#! /usr/bin/env python # import numpy as np import scipy.linalg as la """ Purpose: FEM1D_CLASSES defines classes for the finite element method. Discussion: The structure and interfaces of this code are meant to suggest the way in which the FEniCS program works. The classes defined here include: * Mesh * Shapefns * FiniteElement * FunctionSpace Modified: 21 August 2014 Author: Mike Sussman, Mathematics Department, University of Pittsburgh {@(#) Sun May 18 17:31:02 2014 } """ class Mesh(object): """ A mesh is a list of point global coordinates and a list of element definitions (by endpoint) This class defines a uniform mesh on an interval Mesh(N,a,b) N intervals on [a,b] coordinates(n=None): return coord node n, or all coords cells(n=None): array of n-th cell's endpoint numbers, or all size(): returns number of elements """ def __init__(self,N,a,b): """ N is the number of elements = number of INTERVALS a and b are interval endpoints """ # Define N elements using N+1 evenly spaced nodes. self.__nodes = np.linspace ( a, b, N + 1 ) # Cell I uses nodes I and I+1. self.__cells = np.array ( [ range(N), range(1,N+1) ] ) self.__N = N def size ( self ): return self.__N def coordinates(self,n=None): if n != None: return self.__nodes[n] else: return self.__nodes def cells(self,n=None): if n != None: return self.__cells[:,n] else: return self.__cells class Shapefns(object): """ Define Quadratic Lagrange shape functions These will be defined on the (local) interval [0,1], with mid point 0.5 Shapefns() eval(n,xi): phi[n](xi) ddx(n,xi): dphi[n](xi) size(): number of nodes for these shape functions """ def __init__(self): """ an array of functions for phi and deriv phi """ self.__phi = [lambda xi: 2.0 * (xi - 0.5) * (xi - 1.0) ,\ lambda xi: 4.0 * xi * (1.0 - xi), \ lambda xi: 2.0 * xi * (xi - 0.5)] # and dphi (derivative of phi w.r.t. xi) # derivative of second factor * first + derivative of first factor * second self.__dphi = [lambda xi: 2.0 * (xi - 0.5) + 2.0*(xi - 1.0) ,\ lambda xi: -4.0 * xi + 4.0*(1.0 - xi), \ lambda xi: 2.0 * xi + 2.0*(xi - 0.5)] self.__N = 3 #number of nodes in quadratic Lagrange polynomial def eval(self,n,xi): """ the function phi[n](xi), for any xi """ return self.__phi[n](xi) def ddx(self,n,xi): """ the function dphi[n](xi), for any xi """ return self.__dphi[n](xi) def size(self): """ the number of points """ return self.__N class FiniteElement(object): """ A single finite element FiniteElement(mesh,sfns,eltno,dofnos): constructor mesh is a Mesh sfns is a set of shape functions eltno=this element number, needs to be in mesh dofnos=numbers of this element's dofs (numDofs-sized array) endpts(): cell end points dofpts(): all dof locations dofnos(): all dof values numDofs(): number of dofs eval(n,x): phi[n](x) (x, not xi) ddx(n,x): dphi[n](x) (x, not xi) integral(f1=None,f2=None,derivative=False): integral(f1*f2*phi) f1, f2: ndof-sized vector of coeffs for local function derivative=True, do integral(f1*f2*dphi) """ def __init__(self,mesh,sfns,eltno,dofnos): """ mesh is the mesh it is built on sfns is the Shapefuns member eltno is this element's number endnos is a pair of ints giving the numbers of the endpoints in the mesh dofnos is an array of ints giving the numbers of the dofs """ # this element no. is same as mesh element no. assert(0 <= eltno < mesh.size()) self.