hEREFR9Bfv0R+qq+vt/27DKCIIo5/QCkMUimj4GyuWAxYVq4gMZvC7NxN3J7+ADNz15BK+Ruu2QkQUqmUcMBi3p9ivH7dCn6cXE+pBTKjo6Po7OwUCgE0TUNHR4frs4qiSDZYyeRmyBn0v7/Hjh1Db2+vULWYoihobW3lDCgqGUF//RL5yUkAFa3+EyIiCh3DKBw+AUAqBczPGdjQuAztu1ugKK2u3K7Tah/ZYcejo6N455138v5O9u5cf/Inf1KUgCV71zCr48oX/Di9niAMjy6mIMwqiqJ4PC4crGQTPdejwMtNGYiIiHJhAEVE0vK1StWYQ7zXqpH9wE7um7ylFwyfTLoOjF2bx+QtHWscDop3a+6ObIDwxhtvYGRkRDhguXbtGhoaGsTvmE1uBT9OrycqgYxouBmUWUVRIxOs5BOVkLMQPzZlICKi0sYAioik5GuV0nVgZHAe48PzqN1Yhp2PVyAWYwhF1np7Epbhk0nXgSs9CexyMEDerWofQH7Y8dDQkPBx6rqOkydP4tlnnxX+HbvcCn6cXk8UAhmZcJNDoL0hGqxYKUbI6efAfTubMpTSBgFEROQ+BlBEJEykVcqsUjl3ehrtuyv4QZQsjQ/PS11+TPLyS37fxTYv2cWtTEuQYRjo6emRun673Ap+nF5P2AMZ2XBT0zTpIdBkzSpYEeV1yBmEHRBVVcWBAweENmUIwvESEVG48ZMMEQnzo1WKok+0+snu5bO52eYlGyDIKlbAYif4OXr06JKqB6cBUtgDGdlws66uDteuXRMeAt3U1OTWoUZevmBFllevQTcrMZ1SFAV1dXU4fPhwKI6XiIjCK+b3ARBReNhplSKyIvtFudMv1t1s84rH48KLLEVRpBdkxQpY7NyOWfXQ2dmJrq4u6LoufT3Zl5d9PIMWyMiGm2aLkwgOgZaXGaw8//zz+MpXvuL4HHWLnUpMP4XteImIKJgYQBGRsGK3SlFpqKkvk7p8reTls7nZ5tXe3i4VIGzcuFEqYGlraxO6rFMywU+m7KqHzZs3OwqQZB/PoAUysuHm8PAwmpubLUMODoF2T1BCTjuVmH4K2/ESEVEwMYAiImHFbpWi0tDSVi5c1aSqQHNbuaPbc7MCwhx2LBogPPHEE1IBy549e6SONZNhGBgdHcWxY8dw9OhR/MM//AOOHj2KY8eOYXR0dFFQIhP85GKGUPF43FGAJPt4Bi2QkQ03dV3H/v370/c5OxhRFCV9X80h0ORMUELOsA3cD9vxEhFRMAVreAIRBZqqyoVKpT6D1DAMTN7S0XshgfGRhdlZqrpQ8dPSVo6qtSoXlACq1qqo3VhmOV9MVYHajWWoWuvsxIrH4+jt7XVl7o7sLlKxWExq2/ONGzfK3bkPyQ4LdmPXMF3XcfXqVUfbutvZlStI7MywkhkCTc6Jnuteh5xhG7gftuMlIqJgUl988cUX/T4Ir9y5c8fvQyDyXUVFBQBgenra8XXdntRxdyolfPkNDWWob1zm+HbDKJVa2DHwwruzmLqdgrmGNgzg7lQK1wbmcGcqhbqNZYFbRBeboiio21iGO1MpTN+9/1hlMsOnnY9XIBZz9nitWrUKPT09SKWsz2VN0/D0009j5cqVeS+jKArWrYlDT9Th7t1ZJJN3ARiIxTRsamzC/v3P4JFHHkEsFksHWhMTE7h9+/aSECy74sW8XZnXr2EYOH78eMEFdiqVwu3btzExMYGWlhbL4xI1NTWFZ599Vvj+xWJLC7FjsRhaWlqwadMmJBIJTE1NIZVKQdM0tLS04Jln7j+eQXP9+nVMTEwIXVZRFLS0tGDLli1QFAUrV67Eli1b8Nhjj+Hxxx/HY489hi1bthQ890ie7GvQyXlW6O/vW2+9JfQeZNI0DY899pjtY3EqbMdL5JSbn5+JombVqlW2f5cVUEQkrKWtHOPD1rvgAe60SoWVYSyET4UqesydAs+dnkb77oqSD6FiMQXtuysWKsZ6EunzLBYzULl6ErfvncfpcwN4/fcLlSHZu6/JcLMCwgwaF57rKtSsfgpYff/nahK41leGmhojHZx5XfFiZ1hwXV2dK7uGJZNJV+6fyK5cQdTe3i78uAVxhlWpCELVmZuVmMUQtuMlIqJgYgBFRMKK3SoVVpO3dMvHCLgfQk3e0rFmHd+OFUXBmnUaHt2z8FiYbWTnL4u1kcncTqE2L5Ou69B1HWNjYzmDLidBo5cBi51hwYcOHcp5XEePHpVuKct1PaUiKO1dZM3vczRsYWXYjpeIiIKJLXhEEedmCXGxW6XC6oO3ZzA1KdaqYBhAct4IfKuiOc/qg3MzePvMNC68N4veC7O4PaljRUUMy1corlZx2W0jE5XZ5jU7O4vJycmcl5ucnERPTw9u3bqFpqamRe04k7d0XHh31jJoNAxg+m4K6+vKsKIilvUzA2NjY3j11Vdx4sQJnDp1Cm+99RauX7+OVatWYf369VAURer1e+LECalWmampqbytMnZbykpVMdu7KPgK/f2trKzErVu3cPv27YKvV/N8efjhh32tlA3b8RI5xRY8ovzYgkdERZOvVUpVgVpzuHaJV/OMD89LXX5M8vJ2mEFHdruJSCvb4jaz+/+u68DI4DzGh+ddDx3ttpHJUBQFtbW1UFUVqqrmvC3DMNK3ceLECRw4cCD9OPX2JISH8us6cKUngV17tIx/sx4U3t3djY6ODqn75eawYFY9yAtCe1fUOXk/C4qwDdwP2/ESEVEwlfYqkYhsyW6VKpaw7Cons1OgefmJm0nP7pfsjmiZ/Jpn5aSNTIaToMtJ0GgYRvo5KRR8dXd3o7OzE3v37i34uGYuyGWZbXO5sKXMHr/bu6LMyftZ0IQtrAzb8RIRUfAwgCKiUPCjCscuVZUPoU69cteT+yUadOSq8AH8m2fV398vvBObYRjo6+uzdTtOgi47QaNJJvi6cOECtm3blrfCK3tBLsNqWDCrHihInL6fBVHYwko3jzcKlWxERCSHARQRBV7YdpWrqS/DyKBEdYySP8xwer9kgo5Lly6hsbER27dvd63NLJtoFZubbWSFOAm6ZIPGzGIMmeArmUzmrfCyWpBbH5N12xyrHigoitGaS8URpUo2IiISxwCKiAIvbLvKtbSVp2djCbHIP5zcL5mgwzAM/PrXv8bg4GD6Q7+b86xkqtg0TZMKVOwuUJwEXbJBY219Wfr/u1XhJbogz0WmbS5sVRoUTcVqzSVviVayXbp0CTMzM/jsZz/Lgf1ERBHBd3MiCjw7VTh+qlqronZjGdz80lbXgTdfv4eJm0nh4AKQCzqAhQ/+V65cwUu/6MLvX7vrqM0s+3plqtji8bhUtdeKFSuk28+AwvOPrC7f0lYu/ByrKtDcVp7+b7cqvGQW5KbsndjY4kJhUazWXPKWaHBuGAYGBwfx85//3Nb7OxERBQ8roIgo8IK4q1whiqJg5+MVBQMXVQVSKUAiG8LsjIFTr9yVmgllpzImmUxi4Gof5u48iPKyaqnfzRfIyFaxtX7kYeHd1wBgZmbG1syXeDyO3t5eoUVt9rwkM2i0ul+qCtRuLEPV2vsPjmyFV76gTDZgBIDW1la2zVEoFas1Nx/OLHKHbHA+NDQUmpleRERUGAMoIgo8t6pwiikWU9C+u2Jh3lFPIt2Sp6oLrVgtbeX43S/vSl+v7Ewo2aDDZBg6Ju99gNqqp6R+L7PNLJNsFdvUjdVobm5Gb2+v0EJF13VbM18efvhh9Pb2Cl02e16SaNBoBoaZz5VM8AUAq1c1YuJmcsmOiHaeW7YkeYPhhPfcCm7tCOrMojCed3YrcznTi4go/BhAEVHgORn27CdFUbBmnYZH8wzltrNbHiA3E0o26Mg0kxiSunx2m1km2Sq28ZEkDnxuP4aHh3H3rlhQJzvzxTAMvPvuu0KXNaufsquGRILGqhzPUXt7u3CFlwIV5cq2nNVvfi7IS1muRb+5yM98rfkdTkSNk4pFJ4K6+15QQzErdoJzzvQiIooGfhIlosBzMuw5yKR3y8sgsuMcIBd0ZDMgno7lajPLZKeKTVVVzM7OCv+O7MyXsbEx9PX1CYdzDz/8cM5FpVXQmEttbS2am5st56AoUFGxvBFl6lrcm72Ot987j1NvDSGV0qFpGsrLy4WfWzcX5KUs36I/33nkVzgRRTLvZyI7PIoK4u57QQ3FRNipzOVMr/zCWAVHRKWLARQRFY1hGAuVIhcSGB+5XylSY1aKZLUXmWR2lStUhRM00rvlZRGZdSUadOSiQOwb83xtZtmXsVPF5uXMF9k5JO+88w7q6+uljicfRVGwf//+jAWkjuztEM3wqXrVHty48xqmZwcXhYLJZFJ6p0C3FuSlymrRX0gxw4mgcrpQFn0/k9nhUUQQd98LYigmym5lrtszvaIgrFVwRFS6GEARecBu0BJlqVTuXdB0HRgZnMf48Hze4dpOhj0Hmej9ykfkdzKDjkuXLkl94F9R3mB5mfrG/G1mmexWsXnZYub3jlqqquLAgQMYGxvDr06cwa2JhYBJgYoV5Q2oqtyBZdo6XJ/63ZLwSZbbC/JSJbrozyesbURuVFi4sVDODm4zr8f8uaqqru/w6Pd7RS5BDMVE2a3MFXl/L6VqoDBXwRFR6WIAReQyJ0FLVBlG7sckU6Hh2k6GPQeZyP0qRPTLTDPoaGxsxK9//Wux+SlQUVW5w/L2d+2pFDoGu1VsXs588XtHLWDhmOvq6rBmxZN4YNnSn8/OX3cUPnm1IHdTmBaMslVz2cLYRuRGcOTmQjkzuM0+Z5qamjzZ4TEI7xXZghiKiTIr2WS+FBF5fy+1aqAwV8EROWUYBtB3EanjPwXeewuYmwOWLQM+8ihiBz4HxLcE5rMDLcYAishFToOWqJq8pQsFLIWGa9sd9hx0mffrzdfvYXZGvEJJZtaVoijYvn07BgcHheYOlS+rwcTd9zE7d21JVU6ZuhZz+k3MzXXj6NEhocBAptpL14FTr9xFTX0ZWlse9mzmS5AGeOd7TG7fOy8VPq1cuRKzs7OeL8jdErYFo+zuXbkUu43IScDnVnDk9kLZDG4PHz5sce/dEaT3ClMQQzFRZiXbzMwMBgcHhX7H6v29FKuBwlwFR+SEkUwi9U9/D7xzBpifA8y/y3MJ4OxJpN57E3j4Y4h96atQuPlK4PAZIXKRG0FLFPX2JISrewoN17Yz7DkM0vfr45U49cpdscdKAZoezFEyY3E7hdpXAAUKYojFlmN2bgxAKv0TAzqmEwOYTgxCja1AypiFYaRgzi2yCgxkq73MisGxaxWoemATJqeuuj7zxa8dtXLJNyNLdifC2dlZPP/88y4dlbfCuGB0YxFfzJ0InQZ8bgVHYV8o+/1ekStElBW0HTBVVcVnP/tZ/PznP8fQ0FDBx1bk/b0Uq4HCXAVHZJdhGPfDp7lErgss/Ps7p5H6p79H7E//2vfPDrRYzO8DIIoS2aDlwnszjr9ND4NxgWHZmUSGa0dR1VoVtfUaIPJ30gCuXExInz9m+0pHRwdaWlrSixJN09Da2oIHHqhFKjWLzPBpsRT01D0YxtKh2dmBQfaxmdVeT+xbiQ2NZYgJ/AVKpRSsLt+Dqgc2QdO0JR8iFEVJL05kW8za29uFq2q8HuBdk6eaTbb1LkhVDlbsLBj95nQRX8ydCLMDvuzXo9XrFbAXHOUS9oWyn+8Vuq6jq6sLnZ2d6O3ttfUaD+oOmLFYDH/4h3+ILVu2OH5/d+tcDZMwV8ER2dZ3MX/4lGlubuFy/ZeKc1wkLFhfhxCFnGzQcmNMx9lT97Bzd2Wk50HJjkxxMGIl1BRFQXxLOYYHxT4kjg8nbVXR5WtfGR0dRWdnp6Nh10Dhb5gzq9gmbiaFKr5SqRhWl38cjz2zE5d633Ft5kttbS2amppw+fLlgotjc/HmZRtbvhlZClSp5yNoVQ6FhLEqxu7uXaZi7kToRkWIW8FR2BbKuSqOFEWBoiiOK3Vkj8PurouZgrwDplszvcIectoRxNZQIq+ljv9soe1OxPwcUsd/BvXPvu7tQZEUvhMRuchOcDI8lITxxj3seqIysiWi+dqLCl0+SIq5q2HfJcE/qijcrmiH0wHLmUQCA5mKwVRKwdTNqqLNfCm2fDOyVpQ3YDoxIHQdQa1yyCeMC0a7u3cBxd+J0I2Az63gKEwL5Xxti1YhtRfD/p3uugiEYwdMN2Z6hS3kdIPfraFBEqbNLMih9968P/PJimEA7/7e2+MhaQygiFwkG7QAAAxgdCiJiZtJrK0WHyodJjX1ZRgZFK8Okxmu7bVi72roZ7uiGwOWTYZh4PKlKzh2bxI19WVofnAZEvM3cO7cuYyKAhUrli0MNl+mrbP8cOh2a+bY2Bj6+vos77MZfsjODJH5QJxvRtbqyu2YSQwJVUEFucohl2IsGN1elJi7d8mEAn7tROhGwOdWcBSWhbKdiiNFUdDQ0IAnnnjC9ZlCTr4UCMMOmG4KU8jpFplAPGx/H2SEbTMLcmhO/ItaAOLVUlQ04X/3JQoQ2aDFZBhAz/uzeGJvcIIXN+VrL8pFVYHmtnLvD0qA6K6Gw1fnMXz19qJ/j8WAmnoNrVuXS1VI+dmu6PY3wgb0Dx+fBN59/1eYnhuCYWRWFCwMNp9JDKFieSPWP/AJKEr+wVBut2a61QKWK+RQVRUrVqzAzMwMUqmU0AfiXDs9lhvVqFzRiOnZQaSM/McahioHYPFjJUt2wejFosR6kD/Sr3XDMHzdidCNgM+t4CgsC2W7FUcjIyN4++23XVngZr5GLl++bOs6wrADptvCEnK6STQQD8vfBzvCuJkFObRsmfX8p0xlchv2kPcYQBG5SCZoyXZzPLqDj/K1F+VStmxhxoZhGL5/SBDd1TCXVGqhsm18+C7qGsQrpPxsV5T9BtmKAhWGYeD61GuYnh3MW8VjQMf07CCu4zWsf+CTeZ93t7+4tFMhkm82jHkZk67ruHv3bt7ryveBOHunx+rqauh6M/7t3/4tZ+ARpiqH7EBIhuyC0ctFiVsza7zmRkWIW8FRWBbKdiqO3FzgOnmNmL7yla/Y+r2wC0vI6SarQDxMfx/sKsXdD0veRx4Fzp4Ua8NTFOCjj3l/TCSFARSRi2SClmxR3gwvX3tRLrMzBt74zb28bW3FnMckM6Mon4Ugah7nMI323RWWx+ZVu6LI4+Z0wHK2FeUNSCRvFAyf0sf3YQg1V3ET5WXVOS/jdmumnQqRrq4uqdkwVtcn8oE4LIFHIU6HKcsuGL1elLgxs8ZrblSEuBkcffSjH8Xw8HDOYDYoC2UnbchOF7huDBxXFAW6rpdkm1FYQk63ReHvgxNh3MyCnIl9+r8h9d6bYlVQZcsQ+/R/8/6gSAoDKCIXZQYtw1fdnVcTdmZ70cTNJN46OY3Zmfwf8nUdGLs2j3OnF4c2QZ/HlE8qtXB/RHas86Jd0epxMwOveX0LFKUfhuG8CkqBiqrKHZi894HwLm4GdEze+wC1VU8t+ZkXrZmyFSKKojgeCJxN9ANxGAKPQpwMU5ZZMJoVai+99JLwbUV1UeJGRYgbFRaZVT35jqWyshIHDx5EfX29xD10n9PXtpNzyY2B4wBKts2olKuBwv73wYkwbmZBDjU9CDz8MeCd04XnQS1btnC5+JbiHRsJYQBF5DIzaMmeCURIb2M9P7f0w4JhGEgkb+D2vfPpocu9IyqGxuJ4fPcu1NTU4NzpGct5TLmCK7vcnDkkumOdaBWdqgK1G8tQtbbwN90ic6xMWqwaK5Y1CFUsFaJARcXyRizT1mEmMST1u7kuL3pfZdmp+HJ9TlaJfCC209oku2AUCTpyiepz4FZFiJMKC9GqntnZWZw+fRrLli3DwMCAbztYOW1DdnIuubELqWEYJd1mVOrVQKWoFHc/LHWKoiD2pa8i9U9/D7xzZmHIeObnOEVZmPv08McQ+9JXIxU2RwUDKCIPKIqCdTWq1Fyn6hp3F9dmy9V7b45gcGAaetLwrFVNRq62NsNI5ZwTZBg6Bq724trwABo2xqHO7UYqlX9INXA/hBrsm8P4SNJRm56tXQ0LENnFTaRd0Qxkdj5uHbLJzLFSFAXrH/gEruM1TCcGYWQNvVYUBbFYDCtWrMDs7GzuAcwfhk8LA8UV6SAr+/Iy91WWTIWIoiiutSZmK4UPxHZam1pbW4UXjE7bl6L4HLhZEWK3wkKmFXJwcHDJvxV7Bys32pDtnktu7UIa1Yo+UaVcDVSKSnH3QwIUTUPsT/8a6L+EVNdPgffeXAiiypYBH30MsU9/DkoTK5+Ciq9CIo9s/chyvP6re8KXb/vIctdue1HLVQrAh59pvWpVk5Hd1iYypDqZTOLq1T6sKE8WHFJt0nXgnd/PLPk32ftud1fDQsclItduaGaIVmuGaBatfCbZOVaKEsP6Bz6JueRN3J7+ALPz16Dri79BrqmpWTqIGypWlDegqnLHohlOClSpEEpRFhaYdu5rJpGZVzIVIk4rEwophQ/EdhblMgtop+1LUX0O/K4IcVrVU+wdrGRC6XzsnktuhaCGYeDSpUswDKOo1WNEfijF3Q9pgaIoQNODUP+Pb/h9KCQpmp+4iAJgzToNGxo1jAxaf6jc0KhZzgYSJdJy5XarmozsYxIdUp0yrIdUi96+6H13sqthLjJf3mfvhmaXnTlWiqKgvKwaNaufQn1jGXbtqVxymcxvmN88eS9vULeivAHTiQHh221tbcahQ1XSx5xJZlaYaIXIxYsXHR1TPqXygdjrb6mdBB1Rfw78rAhxq6qnWDtY1dbWoqmpCZcvX7Z13E7OJbd3IS129RiRH0px90OisCvcy0JEtimKgvbdldjQqCGW55UWiwH1m8rQvrvStRBItOXKDGImb3lX2ZFL9mfg2/fOSw+pdkr0vpvzmNz63O72Lm4inIZnIm2DLW3leR+j1ZXboUDsAXTjw6FsABuLxXDgwAF0dHSgpaUlHXxomobW1lYcOXIEBw8e9KxCplQ+EMfjceH3ODuLeCdBR6k8B37wYmB/kDk5l2ReIyKyq8e8aiEm8pNZyWz1Nzpqux8ShRkroIg8FIsp2PVEpSutVKJkWq5EB2O7KbutzY0h1XaI3HeReUyivNjFTfR2nRy3yO8WGpxerlWjYnmjZZWbWx8O7QSwa9ZplhUibsyGyebXB2Jzp7jsliwvBz57/S21k9Y7Lkq842ZVTzGGxY+NjaGvr8/W69zpueRG+18uxaoeI/JDKe9+SBRWDKCIPJbZSpU5l2ZseB7Dg/OuDwaXbbkSqXBxU3Zbm9Mh1U6I3Pd885hkKIo3u7iJcDrHSqT6q1BQZw42v4HXMD03BMPw9sOhVwGsm4tDPz8QZ+4Ul/lB3euBz27tyFbo92SfG/O2wr4o8SNQFOV2cOv1sPhi7NaYj+hrxI5SH0xO0eb3rDsiksMAiiJBZOCw3wsMmbk0TgaDy4YjHs5Wzim7WkZ6SLVgO5cIXV+YX2R1jmTPYyo08yiX8hWKJ7u4iXA6x0q0bbDw4PRyfPLBQ0gkb3r+4dCrANbu4lBV1fSugX5/ILbaKc7Lgc9ef0stG3SsXLkSn/nMZyyfgyCHO4B/gaIot6t6vB4W7/VujYVYvUacKEb1mFeC/hqkYODuh0ThwQCKQq9YwY4TxRwMLttyVew1SXa1jMyQagCoXN7g6vHYOUdkQ475hOHbuVeoPc6KbNug9eB07z8cehXAiiwOzdesYRiB/OZVdKc4r1p2vPyWWibo0DQNhw8ftrytoIc7fgaKotys6inGsHivd2u0Uug1Eo/HMTc3h+HhYVvhlNfVY14I+muQiIjkMYCiUAv6jm8mu3Np7JBtufJjMHZmtczbb30U7/cstGZZ0TQNzU0PY/p2nuBAAWDjC2PZcyToVWaZ7M6xUlX/2gad8DKADXuZv0x7kVctO159S+12i18Ywh2/A0URblb1FGNYvNe7NYoo9BrJrAa6fPmy1PV6XT3mtjC8BomISF64/hoRZSlmsONEMQm20QYAACAASURBVAeDy7Rc+TUYG7hfLbN3fxyJVIvwwvHJZzbh9kQq51D39XUa3j87YyvwkTlHgl5lli27PW7s2jxSqfyXN8MnL9oGZdop7LReeB3AhrnMX6a9KGwtO263+IUh3AlCoCjCKrhNJBIYHh72ZDaYLJlWzmJUZOW6zbq6Ohw4cACjo6O4e/eu8O8V+1idCsNrkIiI5DGAolAL+o5vpmIOBhdtuQpKhYvswjEWi2HNuljONi/DMHB9LGl7xzrRc0Q25FhTrcIwDM+/nRWZhfbonsrFl80R5DW3LQOg4OypaVdnqsm0UwCw1XoRlgDWD7ItOGFr2XGzQi0M4U6YAsVCwW2+9wXz94o5sN/r3RrdYFYGzczMCP+OX8fqRBheg0REJI8BFIVa0Hd8MxWzZWtJy1UKS9rSvKxwscOthaPddrNMIueI7GDvW9d1nH1j2tM5ZLKz0PLNa7K6nrFr81hWrmB+zpAKpmTaKY4fPw4A6Ovrk269CFsAW0xBaC/Kx61Bw25VqPkZ7og+FlEJFIPU2ur1bo1uMCuDRMMZM8ALcntwLmEKWImISBwDKPKV093rwjKLp9gtW5ktV0N9BoYGppFMGukKl5a2clT50IpYiFsLx+x2M5lKJUDseZId7J1KeTuHzK1ZaCLXk0oBszP3FwWiw/5l2ykWrrvwg7tQDXUFvzkxgJmpqvvvHxs0rKlWceu6nrPVMGgBbLH43V6UL1jZvHkz5ubmMDIyEphBw36FOzJVgrKBoqoWpxLTjqC0tnq9W6MT5uvnpZdeknreV6xYUfRjdUNUAlYiIlosWCtQKilu7F4Xllk8fgwGNytctrRVAwBu3Ljh+DrDIrO659hPJl0/RzIrrUaHCs9TMnk5h8ytWWii11PouvMFXLLtFOK3m0Rv3zuorXoqfRwjQ0moKrB2vQqtTMH1keSiFsMgBrDF4Gd7kVWwko9fg4b9qBaTHbosEygCQCqVQldXF3cMsxCkiixT5utHNmiZnZ0N5fMd5IpNIiKyj+/W5Au3KjbCsOMbwLk0fvLqHDErrU795i5ujosGK97MIXNrFprM9eS77nwBl0w7hayZxFDOY5m4oaN2YxkOHVkdum//veBXe5FVsCKi2IOG/agWk60SfOqpp4QDRWDheTDv08GDB/NWQbrRChl2QanIApy/fsJaGeR3xSYREXmDART5wq2KjbAEO5xL4x8vzxFFUTB5Uy6xGRued9x6ms2tWWiy15NLdsBlLmi9XAQZyP0cFHr/cPs5CAO/2otEgxUrxRw07Ee1mGyV4MDAgFCgmP17ly9fxsjICOrr65f8zM7gf/KW09ePW9V5xQ4mwzAQnoiI5MX8PgAqTXYqNnIxgx2rz8J+Bztmy1ahYy3VuTRe8/ocsTOH7Owb0zj1yl2MDN0PxszW01Ov3MXZN6aRSolXC7k1C82tGWmj1+Y/vD4dXV1d6OzsdOeK81CQ/znL9f6RShmuPwdhYbYXdXR0oKWlJb041TQNra2tOHLkCA4ePOhqwCATrBRSzEHDZrWY1eLdzWox2aHL/f392L9/P5qbm6X+ZhiGgZdffnnRbWVX2WQfR3b7n1fVjLSUk9ePG5VBme/jvb296UDIDCY7OzvR1dXlyms8kx+vQSIi8h4roMgXblVsiOx6FpRgJ3s4tlmVU+pzabzm9TkiO4dMUeC49dTpMRQKQd1YQ6RSC/NmnLZdiVpR3lDw55nvH261/4ZZsduL3Gy/LFY7kR/VYnaGLpuBYm9vr1QAcPfu3UXtjLLtf8VqhSRnrx+nlUGyc8ncnNEW5IHwRERkH1e75As3d68LU7CTORy7FASlzUlRgPr4FAZHz2JotB+plA4FKiqWN6Al/jAebt+INdX25oPJzpgyDOvzX3ZguVtzrmSvp5DLl0Zsh09m9Y3IglqBiqrKHQUvk3k1brX/kjg3Q6NiDhou9jBqu0OXFUWxVX2S2c4o2/5XrFZIsv/6caMyyO9gMogD4YmIyBl+qiZfuL17XakFO2Hgxi6Hbsg318SAjunEVZy/fA2zKftzTWRmTEEBIPhFtszAcrfmXEndFwu/P/OWrUWxubAAgL6+voILn4UQsRHLtHUFrzPzaXVrYHvUuTnzRTZYycePQcPFrBZzMnTZzmOc2c4o2/5XrFZIsvfcmuGT08qgIASTQRoIT0REzpXep2oKhLDsXkf2BKXNqRjtAzID5mXzmHytp06OodCcK9HrycUwDCSSN3D73nnMJIbyDgYvJHPRBCBv6wVwP3xa/8AnLJ+zzPcPt9p/o8ztYdQywUohxRo07NdOcE6GLsfjcVy+fFnq9jJvx077H1mfK+vWrXN8rsi+flauXInPfOYzvswlYzBJRERWGECRL8Kyex1Zy9VmF4stzAGy4nWbUzHaB2RmTA1flQszREMgt+ZciVxPLoaRwvWp1zA9O2greDIdOXJk0aIpX+vFxvrN0KfbUKZWW15n9vuH3fZfL0IJkRbVYhMNbS9evIjh4WEcOnQIdXV1Be+7TLCST7EGDfu5E5w5dNnqPSvXY9He3i4dQGW2M9pt/zP5Fdr5SeRc6e7uRkdHh6PbkXn9aJqGw4cPu/Y6YTBJRERuYwBFvnCrYoP8YS6cL3fPYvTa0g+cIuGTycs2J7faB0SCApE5ZGPXJl1tPc3k1iy0fNeTj2EYroRPmqYtWTTla70wjIVd7Oy8f9hp//UilBBtUd1/2EBMLd7CXWbL97t376KzsxMtLS0F77tosJKL3UHDdgIRPwcuA86GLtfW1mLlypW4e/eu8G1ltvA5af/zM7Tzi+i50t3djc7OTuzdu9f2ueIkmHTKaTBJZMUwDKDvIlLHfwq89xYwNwcsWwZ85FHEDnwOiG+JXHhNVOrUF1988UW/D8Ird+7c8fsQKA9FUVC3sQx3plKYvptCrs+8mRUbXs4IirqKigoAwPT0tCvXZy6cu9+ZxZ0piaSpgOl7KWzZvtyV68p04sQJpCTSsKmpKTz22GOL/s28vxfencXU7fvnqmEAd6dSuDYwhztTKdRtLENFpYr6xmXYsn052h5aji3bl6O+cRmWV8QAALcnddyVeMw2NJShvnGZ8OUVRcGKiljBY7B7PXemch97InkDE3fOOQqfFEVBS0sLtmzZInx5u+8fss9B3UYN73f/puDiL5VK4fbt25iYmEBLSwuAhSDn1VdfxYkTJ3Dq1Cm89dZbuH79OlatWoWKigqcOz1TMEAzDGD6bgqTk/PY3FyJmZkZ4WN24tVXX8XNmzeFL28YxqL7nmuhYAYWExMTuH379tJ2yg+DlYaGBqxfvx537txBKpWCpmloaWnBM888g0ceeQSKohR8XCsrK9MDuY8fP46TJ0/i5s2b6feAVCqFiYkJ9PT04NatW2hqakIsdv91MTY2hpMnT1ouuM3ne9OmTVi5cqXwYyUiFouhpaUFmzZtQiKRwNTUVM7HIvO4zcewpqYGFy5cELodTdPw9NNPp49/1apV6OnpEXq/zPxdwzBw/PhxqddHFBaTMufKxMQEGhsbbZ8rIq+fzPbl7HPDievXr2NiYkL4OGXex4mMZBKp//U/YPz0X4BrA4D+4etJ14HRIRinfwvj2gCUhx+H4uJ5Lcrtz89EUbJq1Srbv8uvKsg3Ydq9jhZkznaSqXKy4sbQ61yctg+4PcsqzK2n+Y799r3zjsInwN5sH7vvH7LPwQPVt3HmHfE2zpGREbz77rsFq0EaNsahzu1GKlX4A7WuA4N993BjPAGlSIUjdrZ8F2lhdbqblWiVzac+9Sn88pe/tFXFFISBy4D9ocv19fVobW1NP0b55KqUsVtl4/cuaX6ROVeSyaTjc8Wv3eCczCUjKsQwDKT+6e+Bd84Ac4lcF1j493dOI/VPf4/Yn/51JMJrInIhgLpz5w7OnDmDs2fP4urVq7h16xY0TcOmTZuwb98+7N27N+e3MT09Pejs7MTFixcxNzeHDRs2YN++fTh06JCr395QsHH3unAR3cJellddGXbbB8yWu+53Z3Bz3PrOis6ykhnyvaZaxeo1wXkvzHfsM4khR9frpG3EzvuHbPvv5d53pEKJl19+GbOzswXDj6tX+7CiPIn1D3zS8gN1Ujfw/tuT+Miu4rxH2p3hIhLI2A1WZFrj/uu//gsjIyO2ApEwD1w2Ww5TqVTeKqZCLXx22/+CEtoVmx/nih+7wfnZ/kcR13cxf/iUaW5u4XL9l4CmB4tzbETkKcefaE+dOoXvfe97WLNmDXbs2IHq6mpMTk7izJkz+O53v4tz587ha1/72qIPOr///e/xd3/3dygrK8OePXuwcuVKvPXWW/jhD3+Inp4efO1rX3N6WETkAZkt7GU43eUw34ym1asacHNiAID4XJN8s3msiMyyyhzyPTpUuIps4oaOc6dnAtOCmm9Aud3qJ7uzfZySHdj+3e/KLTRFZvCkDB3Ts4OYq7iJ8jKLQeoGMNR/Dx/ZtVroGESOsdBsJFVVhQOF7Ov1KpCRqbIZGhoSfr6yA5GwDlzOVx2WyWyP2rVr15KQIPOc6Ovrg67rUBQFiqLAMIyCVTayQcyVK1cwOjoa+mHlYT1XZDmZS0ZUSOr4z4D5ObELz88hdfxnUP/s694eFBEVheMAqr6+Hl//+tfR3t6+qHLpi1/8Ir75zW/i9OnTOH36NHbv3g1goY/2H//xHxGLxfDiiy+m52U899xz+Pa3v4033ngDr7/+Oj7+8Y87PTSiSBEZhO31hz/ZLexFOG01KzTMeZmyDYoyCMOwXlCrqopHHnnEVvhkGhN4fGIxBTsfX4HTiRRujOt5szGZ1r5iyWx7e/P1e5idMaBAlQ6hvG4bsSLTvufVwtGAjsl7H6C26inLyyaTci1x+Yi0sa1YsUJ4kPXS4/TmsZKpspFpH8wOzcI4cNmqOsykqipisRhqamoW/Xu+c8IwjCWzhXINEJd9znVdR2dnZ+iHlYfxXLHLr/Y/irj33kTOAY65GAbw7u+9PR4iKhrHfxEfeuihnP9eVVWF/fv349///d9x/vz5dAD1xhtvYGpqCk8++WQ6fAKAZcuW4Y//+I/x7W9/G8ePH2cARZRBdMcsr6tlvGi9c7LLYSqVwulX7+HGWO4DK9eqUVHeaLlDm7nIKi+rxti1e7bvp+jv3Z5IYeJG/vAp8/oyW/uCEEKabW/zcwsHv6K8AdOJAeHfbW1tDUQLjmj7nuxCU4Zo+6KmOX9ORdvYZmZm0pUvsrxaZNuZSyUq87FwshOcX5zMYHJj1z87rw8/dhh0WxjPFSf8aP+jiJsTrH4yiVZLEVHgefqVjPlhNLMy6v333wcAPPLII0suv23bNpSXl+PixYuYn59HWZmzthyiKHB7ELYTsRhcGz6e2eZk53hTKaNg+AQsfGhe/8AncB2vYToxCMNIITP1yW4fOHd61lHIJvqlvUwro9nat3O3GogQMvN2AWB15XbMJIaEqqDCOKRWZqEpS+QxM2Bg1bp7OHbsdUctS6JBhdl+JduK5+Ui28v2pczQLIwDl53MYHJjgLjbr4+gDSvP17JaV1eHWCwm9NhrmhaIc4XCyTAMoO8iUsd/Crz31kJws2wZ8JFHETvwOSC+JdBhbV7LllnPf8pUJr4jMBEFm2cTbnVdx29/+1sAi8OmkZERAAute9lUVUVNTQ10XcfY2JhXh0YUKqKDvzOrZbxgGAaWldv8kKMshFfAQkhT31iGPftWYtcTlbbCEjOUuyEwIFxRYlj/wCexYc0BrFuzOb3g1DQNra2tOHLkCA4ePAhVVR23GIrOspK9nbHheakQ0qtqkUxm2FauVaNieSMUFE7fFKihHFJrzkXygtVjZhgpXL/9O7z9/s9x+XJvOigwW5Y6OzvR1dUltAiWCSoAYMWKFVL328tAxqvKquzQzBy4bHV7QRq47GQYtp3wKpsXr498t1Vsuq6jq6sLnZ2d6O1d/PobGhpCKpWyXPhrmoatW7cG4lyh8DGSSaT+598i9XffAs6e+jCw+XB3uLMnkfrb/wup//m3MMI4Y+wjjwKiwZmiAB99zNvjIaKi8awC6kc/+hEGBwexc+fORQHU9PQ0AKCioiLn75n/bl6ukG984xs5//073/kOAKC62mK4K1EIvPfmCHTBqiM9BQz1A1va7p/75mLK6evh+ugs5uempH9P1RRsaqrEU/vdGy57fXQW48NTIrPFASwsNMvLqlGhPon/86uteS+n65O2j0nVFLQ/Xovq6uWWl5W9HV0HxoeTQiHk+HASSK1Cda31cTjRGJ9H/5V7UJBRZZan1VGBivXVTfjCF74Q+Nku2VavXo3lyytw927hc1/TNFRUVGBqSvQ1oqByRWPenxqGgetT+R/TzJalV199FZ///OcLvr4GBgakgopEIoEvfelL+I//+A/L+6RpGrZt24YdO3Z48k18W1sbzp8/L3z8oi2EmqZh3759i94bv/CFL6CzsxMXLlxAMplcMnDZDBQ6OjoCcS7bmcFk3l/Zc6K/v3/J35F169ahu7sb3d3drlWq5butYjIMAz/5yU/Q19eX936Zc7LMcz7XubJt2zb80R/9UVG+FKBoMQwDU//j/8bsu3l2ijM+DKLeOYNlPzqKB772/4SqEmr+2f+OW++/BSRmrS+8rBxr/+i/o6zI7wlufX4mosU8CaCOHTuGX/ziF9i4cSO+/OUve3ETRCVjcGBaOGgxd8zywvtvT0BPyX2INsOnJ59xd2ej99+eQFKX/0BvFeComgLdxsBn835W14gNU5e9HUWB8P1N6gbef3sS+w54277y0CNrMDQwjWTSSFeZzVXcxOS9D9IteQpUrChvwNoHHsLnnn04EAt2GXoyhX/8f/9NaCh3ZWUljhw5gn/5l3/B/Lx1hVtZmYatD+7C7RvKwnOb9fQmkjcsZ5cBCwHEhQsXcO3aNTQ0NOS9nMgxZV9vY2MjvvrVrwoHMl4tfvbs2ZNuzbeiaRo2b96MgYEBy23jt27dio0bNy76d1VV8fnPfx7Xrl3D66+/josXL6bbrtra2vDxj398ye/4qaysTOq5zazusnNOZFMUBR0dHZbniBu3VUxDQ0O4cOGC5XEbhgFVVbF582YMDg4uOVc2b94MYPH9MQwDQ0NDeP3113Hp0qX0yIkHH3wwfX6FKUiIgiA+J8lL5zH7+9eAhEWb2lwCs79/DRWXulH24PbiHJwLtC3bsfyxT2D2zO8Kt+ItK8fyxz4Bbcu24h0cEXnK9QDq5Zdfxg9+8AM0NDTghRdewMqVKxf93KrCyapCKpNZ6ZTPjRs3RA6ZKNBkA5Fk0lh07pvf3Dh9PQz23xMPwj60Z28lqtZpuDVx09Ftu3EspkKPQ80GDSODcgulhZ3TNGx/RMXNm2L3U/Z2pL48N4DBvrvev/+pBmrqtXRboFlllr2r28KQdA2j45fwv7vOeb71er6ZLYVuK9dw91gM0HED12/2AbAuQbx37x7u3LmDpqYmy7k65u5Ruz+5AbcnUuh+dwY3s9pJb987L7y7YDKZxCuvvFJwuLvssGhVVdPn0N69e7Ft27aCO2BNTEzkvB47z0e25cuXCz+uzc3N+NSnPoVf/vKXltvGP/nkk3lfs8uXL8czzzyDZ555ZsnPgvTZYvPmzVLDsOPxePr4nZwT2azOkf/8z/907baK4ZVXXhE+3lQqBVVV8ed//udLfmZeh3lf8u06OD8/j/Pnz6Onpyc0OwFGRVCfE/3HPxCfkTSXwK3/7wdQ/+zrnh6T24w/eX4hYHvnzMKQ8cz3MUVZmPv08Mcw9yfPC3++cpNbn5+JoijXOCVRrgZQL730En74wx+isbERL7zwAlavXr3kMhs2bEBvby+Gh4fR3Ny86Ge6rmN8fByqqrJfnuhDqiq3+5zV5yO7O6nZGc5tbmXvNruDwq0yjpa2cowPW8/bMlXXqNj20RXS91PmdmSff8D93QpzURQFOx+vKDibSlWB9RtUXL/9O5z5aZ+rW6/nDo1SmPz/2XvX2Diu9Fz3XVXV3bzoQkmkSFGizIsl+S6JkmVLvszYE0kjnx0cO5M9828CGPCeARIEMeCdQZBB4ATYGyfB7PhXBnsjOAZOgMnJTBzZB9nRxNKMPTOxqYtpSrJsjSWZFClREknxLjbJbnbVOj9aRTabdVmralXf+D1AkDFVXbVq1epmr5fv937zXZicvgHLEruWW4dJywJGJr8A56IikIkLFy7gyJEjjpsZe85yQ+81TcOGTRriCQ3IE5tEO+TZc5Gb7eNEmK5dQTtguW3sZJ89YwyHDx8WntfV1DY+THC6