#!/usr/bin/env python #*****************************************************************************80 def fd1d_heat_explicit_test03 ( ): #*****************************************************************************80 # ## FD1D_HEAT_EXPLICIT_TEST03 does a simple test problem. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 November 2014 # # Author: # # John Burkardt # from fd1d_heat_explicit import fd1d_heat_explicit from fd1d_heat_explicit_cfl import fd1d_heat_explicit_cfl from math import sqrt from r8mat_write import r8mat_write from r8vec_write import r8vec_write from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import matplotlib.pyplot as plt import numpy as np print '' print 'FD1D_HEAT_EXPLICIT_TEST03:' print ' Compute an approximate solution to the time-dependent' print ' one dimensional heat equation:' print '' print ' dH/dt - K * d2H/dx2 = f(x,t)' print '' print ' Run a simple test case.' # # Heat coefficient. # k = k_test03 ( ) # # X_NUM is the number of equally spaced nodes to use between 0 and 1. # x_num = 21 x_min = -5.0 x_max = +5.0 dx = ( x_max - x_min ) / ( x_num - 1 ) x = np.linspace ( x_min, x_max, x_num ) # # T_NUM is the number of equally spaced time points between 0 and 10.0. # t_num = 81 t_min = 0.0 t_max = 4.0 dt = ( t_max - t_min ) / ( t_num - 1 ) t = np.linspace ( t_min, t_max, t_num ) # # Get the CFL coefficient. # cfl = fd1d_heat_explicit_cfl ( k, t_num, t_min, t_max, x_num, x_min, x_max ) print '' print ' Number of X nodes = %d' % ( x_num ) print ' X interval is [%f,%f]' % ( x_min, x_max ) print ' X spacing is %f' % ( dx ) print ' Number of T values = %d' % ( t_num ) print ' T interval is [%f,%f]' % ( t_min, t_max ) print ' T spacing is %f' % ( dt ) print ' Constant K = %g' % ( k ) print ' CFL coefficient = %g' % ( cfl ) # # Running the code produces an array H of temperatures H(t,x), # and vectors x and t. # hmat = np.zeros ( ( x_num, t_num ) ) for j in range ( 0, t_num ): if ( j == 0 ): h = ic_test03 ( x_num, x, t[j] ) h = bc_test03 ( x_num, x, t[j], h ) else: h = fd1d_heat_explicit ( x_num, x, t[j-1], dt, cfl, rhs_test03, bc_test03, h ) for i in range ( 0, x_num ): hmat[i,j] = h[i] # # Plot the data. # tmat, xmat = np.meshgrid ( t, x ) fig = plt.figure ( ) ax = Axes3D ( fig ) surf = ax.plot_surface ( xmat, tmat, hmat ) plt.xlabel ( '<---X--->' ) plt.ylabel ( '<---T--->' ) plt.title ( 'U(X,T)' ) plt.savefig ( 'plot_test03.png' ) plt.show ( ) # # Write the data to files. # r8mat_write ( 'h_test03.txt', x_num, t_num, hmat ) r8vec_write ( 't_test03.txt', t_num, t ) r8vec_write ( 'x_test03.txt', x_num, x ) print '' print ' H(X,T) written to "h_test03.txt"' print ' T values written to "t_test03.txt"' print ' X values written to "x_test3.txt"' return def bc_test03 ( x_num, x, t, h ): #*****************************************************************************80 # ## BC_TEST03 evaluates the boundary conditions for problem 3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 November 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM,1), the node coordinates. # # Input, real T, the current time. # # Input, real H(X_NUM,1), the current heat values. # # Output, real H(X_NUM,1), the current heat values, after boundary # conditions have been imposed. # h[0] = 15.0 h[x_num-1] = 25.0 return h def ic_test03 ( x_num, x, t ): #*****************************************************************************80 # ## IC_TEST03 evaluates the initial condition for problem 3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 November 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM,1), the node coordinates. # # Input, real T, the initial time. # # Output, real H(X_NUM,1), the heat values at the initial time. # import numpy as np h = np.zeros ( x_num ) for i in range ( 0, x_num ): if ( x[i] < 0.0 ): h[i] = 15.0 elif ( x[i] == 0.0 ): h[i] = 20.0 else: h[i] = 25.0 return h def k_test03 ( ): #*****************************************************************************80 # ## K_TEST03 evaluates the conductivity for problem 3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 November 2014 # # Author: # # John Burkardt # # Parameters: # # Output, real K, the conducitivity. # k = 2.0 return k def rhs_test03 ( x_num, x, t ): #*****************************************************************************80 # ## RHS_TEST03 evaluates the right hand side for problem 3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 November 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM), the node coordinates. # # Input, real T, the current time. # # Output, real VALUE(X_NUM), the source term. # import numpy as np value = np.zeros ( x_num ) return value if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fd1d_heat_explicit_test03 ( ) timestamp ( )