#!/usr/bin/env python def c8mat_uniform_01 ( m, n, seed ): #*****************************************************************************80 # ## C8MAT_UNIFORM_01 returns a unit pseudorandom C8MAT. # # Discussion: # # The angles should be uniformly distributed between 0 and 2 * PI, # the square roots of the radius uniformly distributed between 0 and 1. # # This results in a uniform distribution of values in the unit circle. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 April 2013 # # Author: # # John Burkardt # # Reference: # # Paul Bratley, Bennett Fox, Linus Schrage, # A Guide to Simulation, # Second Edition, # Springer, 1987, # ISBN: 0387964673, # LC: QA76.9.C65.B73. # # Bennett Fox, # Algorithm 647: # Implementation and Relative Efficiency of Quasirandom # Sequence Generators, # ACM Transactions on Mathematical Software, # Volume 12, Number 4, December 1986, pages 362-376. # # Pierre L'Ecuyer, # Random Number Generation, # in Handbook of Simulation, # edited by Jerry Banks, # Wiley, 1998, # ISBN: 0471134031, # LC: T57.62.H37. # # Peter Lewis, Allen Goodman, James Miller, # A Pseudo-Random Number Generator for the System/360, # IBM Systems Journal, # Volume 8, Number 2, 1969, pages 136-143. # # Parameters: # # Input, integer M, N, the number of rows and columns in the matrix. # # Input, integer SEED, a seed for the random number generator. # # Output, complex C(M,N), the pseudorandom complex matrix. # # Output, integer SEED, a seed for the random number generator. # import numpy from math import cos, floor, pi, sin, sqrt from sys import exit i4_huge = 2147483647; seed = floor ( seed ) if ( seed < 0 ): seed = seed + i4_huge if ( seed == 0 ): print '' print 'C8MAT_UNIFORM_01 - Fatal error!' print ' Input SEED = 0!' exit ( 'C8MAT_UNIFORM_01 - Fatal error!' ) c = numpy.zeros ( ( m, n ), 'complex' ) for i2 in range ( 0, n ): for i1 in range ( 0, m ): k = floor ( seed / 127773 ) seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ): seed = seed + i4_huge r = sqrt ( seed * 4.656612875E-10 ) k = floor ( seed / 127773 ) seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ): seed = seed + i4_huge theta = 2.0 * pi * seed * 4.656612875E-10 c[i1][i2] = r * complex ( cos ( theta ), sin ( theta ) ) return c, seed def c8mat_uniform_01_test ( ): #*****************************************************************************80 # ## C8MAT_UNIFORM_01_TEST tests C8MAT_UNIFORM_01. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 December 2014 # # Author: # # John Burkardt # from c8mat_print import c8mat_print import numpy as np m = 5 n = 3 seed = 123456789 print '' print 'C8MAT_UNIFORM_01_TEST' print ' C8MAT_UNIFORM_01 computes a random C8MAT.' print '' print ' 0 <= X <= 1' print ' Initial seed is %d' % ( seed ) v, seed = c8mat_uniform_01 ( m, n, seed ) c8mat_print ( m, n, v, ' Random C8MAT:' ) print '' print 'C8MAT_UNIFORM_01_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) c8mat_uniform_01_test ( ) timestamp ( )