yk5ufmuk3LrGhcnW8joubNdBQi0l/UwudYv/9Ylz4LNPoh1PBDDDgPbaG0D/NVjvv5u954V0Vnh64kloR14Ba9tR7GESBKEYZbvD9957D//4j/+I1tZW/PCHP8S6descj3vsscfw0Ucf4cKFC3j22WeX/dtvf/tbpFIpPPzww9QBjyDus7k5JuWW8QrCdttsi3RSUy2EhSGIKAP4f5er26ijcWvMN/Td7uAXtOOgfZ2hWwuwfO4jlmDg81yq+6Do3AcVI200jaHz6ZrsOa6kFkW1rCsshvadcZzt/qVrjkrQL/dO65hzjqEJscwk+1oAPAU0GREIyG5Cg4gfTqH0ou4nGz8BotAd3mQ2didPnsSePXtw/ry7Q052XldL23g7OF3UHZY7R4VcE+XWYVC2BFDkeJmug729vSXTCbCSUdEJMjLSabnjFySPLxEYY0DbTujfd871JQii8lAiQL3zzjv42c9+hvb2dvzwhz9cUXaXy9NPP42f/OQn6OrqwrFjx9DR0QEASKfT+Kd/+icAwJEjR1QMiyAqAlm3TPsu5xwiu3OcaCe1fHFFpRAWFtmx2PgJM6KuHlukC/qXUMYY9hyoxgcnMpif9VbF0vPZ7oPzc+J1eCJzH0aMzL+XDZsM7D+08tfJ0NCQ8i/3butYJjPJvlYiVu/5fggqAsmKH07XZ9Clru/Xua2xsXGxjM2r85mqDm8yG7uvvvoKfX19sCzL1yWlQlQKK7yWErLusNz7CiNeyVLIa6lAtjxRpFOjbNfBnp6eihdQi02QTpBepc5KicfFS/CArGuIIAiiDAgtQP3qV7/Cz372M2iahoceeggnTpxYcczmzZvx9a9/HUA22+l73/se/vZv/xZvvvkmnnnmGaxZswbd3d24ffs2nn76aRw6dCjssAiiYpB15dRtdFZZJsdN33MASyLU5LiJDTmlZaqEMBXIlsrZiAgzfq6ejl0JJaWF05MW0vP+opJlAekUh6ZByAUlMvdhxUhRovhy77aOZTKT7Gs1rH/ecw2pFoHccHL0VSe2YTY1IPR6kZIl6/7isTwWkX2efKEiCDLPnnPueGwU5S+qhNdSImjJYRjxSpZCXksFUZQMypT1AVi8frHnopKJotRSGY/vB3q6xMrwGAOeeDL6MREEQSgg9C5qZGQEQPZLrZP4BACPPPLIogAFAAcOHMCbb76Jd999F2fPnkU6nUZTUxO++93v4qWXXqJftgSRg4grB8iKE7dvLGD41tSyv+Tb9F5JCQs2pgn0XUlhX46rRZUQpoLFErbBBeHSNBlRzMvVo4reKynhsVsWUFXNsJDmSuY+rBgpShRf7t3WcZDMJL75oOdxMiIQgMC5NU6OvvW1jyx2E/TDr2TJLoe7fv265/NgjOHOnTv4X//rf4UOipfdbHuhqvylUMJrMQhacljIvKxyyuaKomRQtqzPDvCnMrzoiKLUUhXakZdhXeoWc0HF4tCOvBz9oAiCIBQQenf17W9/G9/+9relX/fQQw/hz/7sz8JeniAqErcSkbpNWWFhYtRcFC8Yy/6BzN7r5f8l//BLHJrOHHNmvBjOO75Q5Wki2GPp4UncuSmyQYheFJNF9nmkUxxN29wFQJm5lxUjP/rFzOJ/a1r2OiKlSlF8uXebtyDlcn5zICMCMeiYm9iB7q6kdBmXk6MvYdSjpqrFt6xQpGRJtBzOsizMzCw96zBB8ao3airKXwolvIqiokOgCgqZl1WsbC7ZuY6iZFC2rA9AYUu+ViFRlFoqo20nsPsAcPGsdx5UPNspDq0U1k0QRHmgFXsABEEsx7I4es7M4vSHM7gzuLRZMk1gbMTE5JiJpq0GtrQY0HV3d7a9ifrNL4fvl7jIjcPpeE1j2PtUNR7rrEZV9fKNUVU1w2Od1eh8ujClK5rGsO9gLQ69WLtiLLkUShSTRfZ5WBbQ+XQNDr6wBltaYot5VroONLfEcOiFNdh3sFZo7mXFr/xx3Lm5gNMfzqDnzCwsy93lIvtlXeR4t3ljkBMXDcPwzQSzRSC/czPoqKlqgaFtEp6bXGxHX+54GGNoWPes6/UZY4ubX7+SJZlyuHzyy+BEXU2qN2oqyl+CuECjwjRNvP/++zh+/Dh6e3sXN8G26Hf8+HG8//77gZ8bsUSQubZLBtvb22EYxor3l8z7z6a1tVV67AUt+VqFtLa2Cn8vKHR3RsYYtFdfB3Y/BcQTK9v4Mpb9+e6noL36ekl9vyEIgvCigFI+QRB+iJaIDN3KCJVvmSZw83oSoyMpJV3ssvkpc47jm5/j+LxnDneHMwXLT2GMYVNDDL/zu+siz2xSTZDnoao0UMWeVqRUKYocFbd5C5KZ1LDeO8zeFoHuwr27ni0+Nax7dnEOZMu43NyFjGloWPcc0jVjmJr9AnPpW7As+ZIlFeVwmUwG165dQ29vL0zT9HXqyDx7mTGEIawLVBUl3fq9wggz16pLBjs7O/HVV19Jjb+QJV+rkVLvzsgMA9prbwD912C9/y5wqTvb7S4WB554EtqRV8DayPlEEER5UXq7MoJYxYiWiIhmBwFAxuT4/MJk6C52pZyfUojMJtUUs6ugrPjlhl+pUhRf7t3mLUhmUiLmH2afKwJNJr9YvAaDjurENtTVPopErH7F62TLuNzC72MxDW07QPvUswAAIABJREFUWtHS2hpYSFW1ic0NC/crz5N59qKEdVWpcIGqoKRbv1cYYedaZcmgLdTKiLIFLflahZRDd0bGGNC2E/r3f1DwaxMEQUQB/WYjiBJCpkREGA4M9ifx9NdrQ3WxK7X8lKiJulV7MbsKyopfXjgF1tsE+XLvN+/tO+OO8xY0M0ksWJ9hfU0Daqq+JvX+9JobJ5yE1Pr6rLg1OjoqfuE8gmTPiODlHhF99qKoKH9R4QJVQUm3fq8wSmmuGWNob29Hb2+v8PGFLPlajZRbd0aCIIhKoHx3hwRRgYTJ5vEik+Ghu9iF7aJXThSiVbuqroJBhDIZ8UsEt1Il2S/3nMN33jc3G9jcbGA4rwzVv1yOwTBWbiRkgvU1jeHEO5NS8yZTxpX/LDMZjgz/CinrS4xP3oBpBgupjqIcLhcn94jIs9c0DZZlCY1LRfmLrPC6eYuBoaEh5SHhJd36vcIotbnet28fBgYGSrbkazVSTt0ZCYIgKoHy3B0SRIUSVcmHYbDQXexKJT/FD1lBxul4u7OgGypKDUWeB5Att+RWdoz5Yw8qlImKX6J4C2hiX+45z4bv+5V4jtzOYHOzgXiCYX5u+UPyKpfbtGE7vnHkwIqNhFvpm1uGWFRlXPnPknMLd6dXimlBOtNFUQ6Xj5N7xO/Z7927FxcuXChY+YuM8KppFm6P/gbnLvYvE8/CdAa0KeXW75VGqc11OZR8rUaK1Z2RIAhiNUICFEGUEKqyeZbBgG2ttQDkN9u5lEp+iheygozb8SJ/MFdRapj7PL76ch5Dg04hucCdwQxG7swsG3uYTC5R8UsUv/23yJd7mRLPkdsZ12fEGEMiVo/Guq+tGGNjY53ra0QzxKIo48p/lpxzR/Ep93iZkGrV5XBu9+DkHvF79oUsfxEVXjWNYyrVhcm7NyIJCS/p1u8VRqnNNZV8EQRBEKsd+lZDECWEymweG11neGxPHYAZAMEDu4OIYyfemVSWmeSHrCCz96lq145+opgm8NEvsvMaNB+KMYa6jTo0jXnOcb6YFDaTK1+MHBpcEBLenFARkC5b4imLKkE0ivD4/GeZyoz6ZlkB4iHVfpteVQQRtwpZ/iLqAq1ZP4mBa87iUy5BQ8Kj6A5ZSXDOHddDkNLHUpxrKvkiCIIgVjMkQBGEB1EHUeejOptH14HtbbWo35zA2NhMqHMFEcdUZib5ISPIDA0u4OZmXVkJmn1ep3sVWUNBxCQVmVy5YuTEWAanP5yRno8gAelOcxI1qgKlowiPz3+WU8nLQt38APHgZLdNr67rqK6uxtzcnHBYsxtB3SOFLH8RcYF2ne2KNLi6VFq/qxR6VGGapqNQGrT0UWauOeeYm5vD0NBQ5PdOJV8EQRDEaoUEKIJwoRBB1PmozOax85ye/4aaL9JhxLGwmUkiGyUZQcaygM975peFWKsi9173HKjGhXMrXVb5a8iyuLSYJJvJNXRrAd0fJ11FsCBrzy8g3Qm391XUqHBpAerC43PJf5ZzqUHh8cgEJ7ttet02/TKUk1PHzwUadXB1KeQAqRZ6VMA5XxyTqtJHe657e3uFRMVbt27h+PHjBb93giAIglgt6G+++eabxR5EVNy7d6/YQyDKFJFyLs6B2RkL96YtbNkWUyLyMMbQtDWGe9MW7k0FU0d0HdiyLYbd+2vQvrMKtWuy+U+zs7OhxlZVzXBv2sLsjBWoVMuer4amGKprNOHXmaaJkydPoqurC2NjY7Duq0aWZWFiYgJXrlzB+Pg47o02gXPxZxBRQ7DFcyfvWRgfzWB0OOO/hiSf9WzSkhZvOAdmppeenf3ftwbSuDdtoWlrDFu2xYSfcX53OLExqBOfNC37fyLPUdeBJ/bXSK07N3Lfo27zJDs3X16aX/bfE8kLUmOyLAtPPfWU1Gty0TQNHR0d2L59O1KpFKanp2FZltTm2zAMvPjii1izZo3UtW1x+Te/+Q1OnTqF06dP49NPP8Xdu3exdu1a1NbWKvlslbnO6dOnpc4tO/+2WDcxMYGpqakVYhdjbFF8Onz4MDQt/LrNhXOOkydPegpglmVhamoKExMT6OjoKIgTanh4GF1dXb5uJXts27dv911vjDFs374dv/3tb5FOp4XGofLea2pqAIT//UsQROGh9y9BuLN27drAryUHFEE4EDZfJwx2iUhqfgZjI+K79OaWGPYdqlUyBidUBFe7lYK5IfMX8YSRRsO650omtNWygLER01cgCTqPqgLr891pTuVJuV0BRQLr3ZgYy2BocEGJ86yx2QDTmFInkihhwvzdxph7Dwy6cAkeoCY42ckdxTnH+++/H5lTp1AuHNnrFCK4upg5QMPDw0KB9EEzroLS09OjvPSRc44PPvgA8/PznsflU+h7JwiCIIjVAglQBOGAinydMDDG8PAT1cKZPEFyeILgtvGWYViidExmo2SaN5HOjCERq5cbUAA450hlRjGVvIy51CA4TDDoqE5sQ13to4gbm8AYi8xlZZfPqQqszxdS/ULqbTfJiRPi2TGWxfFp16yyssfNW2LY+kAMF87BM1DadiKpFiaDhvnnwzlHLM5gzi0tlurENsymBoTHEVXpW5Qdu6Iot1J1nUIFVxcrBygKoUcFUZQ+iv4OcaKQ904QBEEQqwUSoAjCAdl8HRlRRZQosmaUElBckRGsZDZKnJuYTH6BxrqvBRuYIJxbuDv90YouZRwmZlMDmEsNoqaqBQ3rngVjaktnbBqbY2hXHFgvKqQGca3YpXfzc+oUuc975nB3OIM9B6oxPZlQ4kQqBpPjJtKp5fOyvvaRRWHTjyhDqu3zR+HUKZQLJ8h1SiUkPCqizrgKiqxIJHK8zO+QfAp57wRBEASxWijtb+YEIYjqbnWy31ejCFMWbRkelcPDCRUB0m6VNE7PsH/kulQg8lxaPLw5CJxzR/Fp2TEwMTt/E3fxUSQlgZoGpFIWuj6YUR6ini+k5j+TTIZjdPo/MJu6CYuvvH8314pd0qoS27V14RzQ+XQN9kdYfholvVdSK55jwqhHTVWL5zoDog2pziUKp06hXDhBrvPNb36z6CHhURJE6Dlx4kTknfGClD4ODQ15NqeQEducCOKcIgiCIAjCHRKgiLInim51svk6UTXKUZ01EwZVAdJO3cjcniF3EDm8xxhtW7V0ZtRXFACWRKh0jXhJIGNZcclvbu1sqSjIvbbTM0llRpEUuP9814pMSavseFVnsBUaJ7clYwwN657FXTiLnWFK30qFQrlwglwnytLDUkDXdWlXkO1u3LJlC+LxOAYGBoRKb2WQLX2sqqrC8ePHPZ2YYQUkFflqBEEQBEEsQb9ZibJGRBTJD1kW+YIsm6+jqsW7jWpHlwpEg9m9cMqq8nqGsmHMuh7NR9r/8Z/XQ9MY/r/3PgYfFywJhFxJYNNWsVBtEWyBcuiWXOC3LaS6PZOp5GXh55HrWpEtaZUhigy2QuL2rBnT0LDuOaRrxjCZ/GJZ1tiDD7ZHGlJdCKIot1J5nWKGhEdNVVUVksmk1Gtsd+PNmzeX/VxlYLxM6SMAzM3NOQppuU7MbBZfMAdUlPlqBEEQxOqAcw5cvwrr5LvApU+BdBqIx4HH90M7+grQuqPs/pAVlvL8xk4Q94mqW12HRL6O6gDwKBxdKgjrYnHLqvJ6hrJhzHXrWoIP0AN7nm/dFhuLjWhJoK4DHQ9VoW6jjomxDD7tCp6XpOvAwRfWYMMmA91dyUBCqtszmUuJlzjmulaicD/lEkUGW6HwclsyxpCI1S8TMXUdOHasrkCji45CdJoLe51ihYRHjWxHOD9UBcY3NjYKlT7qug7LsnxdXJlMJtSX+nLM9yIIgiBKB57JwHr7LeDiOWAhvdRSOp0CerpgXeoGdh+A9urrYKvIcRtNQi5BFIgg3epEsAPA/f6QqzoAXNbRFSbbQpYwLhavrCqvZ7i+9hEwiM2truuo1h8OPEYvJsYyi5ssGTg3pdYQYwyMMSykgz9X0wQ++sUMTrwziXTKgib4KZ8rpPZ+Oe/4TGTcaECum0TqZdJELXBFyWZJ96Rqt2WxaG1tFRYHwjhRCnWdciJoKLcfuaW3QbBLH9vb22EYxornxhiDYRiorq6WKqsMIkKVa74XQRAEURpwzpfEp3RqSXxaOiD784tnYb39VkH3dMWGBCiirImqW50dAO4lQskGgHPOMTGWQffHSZx4ZxL/+tNJnHhnEt1dyUWBI4ijq1AE2bNoGrBlm4FDL6zBvoO1jo4tr2dohzH7iVD2ZsHQNskPUoCPfzmDM7+ekXZhGIYhvYZU5SWZZjYryrIA+CzPXBGMc46hW85Cm6gYaGPPl6zIIkvUAleUdOxKCI9ftduymHR2dgqXaoVxohTqOuVElLlGdultUOzSx9/7vd9DR0fH4lgNw8CDDz6Ib33rW4EcXDL3bP8+Kcd8L4IgCKJEuH51SXzyIp3OHtd/rTDjKgFWj9eLqEii7FanMgBctKyOW1za0VWo7BvZYHYgG6zNNIZ1G9w3gF7nlA1jfv/de5G4YTgHRodNVMe3Ysa8IfxXirq1LdhzoBrTkwnhNRRJXhLPPgunYeeKYABw83ra8ThAviTSdpPIlLRqGrChXpcKWi9nV5DttvQTnlW7LYuNaLmVkxNFJiMvzHUqFZmwb1nCBMbb+JU+yjtR+eIayA+Uz8X+XVLO+V4EQRBEaWCdfC9bdifCQhrWyfegf+9Pox1UiUACFFHWRN2tjjGGDZsM7A8h8siU1ckERgOFzb6RDWYHxALg/Z7hijDm9CA4Nx3DgIOMUYY1VY8gOXcLHP4bIAYdcfYwPvi3e9h3qAb7Doo55aIqJ2MM2NigY3LMXNqwbzGweUsMI3cy+PfjU77XXl/7yGIYth+5bpJ1dRpiCQZz1nvDq+lA09YY2nbEceZXyaJksBUa223p+hnBAF1naGw2hN2W5UDQTnOyGXmV3tEuCLJh37JEdV6bILlelRooTxAEQZQol7qd//LrBOfAZ59EO54SggQooqwpdrc6EWTK6mQxzeyGrBBh5DIullz8AuBFnmFuGHNzSwz7DtU6Hte+Mx5IyBMlYdSjOrEN8+mbMC33iWDQUVPVgrixCfNzHKc/TKJpm1hwfBCnmQiWla3EO/at9WCMLW7kP++ZE76eXRLp5EbLRWM62tra0NjYCM45LpybQ3re/5dwPMGw50A1NI0V1BVU7K6TXm7LlrY1eGxPHZg+E9n1i4Vsp7mgXU8ruaNdEERdYUGJssQPkHdwbdmyBT//+c+XPfcHH3xw8bmvBtGRIAiCKDBpQfeTjahbqgIgAYooa4rZrU4UVZk+bni5i1QiWirkhFe5oKpnaFkcfVdTkYhPnHOkMqOYSl72dQDZ4lPDumdzXBv+TjCbKF1coyMmes7MYs+Balw4Nyf9LP1KIoH7959oQf26ZwEsCbAiz2UhxTE9aWHDJsPbFQT5DDY3SqXrpJvbsr6+HgAwOlp5AhQg12kuTNfTSu1oFwQ/V1jYc0cd5C7j4GKM4fbt27Asa/EeM5kMent70d/fj/b2dvzO7/wORkdHV4iTra2tJFIRBEEQwYjH/fOfconFoxtLiaG/+eabbxZ7EFFx7969Yg+BiJiqaoZ70xZmZyxPl6O9WW3bkSj4F8kLZ2eFHZhBmJ2xUFWt4drlFC6cm8WXl+bR++U8piZNVNdo2LipFowxzM7OhroOYwxNW2NC8+04zqSFHY9Urfi5imdoOyNGbmeUzzXnFu5Of4SJe+exYE4AcLuAhprEdjSsP4j1NQ87jDH7rBqaYqiuce//UF2j4daAew5TWGZnLIyPZjA6nAkkjDLGUJPYjppEM0wrjYw5A4DfF56y97+u5mHMJTkammLovZLC9KSYKsg5kFngaG6JgzGGLdtiaGiKYWGBYy6ZXR+6DmzZFsPu/TVo31kV6v0s4qixn9u9aQtbtsUK/vlRU5PN5gr7/q0EvrgwF2gtESvRNA0dHR3Yvn07UqkUpqamlIhQhmHgxRdfxJo1axSM0pna2lqMj49jamoKloeyvfQHAOdjLMvC1NQUvvjiC3z22WcYHx9fPNayLExMTODKlSsYHx9HW1sbNNGWojnQ+5cgyhd6/xJh4DevA0ODYgczBux9Gtr+Z6IdlELWrl0b+LXkgCLKGt/8FKhzSgQl6hbxpglc/GRuxc9s98atAeD5b6gpL8ktFfroF3KODLd5UPEMRZ0RsnDOcXfa3e1js+R6es5zjZkm0PvlPDoeqlpW7gWGRV1L07KlaDzFI3FzmWY2UD0MuSWRXtfpu19OJkNurpmKDDYvwjhqCDk4544lcDIuk6i6nq5W8l1hpmmGckUVKshdJNdL07Rlric3MpkMZmacf5dxzpHJZNDX14dTp07h6NGj5IQiCIIghNCOvAzrUreYCyoWh3bk5egHVSKQA4ooewrhlAhD75fzkTqgvOAcuDe9gMmJNBqamJI5YIyhukaTvi9dh6MDyj5nmGco44