#! /usr/bin/env python # def fd1d_heat_implicit_test02 ( ): #*****************************************************************************80 # ## FD1D_HEAT_IMPLICIT_TEST02 does a problem with known solution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 November 2014 # # Author: # # John Burkardt # from fd1d_heat_implicit import fd1d_heat_implicit from fd1d_heat_implicit_cfl import fd1d_heat_implicit_cfl from fd1d_heat_implicit_matrix import fd1d_heat_implicit_matrix from math import sqrt from r8mat_write import r8mat_write from r8vec_write import r8vec_write from mpl_toolkits.mplot3d import axes3d, Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import matplotlib.pyplot as plt import numpy as np print '' print 'FD1D_HEAT_IMPLICIT_TEST02:' print ' Compute an approximate solution to the time-dependent' print ' one dimensional heat equation for a problem where we' print ' know the exact solution.' print '' print ' dH/dt - K * d2H/dx2 = f(x,t)' print '' print ' Run a simple test case.' # # Heat coefficient. # k = k_test02 ( ) # # X_NUM is the number of equally spaced nodes to use between 0 and 1. # x_num = 21 x_min = 0.0 x_max = 1.0 dx = ( x_max - x_min ) / ( x_num - 1 ) x = np.linspace ( x_min, x_max, x_num ); # # T_NUM is the number of equally spaced time points between 0 and 10.0. # t_num = 26 t_min = 0.0 t_max = 10.0 dt = ( t_max - t_min ) / ( t_num - 1 ) t = np.linspace ( t_min, t_max, t_num ) # # Get the CFL coefficient. # cfl = fd1d_heat_implicit_cfl ( k, t_num, t_min, t_max, x_num, x_min, x_max ) print '' print ' Number of X nodes = %d' % ( x_num ) print ' X interval is [%f,%f]' % ( x_min, x_max ) print ' X spacing is %f' % ( dx ) print ' Number of T values = %d' % ( t_num ) print ' T interval is [%f,%f]' % ( t_min, t_max ) print ' T spacing is %f' % ( dt ) print ' Constant K = %g' % ( k ) print ' CFL coefficient = %g' % ( cfl ) # # Get the system matrix. # a = fd1d_heat_implicit_matrix ( x_num, cfl ) gmat = np.zeros ( ( x_num, t_num ) ) hmat = np.zeros ( ( x_num, t_num ) ) print '' print ' Step Time RMS Error' print '' for j in range ( 0, t_num ): if ( j == 0 ): h = ic_test02 ( x_num, x, t[j] ) h = bc_test02 ( x_num, x, t[j], h ) else: h = fd1d_heat_implicit ( a, x_num, x, t[j-1], dt, cfl, rhs_test02, bc_test02, h ) g = np.zeros ( x_num ) for i in range ( 0, x_num ): g[i] = exact_test02 ( x[i], t[j] ) e = 0.0 for i in range ( 0, x_num ): e = e + ( h[i] - g[i] ) ** 2 e = sqrt ( e ) / sqrt ( x_num ) print ' %4d %14.6g %14.6g' % ( j, t[j], e ) for i in range ( 0, x_num ): gmat[i,j] = g[i] hmat[i,j] = h[i] # # Plot the data. # tmat, xmat = np.meshgrid ( t, x ) fig = plt.figure ( ) ax = Axes3D ( fig ) surf = ax.plot_surface ( xmat, tmat, hmat ) plt.xlabel ( '<---X--->' ) plt.ylabel ( '<---T--->' ) plt.title ( 'H(X,T)' ) plt.savefig ( 'plot_test02.png' ) plt.show ( ) # # Write the data to files. # r8mat_write ( 'g_test02.txt', x_num, t_num, gmat ) r8mat_write ( 'h_test02.txt', x_num, t_num, hmat ) r8vec_write ( 't_test02.txt', t_num, t ) r8vec_write ( 'x_test02.txt', x_num, x ) print '' print ' G(X,T) written to "g_test02.txt"' print ' H(X,T) written to "h_test02.txt"' print ' T values written to "t_test02.txt"' print ' X values written to "x_test02.txt"' print '' print 'FD1D_HEAT_IMPLICIT_TEST02:' print ' Normal end of execution' return def bc_test02 ( x_num, x, t, h ): #*****************************************************************************80 # ## BC_TEST02 evaluates the boundary conditions for problem 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 January 2012 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM,1), the node coordinates. # # Input, real T, the current time. # # Input, real H(X_NUM,1), the current heat values. # # Output, real H(X_NUM,1), the current heat values, after boundary # conditions have been imposed. # h[0] = exact_test02 ( x[0], t ) h[x_num-1] = exact_test02 ( x[x_num-1], t ) return h def exact_test02 ( x, t ): #*****************************************************************************80 # ## EXACT_TEST02 evaluates the exact solution for problem 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 January 2012 # # Author: # # John Burkardt # # Parameters: # # Input, real X, a node coordinate. # # Input, real T, the initial time. # # Output, real H, the exact solution at X and T. # from math import exp from math import sin from math import sqrt import numpy as np k = k_test02 ( ) h = exp ( - t ) * sin ( sqrt ( k ) * x ) return h def ic_test02 ( x_num, x, t ): #*****************************************************************************80 # ## IC_TEST02 evaluates the initial condition for problem 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 January 2012 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM), the node coordinates. # # Input, real T, the initial time. # # Output, real H(X_NUM), the heat values at the initial time. # import numpy as np h = np.zeros ( x_num ) for i in range ( 0, x_num ): h[i] = exact_test02 ( x[i], t ) return h def k_test02 ( ): #*****************************************************************************80 # ## K_TEST02 evaluates the conductivity for problem 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 January 2012 # # Author: # # John Burkardt # # Parameters: # # Output, real K, the conducitivity. # k = 0.002 return k def rhs_test02 ( x_num, x, t ): #*****************************************************************************80 # ## RHS_TEST02 evaluates the right hand side for problem 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 January 2012 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM,1), the node coordinates. # # Input, real T, the current time. # # Output, real VALUE(X_NUM,1), the source term. # import numpy as np value = np.zeros ( x_num ) return value if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fd1d_heat_implicit_test02 ( ) timestamp ( )