#! /usr/bin/env python # def fd1d_heat_implicit_cfl ( k, t_num, t_min, t_max, x_num, x_min, x_max ): #*****************************************************************************80 # ## FD1D_HEAT_IMPLICIT_CFL: compute the Courant-Friedrichs-Loewy coefficient. # # Discussion: # # The equation to be solved has the form: # # dUdT - k * d2UdX2 = F(X,T) # # over the interval [X_MIN,X_MAX] with boundary conditions # # U(X_MIN,T) = U_X_MIN(T), # U(X_MIN,T) = U_X_MAX(T), # # over the time interval [T_MIN,T_MAX] with initial conditions # # U(X,T_MIN) = U_T_MIN(X) # # The code uses the finite difference method to approximate the # second derivative in space, and an explicit forward Euler approximation # to the first derivative in time. # # The finite difference form can be written as # # U(X,T+dt) - U(X,T) ( U(X-dx,T) - 2 U(X,T) + U(X+dx,T) ) # ------------------ = F(X,T) + k * ------------------------------------ # dt dx * dx # # or, assuming we have solved for all values of U at time T, we have # # U(X,T+dt) = U(X,T) + cfl * ( U(X-dx,T) - 2 U(X,T) + U(X+dx,T) ) + dt * F(X,T) # # Here "cfl" is the Courant-Friedrichs-Loewy coefficient: # # cfl = k * dt / dx / dx # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 January 2012 # # Author: # # John Burkardt # # Reference: # # George Lindfield, John Penny, # Numerical Methods Using MATLAB, # Second Edition, # Prentice Hall, 1999, # ISBN: 0-13-012641-1, # LC: QA297.P45. # # Parameters: # # Input, real K, the heat conductivity coefficient. # # Input, integer T_NUM, the number of time values, including the initial # value. # # Input, real T_MIN, T_MAX, the minimum and maximum times. # # Input, integer X_NUM, the number of nodes. # # Input, real X_MIN, X_MAX, the minimum and maximum spatial coordinates. # # Output, real CFL, the Courant-Friedrichs-Loewy coefficient. # from sys import exit x_step = ( x_max - x_min ) / ( x_num - 1 ) t_step = ( t_max - t_min ) / ( t_num - 1 ) cfl = k * t_step / x_step / x_step return cfl