yQIZUZxcS98wKh2xyZzD3UJJph6DWeR85MW7g1kMb0lLPji3Mg4gzfgjGbtKRFQc6BXY85rxPVlIOjphL+AmuaJk6ePImuri6MjY0Fdpl8eWle6rqFXEuVQL4ranp6GpZlLQpLa9asQTKZXCHqMMYWjzl8+HAgp5DKsXZ0dKC6uhrT09NKrmU7pbZv3y7t7KqE9y9BrFbo/UuEom4T+K0BYHTI240QjwO7nwL7xu+W1R85yAFFrHqidkqEIerObH6YGY6b15PY+kCtUveG6gD4MM9Q1hkhylTyslDHNwDgMDGZ/MLTFWQjIsrYezymAfy+RqLr2XlsaDKkwsOLhR2kHWWnyjCQoyZ6OOeLThWnzB4Zl0kpr6VKwSsry83FVqwgd6+x/vjHP1aWawVkRdTz58/j2LFjys5JEARBVC6MMWivvg7r7beAi+eyIeO5v5cYy+Y+7T4A7dXXy0p8Ckvp7dYJosII2j1OJRmTu4aAB6WUAuCjmtu5lGDtdsDjRbDFpy0tBjqfroWmMXR3JUtefAKWOsmFESqj7FAXJEx/tRK0hG54eFio25otQg0PD6OpqcnxmHLoelrJlFOQu+rufpxzXL9+Xek5CYIgiMqGGQa0194A+q/Bev9d4FJ3VoiKxYEnnoR25BWwth3FHmbBIQGKICJGtHucrme7pUVSrsfVuzdk7qtxawx1G6OzI8g6I0QRdT8FPV6GO4MZnD+TROfB2sgcX6ppbI6hXVKAHbq1gH/96WRWZNpiYGGBY/yuuSwPS1WHOnLUiOGWDZTfTezw4cPQ8yapp6cHpuAkZzIZ9PT0uAocpSR6E6WNYRjKRSjV5yMIgiAqH8YY0LYT+vd/UOyhlAzRF+oTxCrHDtlu3Bpz3cDaIk2UWVGqBRqZ+4o6AH5zRE4HBjnFQfZ4KTgwdCuDyXGzaE4cTcs6hkWwBQBbqBQVb2yhyTSzotvosOkaxm6Hg58/Oxuo3EZ23axGR01+CV3+POeX0OX/e39/v9Sz6e3tdT1edC0VQvQmSpvW1lblv3MMo/T+Zss5B++7AvN//l8w//A/w3zt/8z+///51+DXryotQyQIgiAIFZAARRAFwO4ed/CFNdjSsrSB0nWguSWGQy+swb6DtZE6LKI4t+h9BXGnyNCxKxHJ/VUntkV6vCyWle0sVwwnTnZTb6BpmyElAIgIlWHI7VAni8y6Wa2OmiAldPk/l8Eu9XOilERvorTp7Oxc4cYLA2MMbW1tys6nAp7JwPr7H8H6Hz8Eek7f77TEs/+/pwvWj/4c1t//CJycWwRBEEQJUXp/ziGICkUkZDuywHIWnXujFALgRcsBZVlf+wjmUoNCpXWaZmDj2kfVXdyF2zcXgALvq5tb7uctbTJgWRznz866zrWTAGALlZPjJnqvpBbLqDQtW3Ia9o/0polAGWelVEZaqsiU0DkFNQcphfIKe3ZbS3ZAv71OidVNY2Mj2tvbhcRTEXRdx969exWMTA2c86VgW6cW3/y+EHXxLKy334L22hskyBIEQRAlAX1LI4gSQibjhGlZHcKtPCkXXWdl4d4IGjhtOyO8hBFNA+JVDAspLvzvCaMeNVUtmJ2/6SlC2Z2gnnryAXz8y2TQ2xengFUVug7sO1S7+N9BBQAnobK7K6lMcA2ScSayblQ6aqIMVI8KmRI6p6Dm1tZWfPXVV1LX9At7LgXRmyhtGGM4fPiwY3aZ/e+6rqOqqgpzc3OeIqthGGhvby94lz9Prl91F59ySaezx/VfA9p2FmZsBEEQBOEBfXsjiBJCypHRbIADGLmd8T7WYNjeVlvy7g03Z41o4HS+MDJ8a2FRnGMsK9QtpDjqNmXnYWI0my2UK5ys36jnCSsMTRuexdR8Fyamb8CynDcxuQHMUQWiFwsn55wqAUBlmHrQOS+Uo8ZvfQ/fSqO2bhLJ9GUMDAwsdpnbtWsXnnnmGSQSiaKIU7LukfzjOzs7pQUoCnsuX4J2S4wCXddx9OhRx/G0tbWhs7MT9fX1viKV/fleSuKwdfK9bCclERbSsE6+B/17fxrtoAiCIAhCABKgCKKEkHVkAPB1/WzeUgXL5Pj5v0wtOS62GNi8JYbh2wu4O5QpuhODc++yLmB54HTn085uFFsY6XxaX3Y+e09hmsDYiAldB5q2OYtZTsKKZb2E3mt3cO7spxifugnOTTCmY2Pddhx4qhMP7mheHE9kZZRFIOrcI5VCXZi4l6gdNX7rm3MLQxMfYXYou7ZsMpkMLl++jKtXr6Ktrc2xy1zUyJbQ5Qc124KDTBhyKYY9E1m8BKY9e/bg4sWLuH79unS3xKhgjKGpqcm1syIAX5GqpJxPNpe6xWuXOQc++yTa8RAEQRCEIPQtjyBKDFlHhtuxm7cYyCxw3L0zj4zJF8u27O5idwaXbyptJ8bQ4AI2bdZx4Lla6Hph+hRMjptC+U25gdMbXFwpqsQsm6xzZQ7Dt2qxLvE81m1e/u/XPgOmx2YXxSyZMsoo0HUgFmeYnwtXp1eI3COVbrFS7lDntb4557g7/ZFrmSfnHAsLC4td5o4ePVpQcbi1tdWzM10uTkHNjDG0t7ejt7dX6HqlGPZMZDFN09EtZAtM9jN2Wiv53RILvY69EBGpSo60oPvJRtQtRRAEQRARQwIUQZQgMo4Mp2M55+g5M4vxUe/yPCc4B0aHTXxw4h5efGltQUSo3isp4XH6BU4XQ8y6fWMBt29MZR1nzQY21OsYHzVhFVCE0nXgpd+vAwCceGcy9Ln8co9U5BmpcouVeoc6r/Wdyoz6ZowBy7vMNTU1RTBKZzo7OxddIX64BTXv27cP/f39QmHmpRb2TGThnC+KT05rQdThVqx1XHHE4/75T7nE4tGNhSCISOCcA9evwjr5LnDp06zwHI8Dj++HdvQVoHVHyQj5BCFDYewNBEEUFFERxov5WY5z/5GUKp0JimwWkFfgdBAxyw3ZebQsYGgwg/G7JuIJFqosTJb8XKGgbNlm4NALa7DvYK1j1haQdYX1nJnF6Q9ncGdwaX5sF93pD2fQc2YWluW9djp2JZTMUal3qPNa31PJy0JdFoGlLnOFxO4m5lcW5xXU3NjYiI6OjlDnIIrL8PCwso5yxVjHFcfj+7PhhiIwBjzxZLTjIQhCKTyTgfX3P4L1P34I9Jy+Lzjf727Z0wXrR38O6+9/BE6ZiUQZQgIUQbjAOcfEWAbdHydx4p1J/OtPJ3HinUl0dyUxMZYpiDATFBkRxovRYROT49HbeGTH6nV8scSsXCwLSM1xbNiko6q6UIG7zv9b9hxMY1jvIebIljh6vU/s0P2wIpSKDnVR4rWG5lKDwudx6jIXNXY3MVuEyp9nxtiicOQW1KziHERx6enpEXKwiVCMdVxpaEdeFnc1cQ7MTINfv1rS31sIgsjCOYf19ltLnS7z37f8vhB18Syst9+i9zVRdlAJHkE4ELYjW6FwK4MyLXXX8Cp3U4VsFpCXYBFEzOKcO256w3Rp4xwYu2vi8X1V+OL8vPC4NA2IJ+QznDZs0hfvY/MWY0XGlwgiZYkqSxxFQvf90HUU9T0ogtf6FnU/2fg5UKLoQibSTczPtaTiHETx6O/vV7rJoU6HIWnbCew+AFw8K5YHdeUSrB/9ObD7ALRXXwejoH+CKF2uX10Sn7xIp7PH9V/LfiYQRJlAv4EIIg/VIdZR4SWSqcTLIaQK2Swgr8DpIMHWPWdmHcXEsHPJOXDli3k0NhsYvu2fx1VVzbD/UA1O/yopfa3xURM9Z2ax+8lqLCwE3yj6ZWypzOsCVobuy2ZClXL4uI3X+mbQpUQorzI2v5DoMF3IVAQ1l2XYMwFAvWBEnQ7DwRiD9urry10SXuQ5JrTX3ih5pyHl3xCrFevke+KNAxbSsE6+B/17fxrtoAhCIfQNgCDyUOnwiAoRkUwVhejmJtM5zi9wOkiwtZuYqKJLW2oOaN2RABhzfV65od+axgKX/Q3dWsD4aAapkB3wvERHlSWONrlB+hNjGZz+cEZoDjQNSKUsnHhn0jUEXUVYeli81nd1YhtmUwNC5/HqECcSEl2qXciI0scwDGUiFHU6VAMzDGivvQH0X4N1/B+ALz/zf1GZOCZ4JrMkri2kl0qQ7PybS93k5iIql0vdK8vu3OAc+OyTaMdDEIqhDCiCyENliHVUqAgZF6UQQdp1G3VsbjYAgf2waQJdH8y4ZnEFCbbOFRNtLIsjFlezQe+/lkbn0zU4+MIabGlZyjzSdaC5JbYi9DvonFtmNjw+bKWM17pSmdflhHAuFMuKbmMjpmsIeiZjKQlLD4vXPa2vfQQMYg/cq0OcaEh0bhcyghCltbVVmWCpaRp1OlQEYwysbSdQu1Y8lPy+Y6JUofwbYtUjUlabi6hbiiBKBPqzAUHkEYXDQzWqQsZFKGiJk+D3SMtyz+KyN/uyAp0tJnYe1DExlsGnXbPSOUxuDN9eWOby8SPu6/5FAAAgAElEQVSIi0slXuKPyrwuJ4RyoRg814ppAkODWTdYOsVhFbmU1uueEkY9aqpaMDt/07MUz69DnExItN2F7NixY1L3QXgTRf5WqdDZ2bl4T2Gprq5GfX29glERi1SSY4Lyb4jVTjzuv/5zEW1IQBAlAjmgCCKPqB0eKggTji2DpnmXu6lictzEyO3godm53dbszX7jVnnhbOjWwn3HTFKZ+GSPU4YgLi6VeImOmyUFyVicSXeNtHOhnBxj9Y063DLHOeeYX7iL4clfo+/OT/Db6/8P+m7/BMOTv0ZqYdRxDE7utyhwuyfDYHjikRfwwANtrh3iYrGYb4c4mZBo6kKmHtM08f777+P48ePo7e1dFGrs/K3jx4/j/fffV9ZJrtA0NjYudjEMy/z8PH7xi1+Qc0UlFeSYCJJ/QxAVxeP7xR2NjAFPPBnteAhCMeSAIog8onZ4BCU3y6YQexhNA5q2xVC3MfobDOPocsrisjf7t29MSZ3LsrLnshR2EQTk10hQF5cK/DK2ZPK6AGB+juP0hzPSXSPdHGPdXUlYDpYmzi3cnf5ohZOIw8RsagBzqUHUVLWgYd2zYGz5315EwtJV4OWC4/yYo3vmoYcewjPPPINEwlsIlnWmUBcydayG/C3GGA4fPuwYcm//u6ZpsCzLV1jKLQNtamqKeuirg0pyTFSSm4sgAqAdeTmbcybyno7FoR15OfpBEYRCSIAiiDxUdmRThVvHO1EYywpKdgBzwxYDc7MWpsadlZbcUOxCbJTCOrqcBATGWKAQ8SgEH9k1IlSGFgH2c/cSHYOIY6YJ3L6xgDs3p8B5uBBwe61wzpHKjGIqeRmzqZsAvFVDDhOz8zdxFx+hYd1zK65Z6FJa53D0KtRteg57Hn4OE6MmLAuYn2C4eknDtraM51zJhkRTFzJ1BMnfKkfhRdd1HD161FEobWtrw9zcHG7duiV0LioDVczj+4GeLjHhptQdExXk5iKIQLTtBHYfAC6e9X4/xOPZ41p3FG5sBKEA+gZKEHmo7MimgtAd7xjwQMcaPL5v+dt9cQN8JbV4v7qeFUs6diVQV8DOfioEFicBodhZSkDwNaJpDHufqsbZ31gYHY5egRIVHcOIY/beyA4Bd8rw8sM03d1Ovte/L0Kla8aQiC3PoCmk08xNUDbNbKj6snFlOPr7krjZD8+5am1tRW9vr1BZE3UhU8tqyt9ijKGpqQkvvfTSin/78Y9/TGWgRaKiHBOV5OYiiAAwxqC9+rpzJ8jsAdl1b3eCLDNHLUGQAEUUjUK1R5e9jqjDQ8QtomKcdZv0RTdEEHSd4bE9dQBmlv1cJhQ7aoI4lfJxer1suZhqwq6RqQkLE6PRDj6I6GiXOE6Om+j+OHheVpAQcE3jGJqQF59sOExMJr9AY93Xlv1c19V8JvmdY/0GDefPzsmJd9x/rmRCor266RHylGL+VjEC0akMtIhUkmOiktxcBBEQZhjQXnsD6L8G6/13s6WpC+ms8PTEk9COvALWVsLvY4LwoPg7T2JV4uUACOqMUHUdEYeH6hI1GUeEDLoObG+rRf3mBMbGZvxfUCRUOJWccpZkxETVIpWKNRJlt8Pm7bFQnd9sAXMhHS5I2CnDy4ua9ZOYvRNMfLKZSw2u+NnmLQZ6zoT7TBL5vNlQr2P8bjBB2Wuu7JBov1Iwv256hDylJryYpumY1WQHovf39y+G2usKQwypDLR4VJJjoqLcXAQRAsYY0LYT+vd/UOyhEIRSqAseUXBESsqcupsV8jpeXbiaW2I49MIa7DtYG0ockxlnEGwB5PlvlH7rbxVd35xylnI74rmd354nlWHyW7YZStZIVN0Oq2qYMvFUxZq1M7xEmJ69HEp8ArDi9boOLCzwUJ9Jop83oyPB3Yz2Obo/Tq7oLGiHRNudypy66dnik1c3PUIeWSElSuElPxA9f63mB6Kr7ETX2toqvK6oDFQ9tmNCe+O/AZ2HgHgiKzzFE8C+Z6C98d+h/5f/Clbqwp/t5or7lNaVg5uLIAiCWEGJ/xYiKpHJcVNIbJF1Rqi+TqFK1ETHKUNzy1JJlaaX/kYzbNc3TXPPWcotF/PKu+ruSoZyYeU6nlQIk0B0uUTzsxz/fnxKSbmrKveYaAj4rdsDoa/FsKQ26jqEXUlen0nC7+Oc/X5ukPpcahAcJhh0VCe2oa72UcSNTcuei3388ORlfPmPg+DcXFFW5RUSbR9DqKWU8reKGYhOZaDFpxIcE5Xk5iIIgiBWQgIUUXBkyorCtEcv1HXCorrMSteBfYdq1Z2wAITu+saym3POueOXURExMWheVJTB7VGUBtqoKndVFfQuep8qypeqE9sALImGlsWFXUlunxWy72O3IHUOE7OpAcylBlFT1YKGdc+CMc31eKeyKreQaCIaSkl4KWYgOpWBEqqg/BuCIIjKhQQoouDIlhUFbY9eqOuERXWZlVMpmh+FCoT3Itep9NEv5PKqLBM486tkKCFFxIXl5FjRNB2oacPWhU5wrrbcsRBd/IIEgeeiKuhdtARSNmcmHwYdG9c+uswleOKdSalzOH1WyLyPOee+Xfzsjn138RHq1z6L0Xvux+eXVR09epRcAQWklISXYgai22WgTvlT9r/ruk5loIQQleDmIgiCIFZCAhRRcGQ3qkE3toW6TlhUu5/cStHcKFQgvAi2UykIYYWUXBfW0ODCCkeMmwPFskx89ZW6YN9cMbBQomiYctew5ZM2osKpTLlTPrYAcPRox7L1EeSz4sQ7k8sEWplzpDKjQl38bBEqGe8TOj6KsirCn1ISXoodiK7rOpWBEgRBEAThCglQRMGRLSsKupcv1HXCoqrMyi4nqtsofiOyQe1huqbJEHROwuaG2S6s07+aWdZ90N+xosaB4iYGBsF2sIk6qIKWoYYun4SccCpT7rT8Gu4B3EHWW75AK3OOqaR4kDqHifGZC8LHqy6rIsQoFeGlFDrRMcaoDJQgCIIgCEdIgCIKjmxZUZCSskJeJywqyqxyA7BlhI9CBcLLEmZOwuZ5McYwObZ8QkQdK2EcKKq7ITY2x6QdVEEdV25B7wAAhmXB2/nICqd2udNX13phcf+JskO9H2zfja8fbnU8Jux6G761gFicwZwTc2XNpQalrmFZs8LHqi6rIsQpBeGllALRCYIgCIIg8iEBiig4MpkxQUrKCn2dsMiMU9OyHbsmx0zHTm6ylGpQe9hcobCla/nXlXGsBHWgqOyGaK/n25KiimnCNcjdD6egd9O0cO4/khgbMeG0Hw4inNrlTrdvpJF0EQUZ9GUB3gAwO+V+zrDrzTQBnuLQNAiFmYuupaCoLqsiluCcO7qccjsRFjPbqJQC0QmCIAiCIPIhAYooOKKZMUFKyopxnbDIjlNlGZxsAPrQrYXAAoUMYXOFVJSv5Z5DxrES1IGishtiLM7AOQ9UWva/fzalJIDesjgunJvD+F1n8QnIiqm52WJ2/tVXv53HyJ3MMjFH04DGZgMdD1WhbqOO+nXPYV3NGCaTXywGwttup7raR5GI1S+7ltc8qMixsiygqpphIc1938eapsOyohOhoiirIrLislPOk1MnwjA5cGEopUB0giAIgiCIfPQ333zzzWIPIiru3btX7CEQDjDG0LQ1hnvTFmZnLF9nRNDg60JdJyxRj7OmpgYAMDu7sozny0vzUufiHJi5Z6FpayxSEUpkTrzQdWDHI1WBrz81aWJmekn9mEhekHq9ZVl46qmnpF5z4eys9H26kckAt29ky8KCmGE4B2amLdwaSOPetPzzzi0n9HIEpeY57k1b2LItBs6B82dn8duL87g3vfKZ549pdsaCrtVgTVUr6tY8gQ1rdqNuzRNYU9UKQ69ZcS2vNRF2vdlYFtC0Leb7Po5VTWFyckL4vJpWA87FxGLGGDo6OrBjB7UoVwnnHCdPnvQUdizLwtTUFCYmJtDR0VEUJ5RdVjcxMYGpqakVpXiMsUXx6fDhw9A0reBjXE14/f4lCKK0ofcvQbizdu3awK+lP5MSRcEtMyZsSVmxrlOu4wzikClUIHnunHR/nMS8YL4OED7PK78ki0GXKpsK4kBR3YXRLgsLe44gz1s2W2xiLIPr19KO3QedXjN0awHxBFO6JjxzrASxLAi9j4eGOjEwIFYmxaBj45o9GJs+K7QGNY3KqqJgeHjY11UElEYnwlIJRCcIgiAIgsin+DtvYtXilBlTztcJSzHGGSR8uZCB5Itz8kwtTn84U7A8r/UbNGyo1zE6nL1gdWIbZlMDQq8NGuyrqhtiLiJ5RH6YJjA0mBWJNtaLCXuy2WJXPp/HxKgpPF7LBNISmUuiayL/PXjinUnpTpoi72PRMimN6ahOtKA20Y65qtu+QfgMOjas207iQgT09PTAFFwMpdCJsBQC0QmCIAiCIPIp7R05QRCREjR8uZCB5EBh87wsi+P82TlMjC5daH3tI4s5Q34EDfZV0Q0xKiwL+LRrFt/4T+uESkBls8XcQsr9xqQJPGYtxJqIqpOmHaTulCdk/7uu62hra4M58xS4paFh3bO4i49cRSg7eH191aGihmBXKv39/UKd5YDS6URY6oHpBEEQBEGsPkiAIohVzPoNGmIJBnNWvlQrbKc5GRhj2PtUzWKukJMIFaSjWj652UW510gY9aipavF1oIQJ9g3biS1q5