__eltno = eltno # print "eltno=", eltno endnos = mesh.cells(eltno) assert(len(endnos) == 2) self.__endpts = np.array(mesh.coordinates(endnos)) self.__numDofs = sfns.size() assert(sfns.size() == len(dofnos)) self.__dofnos = dofnos self.__dofpts = np.linspace(self.__endpts[0],self.__endpts[1],self.__numDofs) self.__sfns = sfns # # Gauss points and weights: 3-pts are high enough for this # self.__gausspts = np.array(\ (.112701665379258311482073460022,.5,.887298334620741688517926539978)) self.__gausswts = np.array((5.0/18.0,8.0/18.0,5.0/18.0)) # for efficiency, generate an array of shape functions evaluated # at the Gauss points self.__gaussvals = np.empty([self.__numDofs,self.__gausspts.size]) for n in range(self.__numDofs): self.__gaussvals[n,:] = sfns.eval(n,self.__gausspts[:]) def endpts(self): """ access endpoints """ return self.__endpts def dofpts(self): """ access dofpoints """ return self.__dofpts def dofnos(self): """ access dof point numbers """ return self.__dofnos def numDofs(self): """ access numDofs """ return self.__numDofs def eval(self,n,x): """ evaluate the n-th shape function on this element at the spatial coordinate x """ # map x to xi xx = np.array(x) xi = (xx-self.__endpts[0])/(self.__endpts[1]-self.__endpts[0]) # evaluate return self.__sfns.eval(n,xi) * (xi >= 0.)*(xi <= 1.) def ddx(self,n,x): """ evaluate the n-th shape function on this element at the spatial coordinate x """ # map x to xi xi = (x-self.__endpts[0])/(self.__endpts[1]-self.__endpts[0]) # evaluate return self.__sfns.ddx(n,xi)*(xi >= 0.)*(xi <= 1.0) def integral(self,f1=None,f2=None,derivative=False): """ Integrate either phi[i](xi)*f1(xi)*f2(xi) or dphi[i]*f1*f2 over this element, depending on if derivative is False or True Returns a vector of 3 results, one for phi[0], one for phi[1], and one for phi[2]. f1 and f2 are assumed to have been mapped to this element as arrays if derivative is True, phi is replaced with dphi """ L = self.__endpts[1]-self.__endpts[0] # length of element t = self.__gausswts.copy() gp = self.__gausspts if f1 != None: assert(len(f1) == self.__numDofs) fvals = np.zeros([self.__gausspts.size]) for n in range(self.__numDofs): fvals += f1[n]*self.__gaussvals[n,:] t *= fvals if f2 != None: assert(len(f2) == self.__numDofs) fvals = np.zeros([self.__gausspts.size]) for n in range(self.__numDofs): fvals += f2[n]*self.__gaussvals[n,:] t *= fvals if derivative: # really: t *= L*(1/L) q = np.dot(np.array([self.__sfns.ddx(0,gp), \ self.__sfns.ddx(1,gp), \ self.__sfns.ddx(2,gp)]),t) else: t *= L # correct for affine map x->xi q = np.dot(np.array([self.__sfns.eval(0,gp), \ self.__sfns.eval(1,gp), \ self.__sfns.eval(2,gp)]),t) return q class FunctionSpace(object): """ A FunctionSpace has a list of elements numbered and with coords according to mesh FunctionSpace(mesh,sfns): constructor, sfns is ShapeFuns size(): number of elements ndofs(): number of all dofs dofpts(n=None): coordinates of dof[n] or all dofs int_phi_phi(c=None,derivative=[False,False]): integral(c*phi*phi) or integral(c*dphi*phi) or integral(c*dphi*dphi) or integral(c*phi*dphi) int_phi(f=None,derivative=False): integral(f*phi) or integral(f*dphi) """ def __init__(self,mesh,sfns): """ mesh is the mesh sfns is the Shapefuns """ self.