#! /usr/bin/env python # def l1_error ( n, x, u, exact ): #*****************************************************************************80 # ## L1_ERROR estimates the l1 error norm of a finite element solution. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/fem1d_bvp_linear/l1_error.py # # Discussion: # # We assume the finite element method has been used, over an interval [A,B] # involving N nodes. # # The coefficients U(1:N) have been computed, and a formula for the # exact solution is known. # # This function estimates the little l1 norm of the error: # L1_NORM = sum ( 1 <= I <= N ) abs ( U(i) - EXACT(X(i)) ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of nodes. # # Input, real X(N), the mesh points. # # Input, real U(N), the finite element coefficients. # # Input, function EQ = EXACT ( X ), returns the value of the exact # solution at the point X. # # Output, real E1, the little l1 norm of the error. # e1 = 0.0 for i in range ( 0, n ): e1 = e1 + abs ( u[i] - exact ( x[i] ) ) e1 = e1 / n return e1 def l1_error_test ( ): #*****************************************************************************80 # ## L1_ERROR_TEST tests L1_ERROR. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Parameters: # # None # import numpy as np from math import sin print '' print 'L1_ERROR_TEST:' print ' Python version:' print ' L1_ERROR computes the little l1 approximation error between' print ' a function exact(x) and a vector of n values u() at points x().' print '' print ' N L1_Error' print '' r8_pi = 3.141592653589793 x_n = 3 for test in range ( 0, 6 ): x_lo = 0.0 x_hi = r8_pi x = np.linspace ( x_lo, x_hi, x_n ) # # U is an approximation to sin(x). # u = np.zeros ( x_n ) for i in range ( 0, x_n ): u[i] = x[i] - x[i] ** 3 / 6.0 e1 = l1_error ( x_n, x, u, sin ) print ' %2d %g' % ( x_n, e1 ) x_n = 2 * ( x_n - 1 ) + 1 # # Terminate. # print '' print 'L1_ERROR_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) l1_error_test ( ) timestamp ( )