ue4cCme7D0EzlwSuE48zrDnQHWgNRFlJ03RMql//ekkAIAxDQ3rnkPaJ3hdhestauyw+d4vUxi5s1SmGDb4PkpkOwsWuxNhOQSmEwRBEASx+iABiiBWMVMTFtLzwXb/hRZKVORkeW1823fGcW/KxJ2bCysEEcaYpwPFdqzYG7ogm2cVndiiRrT0MopywqDMz3FMTZjYWC8fthy1806kTEo3GMwMXzw+EatHY93XPMdSymQdhitFXtME7txcwMjthaI3hnDCMAwpUamYnQg554vik9OYOeeLWVWnTp3C0aNHS07wIwiCIAiiMiEBiiBWMb1XUoEdE8XY6IbJyfLb+PqVWrk5UFQF+4q4vIKfG9C08KKQaOllqZUTfvJREmYG0k6bQjnvvGh5oAb9fUlAUCcOG8AfJW4Ow1yCBt9HTWtrK3p7e4XK8ILmwKminALTCYIgCIJYXZAARRCrGNmsnlxKeaObj8jGV4R8B4quAy/9fp2iUarpxOZE01YDTGNKhC2R0kvZ0rW6TTrGRqKzTKVTS/9b1mlT7E6aj+3ZgMGBWWQy/sKHigD+KJHtjliIRgeidHZ2LpZJ+hE0B04V5RaYHgTOOXD9KqyT7wKXPgXSaSAeBx7fD+3oK0DrjpIRLwmCIAiCWKI0vtkRxCqmmHkoQcWIUt/o5iO68ZVF9fmc1oKmAfEEQzrFA7nVdB3oeKgKdRv1RREljDtJ5J5lS9fadsRx5lfJgpbtyThtitlJs74xgZa2Wtzo8+4CqSKAP2pkuyMWstGBH6KdC8PkwKmiHAPTZeCZDKy33wIungMW0kshcukU0NMF61I3sPsAtFdfBytiKSRBEARBECuh38xExVPKgbfFzkMJktVTDhvdfGQ2vjKoLEN0WwuWlc0xArKldDKB3bnPKldEOfHOZOD5sN8qfnlaD3TEMH43A3POecDLS9ey/3tocKGgIdql6LTJhzGG57/RiFOpVNHKAFUh67gsZKMDP0Q7F4bJgVNFuQWmy8A5XxKfcq2NSwdkf37xLKy334L22hsl/Z4gCIIgiNVGaX7jJghFFFvg8aIU8lCks3pYeWx08wlTauiFqjJE0RJBxoBEFcNCmi8e5yZKeYkSYTKaOPd/Xw0Nrgxyz6WqhmHfwRpsrF+av71P1eA8ZnH7hvu4OOdIZUYxlbzs2AUubmySXpel5rRxQtOLWwaoClnRs1SC7G1EOxcWm3IKTJfm+lV38SmXdDp7XP81oG1nYcZGEARBEIQvZfStgyDkkBV49j5VjakJq2BOqVLIQ5HJ6gGA3fursb29fErvbKJyP6kqQxRdC5YFLKQ5Dr6wBhs2GUsuJElRon1nPFQZnt/7ys+ltZDiuH4tjQ2bjMX3lJ21NDQ45eiC4tzC3emVXQg5TMymBjCXGkRNVQsa1j0LxuQ63pWS08aNYpYBqkLWcVmKHf1EOhcWm3IKTJfFOvletuxOhIU0rJPvQf/en0Y7KIIgCIIghCnfb7IE4YOMwDM0uICzKQsTo2bBnFKyeSjdHycXnS+aBmyoz+7OJsfMwGKZbFZPS1tcbMAlRpBSQ7/zqSxDFFkLi+6fycv4yf87CMvKduBrbW1FZ2cn9h1sFHrmlsVx/aqPe8AHL5eSCG6iKmMMjVtXurM4547i07JjYGJ2/ibu4iM0rHtOSixWsTZKudS3VJB13pkmcOKdSZpDScopMF2aS93idcicA599Eu14CIIgCIKQggQoomKREXgsCxgdMV1bnUdRCidbFjafk6VjWVjRNSyIWFbsNvOF2rSHKTlbgUAZoux9+a0FN/dPJpNBb28v+vv7F7NndA/byKIr8HbxM1/cSt+cXHmpzKin+GRji1DpmjEkYvXCYwnrtCnlUt9SQtZxCdAcBqGcAtOlSQu6n2xE3VIEQRAEQRQEuToFgigjpHN/fP6omuvaUEFU+Sa5YplICYZd+nTwhTXY0hJb3IzrOtDcEsOhF9Zg38Fa5Zs+y+LoOTOL0x/O4M7g0qbU3nCe/nAGPWdmYVkSqdsudOxKKCvn2b2/2nM+gtyX11rwc/9wzpHJZNDX14dTp055PvOougEGJb/0jXMOzjli8eVzO5W87Cs+LZ4DJiaTX0iNI0yWl2ypr2h3skrEdlwGeS/SHIpjB6a3t7fDMIwVQjljbFF8KnZgujRxSRdurDxduwRBEARRqZADiqhYothkqwwsVl0WlkuuWNbQ4H98ofNlCh3ALlpq6IVIGWLQ+/JaC6LuH1uEGh4eRlNTk+MxYboBRhUAbuPmIgKAudSg1Hnn0uLHa1q4LK9SyHIrF0Qcl17QHIpTLoHp0jy+H+jpEivDYwx44snox0QQBEEQhDD0DY6oWKISeFQFFistC3PAFst27IrsEoGJYtPuV/a250A1LpyD53WDdJRTcV9ea0HG/WOaJs6fP49jx445/nvQboBRBYDbThg/4U70/pfGK378xgY9VJaXbJabiIC9bC0PTcHM8LLLk+KcO4ofra2t2Lt3L9p21KPvajpQSV6pdy0sFcohMF0W7cjLsC51+3fBA4BYHNqRl6MfFEEQBEEQwtA3OKJiiUrgUSVqBclDkUVldy+VeU2qN+2iGTx7DlRjejLh2DWufWccYGzFv22o18F5VjD6t3+e8rznoPfltRZk3D+cc1y/ft3zmrJEGQBul775CXcMupQIxSAuKMViLJSYIyvq+b0nKyFPyjRNnDp1Cn19fTBNc7FkzjmzrBYn3pmUWpvl0LWQiIi2ncDuA8DFs955UPF49rjWHYUbG0EQBEEQvpAARVQsUQk8qrKEVJSF+aHqvKo3xSo37aJlb0ODC/jgbgbpFIdlZZ/jlpaVQpJdhhjknoPel9dakHX/eIUOB3EFRhUArutLpW9+wl11YhtmUwPCY65ObBM+duROuED2IGVkbhS6NDUKOOeL4pPTWszPLDt69KjSOSQqG8YYtFdfh/X2W8DFc9mQ8VzbKmPZ3KfdB6C9+nrJvT8IgiAIYrVDIeRExRIm8NaLMIHFudh5KFGM0UbFeaMIWVa54RQte7OsbCdBy1o6p1soeNB7DnpfXmtBxs0DZDtbubE5wNqNIgDcLmm0S9/8hLv1tY8IzwODjrraR4WOBcKLGbLvMa/jg5RwlhrDw8O+3deA5ZllKueQqHyYYUB77Q1ob/w3oPMQEE9khad4Atj3DLQ3/jv0//JfwTw+CwmCIAiCKA7025moWMIG3jqR69pQgd2BbnLcXFH6FYszzM+F6/akQiyLIq9J1onjteEME6wNODtKgt5zmPtyWws1VduQnBdz/zDG0NbW5vrvQVyB0gHgqUGAwbWrpFOelt94EkY9aqpafJ1YGtNRnWhB3NgkPN6wYoZsqa/XezKKPKlC09PTA1PwJuzMss3NzyubQ2J1wBgD2nZC//4Pij0UgiAIgiAkKK1vrgShGLdNfRDyXRuqcOtANz66gK4PkkLNfpxQJZZFsSlWuWkPGqydS76QFPSew96X01oYGnoKx4/f8nWUANnOV3v37nX9d9sVODS4sOgE80M6ABwm6ht07Hq8alnItJ211bErgbo8gdJPuGOMoWHds7gL9ywqTTPQ0dGGTWufxfAt8TGHFTNkRD1NA9p2undRVJ0nVQz6+/uFXJDAUmbZ0985LDyHqv8IQBAEQRAEQRQOEqCIisdpU/+vP52UPo9IFzTVhBGfVIllUWyKZTbtfhtOVXkwuUJS0HuWFSMamgx0f5z0DHVvbGxEe3u7b1mTYRhob2/3bK2+6ArkSdwZzPiuL00HGNOlusox6JgYM8EYw/5DtUKvERHuGNPQsO45pGvGMJX8ArOpQXCYYMxATWIr1tc8Cp6sR6YqO7ciApuMmOEWwt+wxcCGeh3joyYsgTLQvqsp1G00HLPSKiELSUQozT9eNA8vqj8CEARBEARBEIWBBChiVSJbKqVpwL6DYptpVfRd9ejw44FTiVMYgmyKJ8Yynt3yVG44gwRru2ELSUGFANH70jQgXsXwec+cUMD54cOHHbuKAVlRSdf1xa5ifs9c0xg6D9ZiYiyDT7tmXcs87blHdSt6e3uF56I6sU26PExUuGOMoTpRjxeOvoT+r9KOAfFjI3awFlzLAAE5McMrkH5oMJN9ngmG1Dz3FfVGbmdcA8RVlqYWC8MwpEQowzCEyqVVf64RBEEQBEEQhYcEKGJVIlsq1bS18JkjQUrLmlucS5w4576ikNumTnZTzBhw+sMZX2FF1YZT9ll6YY8jqBAgspG2xad0irs6ZvJzqXRdx9GjRzE8PIyenh709/cjk8nAMAy0tbWhs7PT0/mUD2MMG+tj+J3fXeeYP5ZbKjc0tA8DAwNCokJuALhMeZhMaWA8wXD96jxG7pjez4hn16KTICQjZogE0lsWhMQnwDsrTWVparFobc0KliJleLmZZV55eG6lmwRBlC6cc+D6VVgn3wUufQqk00A8Djy+H9rRV4DWHSQmEwRBrEKUfJs7c+YMLl++jP7+fgwMDGBubg7PPvss/viP/3jFsSMjI/ijP/oj13MdOnQIf/Inf6JiWAThisoSsKgI4urZ51DyZJkcv/nlMG70+YtCTmVBsptizt3Hni+sqNhwBgnWdsMWksIIAX4b6YYmA5/3zPmWa+UKFXUbdUyOmxjsXQvMHkLLpkMrBMQguOWPLbu3+yWA1672euZBMeioqVoKAJcTLRn2HKjGB6MZzM96CxfpFMedQbGTMwZsbNAxOWYGFjNEA+llymXdHGLl8LnkR2dn56JA6kd+ZpnIeqw0aJNOVCI8k4H19lvAxXPAQnrpAzKdAnq6YF3qBnYfgPbq69StkCAIYpWh5FP/X/7lXzAwMICqqips2rQJt27d8n3NAw88gCeffHLFz7dv365iSAThSTlkjqgox+H8vvh0PSksCuVvdlQKPPb1bt9YwNDgFBq3ZsWAfQeDl9WIPksRbCEprBDgtZHu7nJ/FvmYJtD75TyYxhzLv0QExLAwli0BvH0jjaRLALgtPjWse3bxOcqWh01PWlhI+as4ouHp9rGJhIaXfn+t3GByCNtl0Q0nh1g5fC75oTKzrNKhTTpRiXDOl9Z1OuV0QPbnF8/CevstaK+9QSIrQRDEKkLJN5o/+IM/wKZNm9DU1ITLly/jL//yL31f09raim9/+9sqLk8Q0pRD5oiKcpzJcRM3rydhZrw39l5lQSoFnlwsy19AsUsHv7w0j7G75rJMn02bdTz0eBU2bDJ8n6UoQ7cW0N2VRPvOOBqbDQzfzggLAW4h1flljrKllXcGvZ0kfgKiCnRdx+OPvoiB60OYTH6BOTsAHDqqE9tQV/soErH6Za+RLQ8rpNAjg4oui07k3qvT2nGj2J9LftiCparMskqFNulExXL9qvu6ziWdzh7Xfw1o21mYsREEQRBFR4kA9dhjj6k4DUEUlFLPHFFRjtN7JYWMKVYbZJpA98dJ7H+mdlkmlC3W9ZxJ4s5NuQ5Xotd1ElAsi6PnTBJDLt3axkZMfPzLJLa0GOh8utb1WXLAt9zNJlcU29xsYHOzgREXESpXCOAcriHV+SJbFCKLl4CoigcfqsLdO/VIxL7me2yQ8rBCCD3FeL0btkPMLeA8H03LZtEV+3NJBNWZZRUJbdKJCsU6+V7W0SfCQhrWyfegf+9Pox0UQRAEUTIU7VvsxMQETp06hXv37mHt2rXYuXMnHnjggWINh1illHLmiIpynJHbC56dwPKZn+M4/eHMCkeSpjG070xg+FZGqgRKlHwBhXOO82eSWfePz/jv3MygB0nsO1i77FlyztFzZhZDt+SFDdPMdivb3Gzg6a/Xou9q2lWgtK/j9ZxyRTZNkysjkxmzTOc5WaIuD4ta6Anz+ijG1tgcEwo4BwDdYGhsNiJzuEUBYwxNTU146aWXlv3cdnt1f5yUbohQSdAmnahYLnWLh+JxDnz2SbTjIQiCIEqKou26P/vsM3z22WfLfvboo4/iD//wD1FfX+/yKoJYPagoEwyycXZzJPVdTUcinORe1xZQJsdNDN3yF59shgYzuHk9jZE7mcVNbVihxxahOnZVYb9DuLuNaEi1Pa8b6nWMjUSjtoQtN/Mi6rLVKIWeMKjssmhjO8SE106GR+5wKwRubq9C5ZmVFLRJJyqVtKCwaiMqxBIEQRAVQcG/ySYSCXzrW9/Ck08+uWjBHxgYwD//8z/jiy++wF/91V/hb/7mb1BVVeV7rh/84AeOP//rv/5rACAhi6gIjvwnjtGRFD4/P4HBgVlkMhyGwbCttRaP7alDQ8e+8a4AACAASURBVKP7e0U3pnzzn5ywxRdYa1F///wjd6YC34MoI3cyqK+vx6XuO1LiEefAxU/mAIZF0UqFWGZawGA/sGOX+2fJpe47MAWvZVpAPBaHYcwjE+C5+J7fjP5zz3U9PlCDbdtrMXgjiX9/dxpmhkM3GFoeqMFjezegfnPCU5RqaV1Af19SyrHnh24wdD7ViPp6/98nbuw7sAb/fueW0PNiDGCaf8mnaQKnf5VEIqGJB9ILrMVShnOOX58a9sxVM01g+HYGly+Y+Nrhxop2Qg3LbroX0vSdpgwx7ofHr6ZnN5xIAKl58RfEE6tqfojyYTW+fwmiEBRcgFq/fj2+853vLPvZI488gh/+8If4i7/4C1y7dg0ffPDBCts+QaxWGGNoaKzCC9/cIv3algdqAm/qMxmOD35+By8e24L6zYlAQlaQawLAzYHZYCdQPUQO3Lw+g7tD8/j8wgRuDsyuEFZu9EvMLwfuDs+jpa0225lQ8ZwaRvQbdqf1aJnZbotn/uNuNnPs/m2ZGY7+viQGB2bR0laL57/RCE13HuNjezYsClr+Y/AXenSDYXtbLeo3y2VR5VPfmBB6XrrB0NJaAwAY7J9dNg9OmBmO2YyE5YsDg/1J8eNLjNHhlFhDhAzHzetJjI6kPMX1sicuv0kniHIgse8QUqc/FHP4MYbE/meiHxRBEARRMpSMl1/Xdbz44ou4du0aLl++LCRA2U4nN0ZHR1UNj6hQRDuXlSvb2hgGB1hgt81s0sTP3x1E49ZYZCVSueh69n1bCLFLFNMEfv7e4PKSoQxHf28SN/uTwgHnNpkMx9zcPDZs0jAxaiqd081bjIJ/7vlmYPHsPd/om8GpVMo9x0jn2NxsCGVMbW7O/uryDIhvNvDIHh1jY2PBbiyHR/boSKXcx2Zf79G9BhgDtrXWovdKCsO3FpSWrWYyvGx/r316Lin8OZTJcPScHcY+j9LXsuexfUBPl/AmHY/vL9tnv5qxnROr6dnxrx0Duj/2D9gHgFgcC187tqrmhygfVuP7lyBEaW5uDvzakhGgAGDdunUAgFRK4JcWQYRkNeSR1G3UQ7tt7OyiWJzBnItWGLLzegohdsngVTIUhKHBDDQN2NigIxZjGLnjXpYkSpDOcyqQzcByyzGSz5hCwTpYynbMtMPwJ8YyOP3hjLK1HDZQvZjIdjmMMs+sFNCOvAzrUrfwJl078nL0gyIIFbTtBHYfAC6e9c6Disezx7XuKNzYCIIgiKJTUgLUtWvXAIDaMxORI9J9yi2Mu5xgjOH5bzTiN78cxo2+4Bth0wR4igsHe2sasKFex8SoKewAyRVQogh+LjUsC5gYNdG4NYZj31oPxhi6u5KB7jto5zkV9F5JiecY+XTqCyr0FIIgHTNl5kaEsIHqxUR2HkpJgI4E2qQTFQpjDNqrr8N6+y3g4rlsyHiu048xIJZd19qrr5fldyuCIAgiOAUXoPr6+tDa2gpN05b9/NKlS/i3f/s3AMBzzz1X6GERqwxVro1yQNMZvna4EV9dBbo/TmI+oIvJsoCqaoaFNPctkWrcGkPn09k8HM/yrLzX2AJKx65ExQtQwMr11bErsSi6iBKm85wKVDtbggg9pYrs3HhRLIebKmRdjeXs9hKBNulEJcMMA9prbwD912C9/2626+NCOrumn3gS2pFXwNpIVCUIgliNKPmGf+7cOXzySbZF8OTkJICsm+nv/u7vAABr167Fd7/7XQDAP/zDP+DOnTvYtWsXNm7cCAC4ceMGPv/8cwDAd77zHezatUvFsIhVjF+201dfzitzbZQDi5v6Z2pDlQSlUxxN22KCJVLZDZNcWVX2NXUbdVRVs8BiWTmRu77qNupo3Oo+v/ls2WbgwYeqlJabyULOFneUld4ZDI3NRlEcbqqQdTWWs9tLFNqkE5UMYwxo2wn9+84dqwmCIIjViZJdS39/P379618v+9nw8DCGh4cBAA0NDYsC1PPPP49z586ht7cX58+fh2maWL9+PQ4ePIhvfvObePjhh1UMiVjFiGQ7yW4Mb99cwPA7k2UfTi4rcORjWZAqkQLky6qA7BfXzoM16PqgfLt+yWC7gmRzkEohm4ycLe6oyDKzu/k9sqc8P3NsZNx95e72koE26QRBEARBrCYY5yItWMqT27dvF3sIRIHx7cilgFITAPzI7+LhJtCJoOvAS79fp3qIjnDO8b9/NlWQa5UCv/udpXlddPAVIGA7LLK5Vc0tscXuZpXehTJoppdNc0sMnU81oqGxquy78Ih+NueW8JbzsycIQK6LFuccuH4V1sl3gUufZrPB4nHg8f3Qjr4CtO6g9wRBFBDqgkcQ7lRMFzyCCItotlMYyj2cPNeRJJsJVciyGMYYmrYZGBrMhD5XqXXVyyffFVROOUhBnS2roQtlkEwvG1uoq6+vUj+wIiDf5bA8nzlBBIFnMs55YOkU0NOV7Zho54EZpf97gSAIgiDcoN9iREWhuuuUG+UeTh4kE6oYZTEPPlSFkdszwp30nLA3tVELk2EopbwbWVeSaFlnbtD8aulCGbTkNex7jXOO4eFh9PT0oL+/H5lMBoZhoLW1FZ2dnWhsbCzKfAYpxyWISodzviQ+pVNOB2R/fvEsrLffgvbaG2X5eUgQBEEQAAlQRIWhsuuUH5UQTh5EPCgkdRt1z9BzG00DNjboiMUYRu5kHDe1YcuhoqKU8m6CuJKCOFsmxjKrogtl7twMDS4ICalh32umaeLUqVPo6+uDaZqwq+wzmQx6e3vR39+P9vZ2HD58GHoRArnKyd1HEAXh+lV38SmXdDp7XP81oG1nYcZGEARBEIrR33zzzTeLPYiouHfvXrGHQBSYLy/NF/R6s0kLOx