__size = mesh.size() # number the elements in same way as mesh self.__elts = list([]) self.__dofpts = list([]) self.__nDOFs = 0 for n in range(self.__size): # ASSUMING only boundary points are number 0 and (self.__size) if n == 0: self.__nDOFs += 3 dofs = [2*n, 2*n+1, 2*n+2] newdofs = range(3) else: self.__nDOFs += 2 dofs = [2*n, 2*n+1, 2*n+2] newdofs = range(1,3) fe = FiniteElement(mesh,sfns,n,dofs) self.__elts.append(fe) for i in newdofs: self.__dofpts.append(fe.dofpts()[i]) self.__dofpts = np.array(self.__dofpts) def size(self): return len(self.__elts) def Ndofs(self): return self.__nDOFs def dofpts(self,n=None): if n == None: return self.__dofpts else: return self.__dofpts[n] def int_phi_phi(self, c=None, derivative=[False,False]): """ assemble $\int c(x)\phi(x)\phi(x) dx$ or with $d\phi/dx$ """ A = np.zeros([self.__nDOFs,self.__nDOFs]) # loop over elements for elt in self.__elts: d0 = elt.dofnos() if c != None: cc = c[d0] else: cc = None N = elt.numDofs() endpts = elt.endpts() L = endpts[1]-endpts[0] # length of elt for j in range(N): if derivative[1]: # chain rule: d(xi)/d(x) = 1/L phi = elt.ddx(j,elt.dofpts())/L else: phi = elt.eval(j,elt.dofpts()) A[d0,d0[j]] += elt.integral(phi, cc, derivative=derivative[0]) return A def int_phi(self, f=None, derivative=False): """ assemble $\int f(x)\phi(x) dx$ or with $d\phi/dx$ """ F = np.zeros ( self.__nDOFs ) for elt in self.__elts: d0 = elt.dofnos() if f != None: ff = f[d0] else: ff = None F[d0] += elt.integral ( ff,f2=None,derivative=derivative) return F if __name__ == '__main__': """ One test case """ N = 5 rightpt = 5.0 print "" print "FEM1D_CLASSES" print " Built-in test case with dx = ", rightpt / N mesh = Mesh(N,0.0,rightpt) coords = mesh.coordinates() if N==5: print "mesh.coordinates()=",coords print "mesh.cells()=", mesh.cells() # generate an element sfns = Shapefns() print "sfns.size()-3=",sfns.size()-3 xi = np.linspace(0,1,100) import matplotlib.pyplot as plt if False: for n in range(3): plt.plot(xi,sfns.eval(n,xi)) plt.show() plt.plot(xi,sfns.ddx(n,xi)) plt.show() elt = FiniteElement(mesh,sfns,0,[0,1,2]) if N==5 and np.abs(coords[-1]-5.0) < 1.e-10: # test some integrals print "" print "elt integral() err=", max(abs(elt.integral()-[1./6,2./3,1./6])) print "integral(deriv) err=", max(abs(elt.integral(derivative=True)- [-1,0,1])) # test some more integrals # pick the function f(x)=x, find its expansion coefs ex = np.empty([sfns.size()]) ex[0] = elt.endpts()[0] ex[2] = elt.endpts()[1] ex[1] = .5*(ex[0]+ex[2]) ex2 = ex**2 print "integral(x) err=",max(abs(elt.integral(ex)-[0,1./3,1./6])) print "integral(x**2) err=",max(abs(elt.integral(ex2)-[-1./60,1./5,3./20])) print "integral(x**2) err=",max(abs(elt.integral(ex,ex)-[-1./60,1./5,3./20])) print "integral(x,phi') err=",\ max(abs(elt.integral(ex,derivative=True)-[-1./6,-2./3,5./6])) print "integral(x**2,phi') err=",\ max(abs(elt.integral(ex2,derivative=True)-[0,-2./3,2./3])) print V = FunctionSpace(mesh,sfns) print "" print "V.Ndofs()-correct=",V.Ndofs()-(2*N+1) print "V.size()-correct=",V.size()-N x = V.dofpts() f = x.copy() print "" print "error in integral x over [",x[0],",",x[-1],"]=",\ np.sum(V.int_phi(f))-x[-1]**2/2. f = 0.0*x+1 print "error in integral 1 over [",x[0],",",x[-1],"]=",\ np.sum(V.int_phi(f))-x[-1] f = x.copy()**2 print "error in integral x**2 over [",x[0],",",x[-1],"]=",\ np.sum(V.int_phi(f))-x[-1]**3/3. f = x.copy()**3 print "error in integral x**3 over [",x[0],",",x[-1],"]=",\ np.sum(V.int_phi(f))-x[-1]**4/4. f = x.copy()**4 print "error in integral x**4 over [",x[0],",",x[-1],"]=",\ np.sum(V.int_phi(f))-x[-1]**5/5.," (should be nonzero.)" print "" print "norm(V.dofpts()-correct)=",\ la.norm(V.dofpts()-np.linspace(0,coords[-1],2*N+1)) # check eq \int \phi \phi * u = 1 gives 1 back (homog Neumann b.c.) # generate matrix by assembling $A_{ij}=\int\phi_i\phi_j$ A = V.int_phi_phi() if N ==5 and np.abs(coords[-1]-5.0) < 1.e-10: print "error A00=",A[0,0]-2./15. print "error A01=",A[0,1]-1./15. print "error A02=",A[0,2]+1./30. print "error A11=",A[1,1]-8./15. print "error A12=",A[1,2]-1./15. print print "error A22=",A[2,2]-4./15. print "error A23=",A[2,3]-1./15. print "error A24=",A[2,4]+1./30. print "error A33=",A[3,3]-8./15. print "error A34=",A[3,4]-1./15. print Ndofs = V.Ndofs() f = np.random.rand(Ndofs) b = V.int_phi(f) print "norm(A*f-b)=",la.norm(np.dot(A.transpose(),f)-b) #trivial check with coefficient c = np.ones([Ndofs]) A1 = V.int_phi_phi(c) print "Norm difference matrices=",la.norm(A-A1) # try putting a coefficient in: c(x) = (1+x) # rhs = ones, soln = 1/(1+x) c = (1.0+x) B = V.int_phi_phi(c) if N == 5 and np.abs(coords[-1]-5.0) < 1.e-10: print "" print "error B00=",B[0,0]-3./20. print "error B01=",B[0,1]-1./15. print "error B02=",B[0,2]+1./20. print "error B11=",B[1,1]-12./15. print "error B12=",B[1,2]-2./15. print print "error B22=",B[2,2]-8./15. print "error B23=",B[2,3]-2./15. print "error B24=",B[2,4]+1./12. print "error B33=",B[3,3]-4./3. print "error B34=",B[3,4]-3./15. C = V.int_phi_phi(derivative=[True,True]) if N == 5 and np.abs(coords[-1]-5.0) < 1.e-10: print "\n" print "Laplace Matrix" print "error C00*3=",C[0,0]-7./3. print "error C01*3=",C[0,1]+8./3. print "error C02*3=",C[0,2]-1./3. print "error C11*3=",C[1,1]-16./3. print "error C12*3=",C[1,2]+8./3. print print "error C22*3=",C[2,2]-14./3. print "error C23*3=",C[2,3]+8./3. print "error C24*3=",C[2,4]-1./3. print "error C33*3=",C[3,3]-16./3. print "error C34*3=",C[3,4]+8./3. print soln2 = np.ones([Ndofs]) b2 = np.dot(C,soln2) print "const soln Laplace, norm check=",la.norm(b2) soln = x b0 = np.dot(C,soln) rhs0 = V.int_phi(np.zeros([Ndofs])) # natural b.c. not satisfied, don't check them rhs0[0] = -b0[0] rhs0[-1] = -b0[-1] print "soln=x Laplace, norm check=",la.norm(rhs0+b0) soln = x**2 b1 = np.dot(C,soln) rhs1 = V.int_phi(2.0*np.ones([Ndofs])) # natural b.c. not satisfied on right, don't check it rhs1[-1] = -b1[-1] print "soln=x**2 Laplace, norm check=",la.norm(rhs1+b1) D = V.int_phi_phi(derivative=[False,True]) soln = np.ones([V.Ndofs()]) b2 = np.dot(D,soln) print "norm check (rhs d/dx+Neumann, const soln)=",la.norm(b2) D[0,0] = 1.0 D[0,1:] = 0.0 D[-1,-1] = 1.0 D[-1,0:-1] = 0.0 soln = x b3 = np.dot(D,soln) rhs3 = V.int_phi(np.ones([Ndofs])) rhs3[0] = soln[0] rhs3[-1] = soln[-1] print "norm check (d/dx+Dirichlet soln=x)=",la.norm(rhs3-b3) print "" print "FEM1D_CLASSES" print " Normal end of execution."