#!/usr/bin/env python def c8mat_norm_fro ( m, n, a ): #*****************************************************************************80 # ## C8MAT_NORM_FRO returns the Frobenius norm of a C8MAT. # # Discussion: # # The Frobenius norm is defined as # # C8MAT_NORM_FRO = sqrt ( # sum ( 1 <= I <= M ) sum ( 1 <= j <= N ) A(I,J) * A(I,J) ) # # The matrix Frobenius norm is not derived from a vector norm, but # is compatible with the vector L2 norm, so that: # # c8vec_norm_l2 ( A * x ) <= c8mat_norm_fro ( A ) * c8vec_norm_l2 ( x ). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, the number of rows in A. # # Input, integer N, the number of columns in A. # # Input, complex A(M,N), the matrix whose norm is desired. # # Output, real VALUE, the norm of A. # import numpy as np value = \ np.sqrt \ ( \ np.sum \ ( \ np.sum \ ( \ ( \ np.abs \ ( \ a \ ) \ ) ** 2 \ ) \ ) \ ) return value def c8mat_norm_fro_test ( ): #*****************************************************************************80 # ## C8MAT_NORM_FRO_TEST tests C8MAT_NORM_FRO. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # import numpy as np from c8mat_indicator import c8mat_indicator from c8mat_print import c8mat_print print '' print 'C8MAT_NORM_FRO_TEST' print ' C8MAT_NORM_FRO computes the Frobenius norm of a C8MAT.' m = 5 n = 4 c = c8mat_indicator ( m, n ) c8mat_print ( m, n, c, ' The Indicator matrix:' ) value = c8mat_norm_fro ( m, n, c ) print '' print ' Frobenius norm = %g' % ( value ) print '' print 'C8MAT_NORM_FRO_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) c8mat_norm_fro_test ( ) timestamp ( )