4p7RKZmpoaAMDs7OyKf2OMoWlrDPemLczOWHBKhCtm5pXo+Jq2xbD/mVpsfSCBHY9UYeejCTQ0xTA+auLLS/P48tI8ZmdC2KhcBxju5fbctu1IFP0v2iKuJM6B2RkL96YtbNkWWxwzYwxbtsXQ0BTDwgLHXDL7rHQd2LItht37a9C+s2rx+C8uzGF6Uux5cA5kFjiaW+JK7rPQ5M5NOm1hZtr9vp3ea17v33w45zh58iT6+vqQyTiXrlqWhampKUxMTKCjo6Po644gKhmR96/10/8buNUvdkLLAp+bhbb/GQWjIwjCC5nfvwSx2li7dm3g19KfIImKQjbrh7GseyZoaVaplnTJUOplMbLjc3PxhCnj07SsMJB/7badcVy/lnYXbRgAl4gtTQOMGDA0uLAsbF3TgMZmAx0PVUUewp1bbjd8W8yh4+ZKknG2yDoVhwvobIwCe26efGZNpAHzw8PDnuKTTSaTQV9fH4aHh9HU1BT4egRBKOBSNxz/uuIE58Bnn0Q7HoIgCIKIEBKgiIpic3NMqsyqaZuBjl1VyzaDMlRKS/lSL4uxx7fvoL4sn+j2zQUM315YzCdav0HD+bNzyvOemrYudW7LZ8Mmw1VQaN8VB8CW/ZumAfEEQ2qeI+Vg2LMs4M5gBiN3ZiJ1noXphhi0/NQWX4Jcr1KI8r3W09MDU3CyTNPE+fPncezYMeXjIAhCgnRa7vgFyeMJgiAIooQozd0mQQREtiNXx66qZZtB2ZygUgqPrnRE8ok21OsYv2uGcjvlo+tAQ5OB7o+TrqHcfoKC/W92K/qhwQXfP3ibJjAUUQi3SLmdH7KupNznJ0spCr1+Ye3rN2iYmrCEw9xV0N/fv5j5JDL+69evK70+QRABiMf9859yiZVnOTJBEARBACRAERVG2FDtoC3liWgR7Zo2OmK6lrw54lEiBwCaDsQSDJc+nVsmanmFcnsxOW5i+JZYqRsAWBGFcNvjCOMsknltWMGr1IReETE0lmBIz3Ml60YUv9I72eNlOyISBBGAx/cDPV1iZXiMAU88Gf2YCIIgCCIiSIAiKoogHblyCStg0YYtGoQFExnx6f7xbrlh+n3xKV9EyMXOQxJ1KfVeSRWs3E31OPKRcSWFEbw0rbSEXlEx1Jx1X4yy60YUwzCkRCjDcF9TQToiEgQhj3bkZViXusVcULE4tCMvRz8ogiAIgogIEqCIiiNMqLawgNVsoPXBOD7tml0Umuxsn3SqsK6H1YAKwcSNgy+scVwnDU0GPu+Z83UruYVyOyEbvm2jOoQ76Dhy2VCvg3MuJJ6EeX7xKoZ1dVqwF0eACvcYILduRGltbUVvb69QGR5jDG1tbY7/JiqyRSGiEcSqo20nsPsAcPGsdx5UPJ49rnVH4cZGEARBEIohAYqoSMIE/foJWHbns7O/Tq7osjY/V3jXw2pAhWDihK7DdZ10dyWFRQZRl1Khuy26OfJUiHnjd030nJkVElTDPL90iuPCubmSec+oFENVu9s6OzvR398v5ILSdR179+51/DdRkS0KEY0gVhuMMWivvg7r7beAi+eyIeO5IjJj2dyn3Qegvfp6SXwOEgRBEERQ6BsjQTjgJmDZIdJBHRC0YQtGVO4nr2whWdFExKUUVPwJEsLtVUKlAssSF1TDXDOqHKygqBZDVbrbGhsb0d7ejr6+Pk8RyjAMtLe3o7Gx0fHfZUS2KEpECWK1wQwD2mtvAP3XYL3/LnCpOytExeLAE09CO/IKWBs5nwiCIIjyh74xEoQEqsKbacMmhyrXTv45vbKFgmQ1+bG5OSbVZdFGNoRbRZc7EXIF1bqNumv+maYhVGfCUnrPqJ5PledjjOHw4cM4deoU+vr6YJrmsnI8xhh0XUd7ezsOHz7sKhpGIb4SBOENYwxo2wn9+z8o9lAIgiAIIjKK/22eIMoIVeU3tGGTI6hw44ZbiHz+MTLPWsSlJNNlMfe8siHcqnKKRDBNoPfLeTCNuQZWq6BU3jOqxdAg7jbv8+k4evQohoeH0dPTs1iSZxgG2tra0NnZ6ep8solCfCUIgiAIgiAIEqAIQgJV5Te0YZNDRrjR9WxA9sSoKd0FMRdZ0UvEpWR3WRwaXBByBGkCQpkTUYa2O3FnMBOJSy2XUnnPqBZDZd1tIjDG0NTUhJdeeinQ66MQXwmCIP7/9u4uNq76/vP458x4xk4y+ZPYIYnHDgTSOCSkhSSObRxYkUrlD9xAxaphewESUtWV2qIALahSVQLai221UG6oirZCZaVWbMtD0Jaqm+5CucDYjpMASRPsbGge/FC7iXETx4nHnjl7MYwf4nk4Z3zOmXNm3q+7zJwZ/+KZ35w5H39/3x8AAP7ZWggIAKcugrlgsycT3BT6vWXCpdb/sEx37I6pft3sY8JhKb4uovbdMe24Y1nBxtkbNlVbfp2sVilldllc25hellboOddaCMqycatpez5uB0R+mTN23heFFFPd5oXVNkMxN0I0AAAAlB8qoAAbnKry4ILNnkxwk6+v0dzKplDI0Mq6UFG7IGZkQq9CS9msLOeba+4ui//vs6saGZyeVw0VCqWDpw2bqrWiyKbbxTY6z/RtSqXmb8LkJMMo7rn9Mmesvi8Ksfu+8ZLdikM/hmgAAADwHwIoH8q1dfrq+JcXpbVhtuEtESeW33DBVpy5wc2p3smZC+RwOB1OLCawycZu6JVrTuabz1+5pUbN7c7P52KWUN3/H1fM/Lun47Kjy8zmMgxpbWM6wLHamNzrOVPoM/j2liX6uFsaPFvc78jqMtBScSt8BQAAQGUjgPKZfFunD52b0sjg1LwqD3irmCbSc3HBtjiGYWhlXVXWyibTNPXFhWlHg9vFhl6lms+L7V+12Pd5PqmU1Ny+TKZp6nBn4Z36vJ4zVl+z21uWWO7lNVd8nfNhqdOcCl8BAACAufz7DbgCWdk6PbPt+ZGuCW1v44u/1xaz/IYLNve4GfTkC73yKeV8thMghULSTU3RebfZqYCxu1wv0z/JjyGHndfs427ZDp8kaUf7ssUN0iNeVxwCAACg/PHt0Uesbp2euQAaG01qJRcAnrJy0RwKSdFqQ1MJkws2D/g1uLUznwfPTmnw7L8cW2prJyhNpaSO9y7LNLMvMysUDpkpU0P905bHNrfaym8hh93P4FDIXgjll0bqVhUbvgIAAADZ8K3SR+xsnZ5MSp/3TmoHFwae89tFc6Xza3BrZz5nOLU0LxOUHu68rKFzhcOhTAVTtmVmF8eq877Pv7gwrZGh8aIbVlsNObzojWf3M7hmiaGrV6yXf/mlkTqCzzRN9V24qv3HL+jQ4GUlkqaiYUPNDTE9uLlWG+tqqLQFAAC+w1Wyj9jdOn24BFutI43KAP/wa3Brdz7P5UTFVihk6Oamag0PTNteKjZ3mdn2tqVqzrNszIuG1V710rL7miUmTcsN351upM5mFZVrOmXqpY5BdfePK5E0lYlAJ5OmOs5eUs/AuFoaY9rbHlcVvSIBAICPcPXsI8VUS6A8cXFpnV+D28XOTycqtj7vSxTVp8jOz3e6l1O29376B0nKUWyUTEr/6J9S1+S4IhFDI0PTRc0Zu69ZKiXFb/B+tzg2q6hcpjkbPk0mF04IU+kgqqt/XC91DOqpXXHOFQAAwDcIoHykmK3TUX5hDReX+eUMKCzyKri1O5+zWWzF1mKqsOz8fKeWpeZ670vKGT7NPlY6Pzz/QXbnTDGfwV43UvdrzzN4o+/C1Zzh01yJpKnu/nGdvHBVTauWeDQ6AACA/AigfGSxW6dXonILa7i4zC9vQGGRV8Gt3fmcy2IqtpwI26z+/MUuS7Xy3i+W1TlTzGew1z3h/NrzDN5458SoEgXCp4xE0tQ7J0b1o7saXB4VAACANXwr9RE7W6c73U8kiMoxrOHiMjenAorV9d78vuzM53wW83inqrBM03R97lh97xfLypwp9jPYy55wfu15Bm/0DIwXKgacYUo6ODDu5nAAAABsCZV6AJiVaeZbqELD6X4iQVVMWON3xVxcBp1pmvriwrR6PrysP70xpv/1P8f0pzfG1NNxWV9cmJb55RZtTgUUU1PmzHO6yep8LmQxj1/tUJWkF3OnmF0D7So0Z4LwGezXnmfwhtXqp2KPBwAAcBMBlI9kmvnmuwByup9IkJVjWFNpF5eplKnDnRP66P1xDfXPhkuZJZQfvT+uw50TSqVMxwKKL84nPQlUrMxnKxaz1HbDpmpHlhx6MXcW26/KqqH+qZxBZxA+g+3Ogemkqb7zVzwJXeG+aNjee87u8QAAAG6iLt9nvO4nEmR+C2ucaIbu14babrC7hHJ4wJnXL9eyJDea2eeaz1Zdu9TW7hgzFT2LrRzzIuj06r1smloQdF7bK87Pn8F2l1VOm6Z+8n/OqqUxpr3tcVUFoBcecmtuiKnj7CVLy/AMSTsbYm4PCQAAwDKSDB/ysp9IkPkprHGqGXol7YRodwllKuXcz742UHGzmf2189k001Vfhf7v1y7zKmaMmYqeI10TGjxb2mbmhTjRr6pY2XrF+fUz2E6j9JRp6qw5qcmUqa7+cb3UMaindsUrvno2yB7YXKuegcK74Enp6qcHNtd6MCoAAABrWIKHwLIbvrgV1tit5Mm3FMZuz54g74Rodwmlk+Y+n5OvXzbX9rj64+//peGBKUWihkI5PoGvXea1mDFmKnoWw4ug06l+VcUKSq84O8sqkzJ1LDUhKd0LqLt/XCcvXHVxdHBbU12NWhpjBZfWRcOGWhpj2lhX49HIAAAACiOAQmD5Jaxxshm6nYvLoO+EaHcJpZNFG3N/x242s8/X4+rqlXRIVLNkNogKh6X4uojad8e0445lM5VMix2jYRgl60OVTbbG804tsVyMIPSKs9oofcpM6Yw5qX9q9veaSJp658SoyyOEmwzD0N72uFobY6oOG7r2Y9GQVB021Prlkkuq3QAAgJ/4b30BYFGxW6Y7zclt0a327CmHnRDtVjWZpnPLtOYGKm5ta2+laimVkqYSptY2RmaWfmXjxBjtLN2ay+m5k2spoZ0lloYx+35YXV+l6SlTo+eTjrw3/N7Yf+6yyuGBKU1NmwrNed+kTFNJmTpjTuqD1L/mPdaUdHBg3OMRw2lVIUNP7Yrr5IWr2n9iVD0D40okTUXDhnY2xPTgllptrFtS6mECAAAsQACFwPJLWONkM/RrLy6z/b9KvQuXU4rpd+VEQ21pfqDiVjP7YqqWVuZobu3EGO0EthlOzx0roZyV8VzbiytXqFWMIDT2n9so/X8c+KfWqVpVMjStdM+no6nLOq/prI9NWOgdBP8zDENNq5bo6bsaSj0UAAAAywigEFh+CWucbobu9124nGK3ImdNPFLw9baiZqkxL1Bxq5m9k5VVTozR7o54bswdq6GclK5yMox0ZVSh936+OWP3dxeUxv6ZRukfGhctNaTOKNQ7CAAAAHBL8K9iUdH8ENa4sXOdn3fhckoxSyhzvd6WGdKOO+YHKm7tPOhkZZUTY7QS2KaPk9Y2VOkrt9Q4PnfshHKmKdU3RrSjfZml43PNmZ6Oy7aDziBpboip4+wlWYmgDEk7G2JuDwkAAADIqnyvblExSh3WFFPJY5pmOkT5bFIjQ7Oh2epMaFYbDvTyOiuKXUJ57ettmulG34WeJxSS1jZGFixzK+b1s8LJyiqnxljqwNat5Y75+KVXnFse2FyrnoFxS1VQ0bChBzbXejAqAAAAYCECKGCR7F7g3tQUzRqYJJPS0LkpjQxOZe1zU26cWkK52OdxK6AotmopWzgZCs023l7sGEsZ2Lq13DEfv/SKc0tTXY1aGmPq6h/P298pGjbU0hjTxroaD0cHAAAAzAqVegBA0FndFj1dZVKlz/sm814MZ5pSH+makGklcQiwUMjQttYl2rp9iWqWzA+GapYY+ur2JdreVjiIy1T23LE7pvp1s69FOCzF10XUvjumHXcsy/o8tl4/GwHFaptLudbEI0ql0tVcH70/rqH+2fdIKmU9fPJziGK3v5IT/ZgyAWW+1zjIjf0Nw9De9rhaG2OqDhu6dvSGpOqwodbGmPa2xwP3/wMAAED5oAIKWCQ7FTjrvxJV1weXHdkZrRykdy+7kvX3dvWKqaOHr2hkeNpSNVixlT1uNbMvpjLOqR3i/BoyuLXcsZBSLz10W1XI0FO74jp54ar2nxhVz0C6GioaNrSzIaYHt9RqY92SUg8TAAAAFS6437gBH7F6gdvTUTh8yii0M1rQmaZZMHCZWw22vc29YMWNgMLu0i9JtsKnUMjaDnF+Usp+TKXuFec2wzDUtGqJnr6rodRDAQAAALIqz2/iQAlYucAtRRNmK0rRFH1sNGkpcPGqGszpgMJuZdXhzglblU9r4lVq3hWsHc3KvR8TAAAAgNwIoAAPlaIJcyHpZXDeN0U/1TtZ9tVgdiqr7IaTQ/3TMk0zZzDox50W3VruCAAAAMD/gnU1BwRcsTujuaWUy+D8Wg3mNKuVVcWEjbmqwkoVKlpR7v2YAAAAAGTHt3zAQ6VqwpxLKZfB+bEarJTshpNS9qowP/XWyqXc+zEBAAAAWChU6gEAlWTDpmrLVU1ON2HOpphlcE6xW93ldjVYqa0uImzMVhVWTKgIAAAAAG7jz8+Ah4ppwuxmL59SLoPzWzVYqW3YVG3r9yFlr5iqhN5aAAAAAIKHqw7AQ3abMJumXO3lU8plcBs2Vc/0/ynEi2qwUksHiZJpWn9MtqqwSumtBftM05T+3qfUgbelo4ekREKKRqWvNiv079+U1m+k8TsAAABcQwAFeMxqE2bTNHW4091ePqVsil5MNVg5MwxDaxuqNNQ/bfkx2arC6K2FbMzpaaVe/YX0Sbc0lZhNOhOT0uEOpY72SLe1KPTYEzKq+GoAAAAA5/EtE2XDj9vO52KlCbMXDcJLuQzObjWYX147N224pUYjQ+OLqgrz206LKD3TNGfDp0SWPm6mmb79ky6lXv2FQt/5YUXMNwAAAHiLJuQoC6lUulroo/fHNdQ/G2Zklqp99P64DndOKJWysb6pxLxoEF7qpuiZarA7dsdUvy4yM5ZwWIqvi6h9d0w77lhW1PLCIMpUhRV6TfJVhdltZl7uvbUg6e99ucOnuRKJ9HGnT3ozLgAAAFQUKqAQeEHYdr4YXvTy8cMyOCvVYJXCiaowemvhWqkD+9PL7qyYSih1YL/C333a3UEBAACg4lABhcAr123nvejlkwk88lXdVNoyuFJbbFWYE1VUKDNHe6x3tzdN6dOD7o4HAAAAFYmSAwReuW4771UvH6tN0eGdxVSF0VsLCyQsVj9lWK2WAgAAAGzgqhKBV67bznvZIJxlcOWFUBHzRKOF+z/NFYm6NxYAAABULK5AEHjluu08vXywGISKmPHVZulwh7VleIYhfW2n+2MCAABAxaEHFALP7tKzoGw7Ty8fAE4I3fOg9aqmSDR9PAAAAOAwAigEXrluO0+DcACOuKlJuq0lvRQvn2g0fdz6jd6MCwAAABWFAAqBt2FTteWqpqAtVVvsjmgAYBiGQo89Id3WKkWr08vs5h+Qvv22VoUee4IwGwAAAK6gOQgCL7NULdeOXxlBXapGLx8Ai2VUVSn0nR9Kp08q9b/flo72pHe7i0Slr+1U6J5vyrhpYeWTaZrqu3BV+49f0KHBy0okTUXDhpobYnpwc6021tUQWAEAAMASrmgReGw7DwCFGYYh3dSk8H9+xtLx0ylTL3UMqrt/XImkqUwL88mkqY6zl9QzMK6Wxpj2tsdVRRUmAAAACmAJHsoCS9UAwDmmORs+Tc4Jn2buVzqI6uof10sdgzKt7LAHAACAikYFFMoGS9UAwBl9F67OhE/5JJKmuvvHdfLCVTWtWuLR6AAAABBEVEABAIB53jkxqkSB8CkjkTT1zolRl0cEAACAoCOAAgAA8/QMjC9YdpeLKengwLibwwEAAEAZIIACAADzWK1+KvZ4AAAAVB6a5QAAPGeapvouXNX+4xd0aPCyEklT0bCh5oaYHtxcq411NexYWULRsFGw/9O1xwMAAAD5EEABwCKZpqmx0aROfTapkaEpJZPpHRhXxyPa7lPd1wAAEYtJREFUsKlaK2rDhClzTKdmd1hLzNlhbTJpquPsJfUMjKulMaa97XFV+XDnykoIz5obYuo4e8nSMjxD0s6GmNtDAgAAQMARQAHAIqRSpo50TWh4IB08ZSST0tC5KY0MTmlNQ0TbWpcq5MMwxWumORs+ZauwMZUOorr6x/VSx6Ce2hX3VZgT9PDMqgc216pnoPAueFK6+umBzbUejAoAAABBRgAFoKy5WZ1kmtnDp7mSSWl4YEpHuia0vW2pr8KUUui7cDVn+DRXImmqu39cJy9cVdOqJR6NLr+gh2d2NNXVqKUxpq4vg7ZcomFDLY0xbayr8XB0AAAACCKakAMoW6mUqcOdE/ro/XEN9c+GRJnqpI/eH9fhzgmlUsU1UB4bTeYNnzIyIdTYaIEDK8A7J0YtN6xOJE29c2LU5RFZV0x4FlSGYWhve1ytjTFVhw1dG6MZkqrDhlq/rPYKatAGAAAA71ABBaAsWa1O+kf/lP7vPy9qKmHaro461TtZMHya+7M+753UjvbK/tjtGRi31FdISlcUHRwYd3M4thQTnv3orgaXR+WeqpChp3bFdfLCVe0/MaqegfGZflc7G2J6cEutNtb5ozoNAAAA/lfZV0IAypbV6qRUSrp6ZTZUsNO7aWRwytaYhm0eX46sBjjFHu+mIIdnxTIMQ02rlujpAAdpAAAA8AeW4AEoS3aqk7KZ27vJNLPHDnaffzHjKRfRsL2lWnaPd1OQwzMAAACg1AigAJQlu9VJ2RTq3RQO23s+u8eXo+aG2IJ+QrkYknY2xNwcji1BDs8AAACAUiOAAlCWnKo2yvRuymZ1PGLrudbYPL4cPbC51nIwEw0bemBzrcsjsi7I4RkAAABQagRQAMqSk9VGuXo3bdhUbfnnhMPSzZuqnRtUQDXV1ailMVYwhIqGDbU0xrSxrsajkRUW5PAMAAAAKDUCKABlyW51Uj65qqlW1Ia1piFSMIQKh6U1DRGtqGUNnmEY2tseV2tjTNVhY0FFkSGpOmyotTGmve3xvLsQei3I4RkAAABQauyCB6AsbdhUrZHBwrvgWZErYDIMQ9tal+pI10TOHfcy4dO21qW+ClNKqSpk6KldcZ28cFX7T4yqZ2BciaSpaNjQzoaYHtxSq411S0o9zAUy4dlLHYPq7k+PeW6bcUOz4ZPfwjNUBtM0pb/3KXXgbenoISmRkKJR6avNCv37N6X1G3lfAgCAkjHMXNs7lYHBwcFSDwEouVWrVkmSzp8/X+KReMs0TR3uzB0M2RFfF9GO9mV5f9bYaFKneidnQq9wON3zacOmaq2oI+svJ6ZpehaeVer8hX3m9LRSr/5C+qRbmkpIc7/eGYYUiUq3tSj02BMyqvhM8gLzFwgu5i+QWzweL/qxBFBAmavkE2gqZeatTrIiHJbu2B3TSkIklEAlz19YZ5qmUv/9v6XDp0T2TRMkpauhbmtV6Ds/pBLKA8xfILiYv0Buiwmg6AEFoGyFQoa2ty3VHbtjql8326spFJJqlhgKFfgEpHcTgED4e1/h8ElKL8n7pFs6fdKbcQEAAMzBn/QBlDXDMLSyrkrN7fM/7gpVR9G7CUBQpA7sTy+7s2IqodSB/Qp/92l3BwUAAHANAigAFSlTHUXvJgCBd7Rnfs+nfExT+vSgu+MBAADIgqsrABUrV3UUAARKwmL1U4bVaikAAAAHOXLV1dnZqePHj+v06dM6c+aMrly5ojvvvFOPP/54zsf09vbqrbfeUl9fnxKJhOrr67V7927dd999ChVqzAIAAIC0aLRw/6e5IlH3xgIAAJCDIwHUm2++qTNnzqimpkZ1dXUaGBjIe/zBgwf1wgsvKBKJqL29XbFYTIcOHdJrr72m3t5ePfnkk04MCwAAoPx9tVk63GFtGZ5hSF/b6f6YAAAAruFIAPXoo4+qrq5Oa9eu1fHjx/Xcc8/lPHZiYkKvvPKKQqGQ9u3bpw0bNkiS9uzZo+eff16dnZ368MMPtWvXLieGBgAAUNZC9zyo1NEea1VQkahC9zzo/qAAAACu4chat61bt6q+vt7STlGdnZ26ePGi2tvbZ8InSYpGo3r44YclSQcOHHBiWAAAAOXvpibptpb0Urx8otH0ces3ejMuAACAOTxvtnTs2DFJ0u23377gvs2bN6u6ulp9fX2ampryemgAAACBYxiGQo89Id3WKkWr08vs5h+Qvv22VoUee8LSHwwBAACc5vnWT0NDQ5KkeDy+4L5wOKzVq1fr3LlzGh4eVmNjY97neuaZZ7Le/rOf/UyStGrVqkWOFgi+qqr0NGc+AMHD/IUd5o//q6ZPntDld36nyUMd6SV50WpVN+/Ssgf+kyIbt5R6iBWF+QsEF/MXcIfnAdTExIQkaenSpVnvz9yeOQ5A+TBNU+eHJ3Xs4y907syEktOmwlWG1t24VFu3rdSq1dX8ZR4AimQYhiJNW7TiR/+l1EMBAABYwPMAykmZSqdczp8/79FIAP/K/OWm1PMhlTJ1pGtCwwNTSiZnb09Omzp96rLOnb6sNQ0RbWtdqlCIEAqQ/DN/AdjH/AWCi/kL5JZtNZtVnveAKlThVKhCCkDwmGb28GmuZFIaHpjSka4JmVa2EgcAAAAABIbnAVR9fb0kaXBwcMF9yWRSIyMjCofDWrNmjddDA+CSsdFk3vApIxNCjY0WOBAAAAAAECieB1Bbt26VJH388ccL7jtx4oQmJyfV1NSkSCTi9dAAuORU72TB8CkjmZQ+7510d0AAAAAAAE95HkC1tbVp+fLl6ujo0KlTp2ZuTyQSev311yVJ99xzj9fDAuCikcEpW8cP2zweAAAAAOBvjjQh7+7u1sGDByVJY2NjkqSTJ0/q5ZdfliQtX75cjzzyiKR0b6fvfve7evHFF7Vv3z7t2rVLsVhMPT09GhwcVFtbm9rb250YFgCfsFr9VOzxAAAAAAB/cySAOn36tD744IN5tw0PD2t4eFiSdP31188EUJLU0tKiffv26e2331ZXV5cSiYTWrl2rRx55RPfffz/bsANlJhy2FyqFw+6NBQAAAADgPcMs4+2msjU6ByqNH7aR7em4rKFz1pfVxddFtKN9mYsjAoLBD/MXQHGYv0BwMX+B3OLxeNGP9bwHFIDKs2FTteWqpnBYunlTtbsDAgAAAAB4igAKgOtW1Ia1piFSMIQKh6U1DRGtqGUNHgAAAACUEwIoAK4zDEPbWpfmDaEy4dO21qX0gQMAAACAMuNIE3IAKCQUMrS9banGRpM61TupkcEpJZNfBk/xiDZsqtaKOj6SAAAAAKAccbUHwDOGYWhlXZWa2/noAQAAAIBKwhI8AAAAAAAAuIoACgAAAAAAAK4igAIAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuIoACgAAAAAAAK4igAIAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuIoACgAAAAAAAK4igAIAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuIoACgAAAAAAAK4igAIAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuIoACgAAAAAAAK4igAIAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuMowTdMs9SAAAAAAAABQvqiAAgAAAAAAgKsIoIAy98wzz+iZZ54p9TAAFIH5CwQX8xcILuYv4A4CKAAAAAAAALiKAAoAAAAAAACuIoACAAAAAACAqwigAAAAAAAA4CoCKAAAAAAAALjKME3TLPUgAAAAAAAAUL6ogAIAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuIoACgAAAAAAAK4igAIAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuKqq1AMAUJzOzk4dP35cp0+f1pkzZ3TlyhXdeeedevzxx3M+pre3V2+99Zb6+vqUSCRUX1+v3bt367777lMoRB4NeMXO/B0ZGdH3v//9nM/V3t6uvXv3ujlcAHNcunRJ3d3dOnz4sM6ePavR0VFVVVXphhtu0O7du3X33XdnPadyDgZKz+785RwMOIsACgioN998U2fOnFFNTY3q6uo0MDCQ9/iDBw/qhRdeUCQSUXt7u2KxmA4dOqTXXntNvb29evLJJz0aOQC781eSbrzxRu3cuXPB7TfccIMbQwSQw0cffaRf//rXWrlypW699VatWrVKY2Nj6u7u1q9+9SsdOXJETz75pAzDmHkM52DAH4qZvxLnYMApBFBAQD366KOqq6vT2rVrdfz4cT333HM5j52YmNArr7yiUCikffv2acOGDZKkPXv26Pnnn1dnZ6c+/PBD7dq1y6vhAxXNzvzNWL9+vb71rW95MDoA+cTjcT399NPavn37vEqJb3/72/rxj3+srq4udXV1qa2tTRLnYMBP7M7fDM7BgDOo9wUCauvWraqvr1/wF5psOjs7dfHiRbW3t8988ZWkaDSqhx9+WJJ04MAB18YKYD478xeAv2zdulXNzc0Lls2tWLFC3/jGNyRJx48fn7mdczDgH3bnLwBnUQEFVIBjx45Jkm6//fYF923evFnV1dXq6+vT1NSUIpGI18MDYMEXX3yhv/zlL7p06ZKWL1+upqYm3XjjjaUeFoA5qqrSX63nXtxyDgaCIdv8zeAcDDiDAAqoAENDQ5LSZcfXCofDWr16tc6dO6fh4WE1NjZ6PTwAFnz66af69NNP591266236nvf+55WrVpVolEByEgmk/rggw8kzQ+bOAcD/pdr/mZwDgacQQAFVICJiQlJ0tKlS7Pen7k9cxwA/6iurtZDDz2knTt3as2aNZKkM2fO6A9/+IP+9re/6fnnn9fPf/5z1dTUlHikQGX77W9/q3Pnzmnbtm3zLmA5BwP+l2v+cg4GnEUPKAAAfOy6667Tnj17dPPNN2vZsmVatmyZtmzZop/85CfauHGj/vGPf+i9994r9TCBivanP/1Jf/zjH9XQ0KAf/OAHpR4OABvyzV/OwYCzCKCAClDor6uF/joLwH/C4bC+/vWvS6JhKlBKf/7zn/Wb3/xGjY2NevbZZxWLxebdzzkY8K9C8zcXzsFAcQiggApQX18vSRocHFxwXzKZ1MjIiMLh8ExpMYBg+Ld/+zdJ0uTkZIlHAlSmd999V6+++qrWrVunZ599VitWrFhwDOdgwJ+szN98OAcD9hFAARVg69atkqSPP/54wX0nTpzQ5OSkmpqa2H0HCJiTJ09KEheuQAns379fr732mtavX69nn31W1113XdbjOAcD/mN1/ubDORiwjwAKqABtbW1avny5Ojo6dOrUqZnbE4mEXn/9dUnSPffcU6rhAcjj888/VyqVWnD70aNH9e6770qS7rrrLq+HBVS0N954Q7/73e90880366c//elMJUQ2nIMBf7EzfzkHA84yTNM0Sz0IAPZ1d3fr4MGDkqSxsTF98sknWrNmjW655RZJ0vLly/XII4/MO/7FF19UJBLRrl27FIvF1NPTo8HBQbW1temJJ56QYRgl+b8AlcbO/N23b5+Ghoa0adMm1dbWSpLOnj2rY8eOSZL27Nmjhx56qAT/C6Ay/fWvf9Uvf/lLhUIh3XvvvVl7N61evVp33333zL85BwP+YHf+cg4GnEUABQTU73//e73xxhs577/++uv18ssvz7vts88+09tvv62+vj4lEgmtXbtWu3fv1v33369QiIJIwCt25u97772n7u5unTt3ThcvXlQymdR1112npqYm3Xvvvdq8ebNXwwagwvNXkrZs2aJ9+/bNu41zMFB6ducv52DAWQRQAAAAAAAAcBV/bgEAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuIoACgAAAAAAAK4igAIAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuIoACgAAAAAAAK4igAIAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuIoACgAAAAAAAK4igAIAAAAAAICrCKAAAAAAAADgKgIoAAAAAAAAuIoACgAAAAAAAK4igAIAAAAAAICr/j+6VmnnsxolVwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"image/png": {
"height": 357,
"width": 592
}
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(10, 6))\n",
"tn = (df_cancer.target==0) & (df_cancer.Prediction==0)\n",
"fn = (df_cancer.target==1) & (df_cancer.Prediction==0)\n",
"tp = (df_cancer.target==1) & (df_cancer.Prediction==1) \n",
"fp = (df_cancer.target==0) & (df_cancer.Prediction==1)\n",
"for data, name in zip([tn,fn,tp,fp], ['tn','fn','tp', 'fp']):\n",
" plt.scatter(df_cancer.loc[data, 'mean radius'], df_cancer.loc[data, 'mean texture'], label=str(name)+': n='+str(len(df_cancer.loc[data, 'mean texture'])))\n",
" plt.legend()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2.1 Likelihood functions\n",
"\n",
"Probability of observing label given data\n",
"\n",
"Observed y=1\n",
"$$NLL(x) = log(1+e^{x^T w})-x^T w$$\n",
"\n",
"\n",
"Observed y=-1\n",
"$$NLL(x) = log(1+e^{x^T w})$$\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.2.1.1 Python example: Likelihood function"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Probability | \n",
" Prediction | \n",
" Prediction_sklearn | \n",
" nll_pos | \n",
" nll_neg | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 0.000021 | \n",
" 0 | \n",
" 0 | \n",
" 10.7875 | \n",
" 0.0000 | \n",
"
\n",
" \n",
" | 1 | \n",
" 0.497237 | \n",
" 0 | \n",
" 0 | \n",
" 0.6987 | \n",
" 0.6876 | \n",
"
\n",
" \n",
" | 2 | \n",
" 0.999856 | \n",
" 1 | \n",
" 0 | \n",
" 0.0001 | \n",
" 8.8442 | \n",
"
\n",
" \n",
" | 3 | \n",
" 1.000000 | \n",
" 1 | \n",
" 1 | \n",
" 0.0000 | \n",
" 21.9508 | \n",
"
\n",
" \n",
" | 4 | \n",
" 0.001269 | \n",
" 0 | \n",
" 0 | \n",
" 6.6698 | \n",
" 0.0013 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Probability Prediction Prediction_sklearn nll_pos nll_neg \n",
"0 0.000021 0 0 10.7875 0.0000\n",
"1 0.497237 0 0 0.6987 0.6876\n",
"2 0.999856 1 0 0.0001 8.8442\n",
"3 1.000000 1 1 0.0000 21.9508\n",
"4 0.001269 0 0 6.6698 0.0013"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def nll(x, weight):\n",
" y_p1 = np.log(1+np.exp(x@weight))-(x@weight)\n",
" y_n1 = np.log(1+np.exp(x@weight))\n",
" return y_p1, y_n1\n",
"\n",
"nll_pos, nll_neg = nll(X_cancer,model.theta)\n",
"df_cancer['nll_pos'] = pd.Series(np.round(nll_pos,4))\n",
"df_cancer['nll_neg '] = pd.Series(np.round(nll_neg,4))\n",
"df_cancer.iloc[:,-5:].head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2.2 Maximum Likelihood estimator\n",
"\n",
"$$\\sum_{k=1} log(1+exp(-y_k\\dot x_k w))) = f_{lr}(YXw)$$\n",
"\n",
"### 1.2.3. Non-negative matrix factorization\n",
"$$E(X,Y) = \\frac{1}{2}||XY-S||^2\\\\\n",
"\\partial_y E = X^T(XY-S)\\\\\n",
"\\partial_x E = (XY-S)Y^T$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. Linear systems of equations & Least squares"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2.1 Example: least squares\n",
"\n",
"$$f(g(x)) = \\frac{1}{2} ||Ax-b||^2 \\\\ \n",
"X = (A^TA)^{-1}Ax-b$$\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"## Example: Ridge Regression\n",
"$$f(x) =\\frac{\\lambda}{2}||x||^2 + \\frac{1}{2}||Ax-b||^2 \\\\\n",
"X = (A^T+ \\lambda I)^{-1}A^Tb$$\n",
"\n",
"# 2. Neural Networks\n",
"\n",
"## 2.1 Description & underlying mathmatics\n",
"Easiest way to interpretation: Logistic regression on steroids\n",
"\n",
"Multilayer perception:\n",
"\n",
"$$\\sigma(\\sigma(\\sigma(x_i W_1)W_2)W_3) = y_3$$\n",
"\n",
"Where: \n",
"- $\\sigma$= sigmoid, relu, etc\n",
"- $x_i$= row vectors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1.1 Derivatives\n",
"\n",
"In optimization variables are column vectors while derivatives are rows\n",
"\n",
"$$\\begin{bmatrix} \\text{---} & Df & \\text{---} \\end{bmatrix} \\begin{bmatrix} \\vert \\\\x \\\\ \\vert\\end{bmatrix}$$\n",
"\n",
"The derivative is the jacobian\n",
"\n",
"If the function is singled valued:\n",
"$$Df =(d_{x_1}f d_{x_2}f d_{x_3}f)$$\n",
"\n",
"If the function has multiple values:\n",
"\n",
"$$Df = \\begin{pmatrix}d_{x_1} f_1& d_{x_2} f_2& d_{x_3}f_3 \\\\ d_{x_1} f_1 & d_{x_2} f_2 &d_{x_3}f_3 \\\\ d_{x_1} f_3 &d_{x_2} f_2& d_{x_3}f_3 \\end{pmatrix}$$\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1.2 Gradients:\n",
"- Adjoint of the derivative\n",
"- The derivative of A then the adjoint of the jacobian\n",
"\n",
"$$Df = (\\partial_{x1}f \\partial_{x2}f\\partial_{x3}f) \\\\ \\nabla f =\\begin{pmatrix} \\partial_{x1}f \\\\ \\partial_{x2}f \\\\ \\partial_{x3}f\\end{pmatrix}$$\n",
"\n",
"Better definition: \n",
"The gradient of a scalar valued function is a matrix of derivatives that is the sampe shape as the unknowns\n",
"\n",
"$$x = \\begin{pmatrix}x_{11} & x_{12}& x_{13}\\\\x_{21} & x_{22} & x_{23} \\\\ x_{31}&x_{32}&x_{33}\\end{pmatrix} \\\\ \n",
"\\nabla f = \\begin{pmatrix}\\partial_{11}f & \\partial_{12}f& \\partial_{13}f\\\\\\partial_{21} f& \\partial_{22}f & \\partial_{23}f \\\\ \\partial_{31}f&\\partial_{32}f&\\partial_{33}f\\end{pmatrix}$$\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1.3 Function $\\rightarrow$gradients\n",
"\n",
"- $f(x)= Ax \\rightarrow \\nabla f(x) = A^T$\n",
"- $f(x)= ||X||^2 \\rightarrow \\nabla f(x) = 2x$\n",
"- $f(x)= \\frac{1}{2}||X||^T Ax \\rightarrow \\nabla f(x) = Ax$"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"norm_delx ||x|| = 580.7253981342627\n",
"\n",
"Grad_RHS 19014.239\n"
]
}
],
"source": [
"def gradient(f, grad, x):\n",
" norm_delx0 = '||x|| = {}\\n'.format(np.linalg.norm(x,ord=2)) \n",
" print(\"norm_delx\", norm_delx0)\n",
" grad_RHS = np.sum(grad(x))\n",
" print(\"Grad_RHS\", grad_RHS)\n",
" #return grad_RHS\n",
"f = lambda x: 0.5*np.linalg.norm(x)**2\n",
"grad = lambda x: x\n",
"gradient(f,grad, X_cancer)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"norm_delx ||x|| = 580.7253981342627\n",
"\n",
"Grad_RHS 19014.239\n"
]
}
],
"source": [
"gradient(y_cancer, grad, X_cancer)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.02428829, 0.04603124])"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.linalg.inv(X_cancer.T@X_cancer)@(X_cancer.T@y_cancer)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1.4 Chain rule\n",
"\n",
"$$h(x) = f \\circ g(x) = f(g(x))$$\n",
"\n",
"Single variable chain rule:\n",
"$$\\partial f(x(x))=f\\prime (g)g\\prime (x)$$\n",
"\n",
"Multi variable chain rule:\n",
"$$D f(g(x)) = D f \\circ D g(x)$$\n",
"\n",
"For graidents:\n",
"$$\\nabla f(g(x)) = \\nabla g(x) \\nabla f(g)$$\n",
"\n",
"\n",
"$$H(x) = f(Ax) \\rightarrow \\nabla h(x) = A^T f\\prime (Ax) \\\\ H(x) = f(xA) \\rightarrow \\nabla h(x) = f\\prime (Ax)A^T$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1.5 Python example: Gradient checker\n",
"\n",
"Code reference: University of Maryland, Advanced Numerical Optimization (2020). hmwk2_more_linalg_sols.ipynb https://www.cs.umd.edu/~tomg/cmsc764_2020/\n",
"\n",
"Write a method for testing whether the function `grad` generates the gradient of `f`. Do this by generating a random perturbation $\\delta$ and then testing whether\n",
" $$\\frac{f(x+\\delta) -f(x-\\delta)}{2} \\approx \\delta^\\top \\nabla f(x).$$\n",
" The method should generate a random Gaussian $\\delta$, check the gradient condition, and then replace $\\delta \\gets \\delta/10.$ Do this for 10 different orders of magnitude of $\\delta.$ For each order, compute the **relative** error between the left and right side of the above equation. Finally, print the minimum relative error achieved. All of the outputs should be labeled. The method returns `True` if the gradient is correct up to 1 part in 1 million, and `False` otherwise.\n",
" \n",
" Solution based on github [answer](https://github.com/dbhadra/CMSC764-Advanced-Numerical-Optimization/blob/master/Homework-3/hmwk3.py)\n"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"original\n",
" [[17.99 10.38]\n",
" [20.57 17.77]]\n",
"Random perturbation \n",
" [[ 0.60147361 -1.06897521]\n",
" [ 1.50389956 0.15074031]]\n",
"Norm||x||/Norm||delta||\n",
" [[ 14.69262942 -26.11262824]\n",
" [ 36.7368389 3.68224228]]\n",
"norm_delx ||delta||/||x|| = 1e-09\n",
"\n",
"Grad_RHS 8.99268082779971e-06\n",
"grad_LHS 8.992705261334777e-06\n",
"grad_cond 2.7170394621451994e-06\n",
"||delta||/||x|| = 1e-09\n",
"Difference between LHS and RHS = 2.4433535066487348e-11 \n",
"\n"
]
}
],
"source": [
"def check_gradient(f, grad, x):\n",
" print(\"original\\n\",x[:2])\n",
" delta = np.random.randn(*x.shape) # Random perturbation delta\n",
" print(\"Random perturbation \\n\", delta[:2])\n",
" delta = np.linalg.norm(x, ord=2)* delta/np.linalg.norm(delta, ord=2) \n",
" print(\"Norm||x||/Norm||delta||\\n\",delta[:2])\n",
" rel_err = []\n",
" for i in range(10):\n",
" norm_delx0 = '||delta||/||x|| = {}\\n'.format(np.linalg.norm(delta,ord=2)/np.linalg.norm(x,ord=2)) \n",
" grad_RHS = np.sum(delta*grad(x))\n",
" grad_LHS = f(x+delta) - f(x) \n",
" grad_cond = (grad_LHS - grad_RHS)/grad_LHS\n",
" diff_delx0 = 'Difference between LHS and RHS = {}'.format(np.absolute(grad_RHS-grad_LHS))\n",
" rel_err.append(grad_cond)\n",
" delta = delta/10.0 \n",
" if i == 9:\n",
" print(\"norm_delx\", norm_delx0)\n",
" print(\"Grad_RHS\", grad_RHS)\n",
" print(\"grad_LHS\", grad_LHS)\n",
" print(\"grad_cond \", grad_cond )\n",
" print(norm_delx0 + diff_delx0,'\\n') \n",
"f = lambda x: 0.5*np.linalg.norm(x)**2\n",
"grad = lambda x: x\n",
"check_gradient(f,grad, X_cancer)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Huber regulatrization\n",
"## Hypterbolic regularization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2.3 Forward and backward pass\n",
"\n",
"$$x_i \\xrightarrow{W_1} z_1 \\xrightarrow{\\sigma_1} y_1 \\xrightarrow{W_2} z_2 \\xrightarrow{\\sigma_2} y_2 \\xrightarrow{W_3} z_3 \\xrightarrow{\\text{cross entropy loss}} \\ell$$\n",
"\n",
"**Where:**\n",
"- $X_i$ = Training data (row vectors)\n",
"- $z_1$ = Pre-activations\n",
"- $y_1$ = activations\n",
"\n",
"- Forward pass stores y's for later\n",
"- Usually do not apply non-linearity after last linear operation because loss is already non-linear\n",
"- Backward pass now uses chain rule to compute loss w.r.t z\n",
"- $W_3= \\frac{\\partial \\ell}{\\partial z_3}$\n",
"\n",
"\n",
"#### Derivative of loss w.r.t W2:\n",
"\n",
"$$\\sigma_2\\prime W_3\\frac{\\partial\\ell}{\\partial z_3}y_1$$\n",
"\n",
"#### Gradient of loss w.r.t W2:\n",
"$$y_1^T \\nabla z_3 \\ell W_2^T \\sigma \\prime _2$$\n",
"\n",
"\n",
"Derivative: Forward pass\n",
"\n",
"$$\\frac{\\partial \\ell}{\\partial x_1} = W_1 \\sigma\\prime_1 W_2 \\sigma_2\\prime W_3 \\frac{\\partial \\ell}{\\partial z_3}$$\n",
"\n",
"\n",
"Gradiant: Backward pass\n",
"\n",
"\n",
"$$\\nabla_{z1} \\ell = \\nabla_{z3} \\ell W_3^T \\sigma\\prime_2 W_2^T \\sigma_1\\prime W_1^T$$\n",
"\n",
"#### Sanity Check\n",
"\n",
"$x_1$ is a row vector and loss is scalar so gradient: loss w.r.t x has to have the same shape\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2.1 Python example: Forward and backward pass"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"X = cancer_df[['mean radius','mean texture']].values\n",
"y = cancer_df.target.values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 2.2.1.1 Sigmoid function and initialization"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"def sigmoid(z):\n",
" s = 1 / (1 + np.exp(-z)) \n",
" return s\n",
"def initialize_with_zeros(dim):\n",
" w = np.zeros(shape=(dim, 1))\n",
" b = 0\n",
" return w, b\n",
"dim = np.shape(X)[1]\n",
"w, b = initialize_with_zeros(dim)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 2.2.1.2 Backward prop"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.6931471805599453"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def forward_prop(X, Y):\n",
" m = X.shape[1]\n",
" A = sigmoid(np.dot(w.T, X) + b) # compute activation\n",
" cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A))) # compute cost: negative log-likelihood cost for logistic regression\n",
" return cost, A\n",
"\n",
"cost, A = forward_prop(X.T,y) #Use Xi as row vector: X.T\n",
"cost"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gradient w.r.t w:\n",
"[[-0.55728383]\n",
" [-1.59519332]]\n",
"Gradient w.r.t b:\n",
"-0.1274165202108963\n"
]
}
],
"source": [
"def backward_prop(X,Y,cost,A):\n",
" m = X.shape[1]\n",
" dw = (1 / m) * np.dot(X, (A - Y).T) # dw -- gradient of the loss with respect to w, thus same shape as w\n",
" db = (1 / m) * np.sum(A - Y) # db -- gradient of the loss with respect to b, thus same shape as b\n",
" cost = np.squeeze(cost)\n",
" assert(dw.shape == w.shape) #Sanity check\n",
" grads = {\"Gradient w.r.t w:\": dw,\n",
" \"Gradient w.r.t b:\": db}\n",
" return grads, cost\n",
"grads, cost = backward_prop(X.T,y,cost,A)\n",
"for i,ans in grads.items():\n",
" print(i)\n",
" print(ans)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Backprop\n",
"\n",
"\n",
"https://dev.to/shamdasani/build-a-flexible-neural-network-with-backpropagation-in-python\n",
"\n",
"\n",
"Linear reg deep learn\n",
"\n",
"\n",
"https://github.com/enggen/Deep-Learning-Coursera/blob/master/Neural%20Networks%20and%20Deep%20Learning/Logistic%20Regression%20with%20a%20Neural%20Network%20mindset.ipynb"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}