FEM1D_CLASSES

  Built-in test case with dx =  1.0
mesh.coordinates()= [ 0.  1.  2.  3.  4.  5.]
mesh.cells()= [[0 1 2 3 4]
 [1 2 3 4 5]]
sfns.size()-3= 0
eltno= 0
n= [0 1]
elt integral() err= 2.77555756156e-17
integral(deriv) err= 0.0
integral(x) err= 2.77555756156e-17
integral(x**2) err= 2.77555756156e-17
integral(x**2) err= 2.77555756156e-17
integral(x,phi') err= 1.11022302463e-16
integral(x**2,phi') err= 1.11022302463e-16

eltno= 0
n= [0 1]
eltno= 1
n= [1 2]
eltno= 2
n= [2 3]
eltno= 3
n= [3 4]
eltno= 4
n= [4 5]

V.Ndofs()-correct= 0
V.size()-correct= 0

error in integral x over [ 0.0 , 5.0 ]= 0.0
error in integral 1 over [ 0.0 , 5.0 ]= 8.881784197e-16
error in integral x**2 over [ 0.0 , 5.0 ]= 0.0
error in integral x**3 over [ 0.0 , 5.0 ]= 2.84217094304e-14
error in integral x**4 over [ 0.0 , 5.0 ]= 0.0416666666667  (should be nonzero.)

norm(V.dofpts()-correct)= 0.0
error A00= 2.77555756156e-17
error A01= 1.38777878078e-17
error A02= 0.0
error A11= 0.0
error A12= 0.0

error A22= 5.55111512313e-17
error A23= 1.38777878078e-17
error A24= 0.0
error A33= 0.0
error A34= 0.0

norm(A*f-b)= 4.44305997371e-17
Norm difference matrices= 5.6371840561e-17

error B00= 5.55111512313e-17
error B01= 2.77555756156e-17
error B02= -6.93889390391e-18
error B11= -1.11022302463e-16
error B12= 0.0

error B22= 1.11022302463e-16
error B23= 5.55111512313e-17
error B24= 0.0
error B33= 0.0
error B34= -2.77555756156e-17


Laplace Matrix
error C00*3= 0.0
error C01*3= -4.4408920985e-16
error C02*3= 1.66533453694e-16
error C11*3= 8.881784197e-16
error C12*3= -4.4408920985e-16

error C22*3= 0.0
error C23*3= -4.4408920985e-16
error C24*3= 1.66533453694e-16
error C33*3= 8.881784197e-16
error C34*3= -4.4408920985e-16

const soln Laplace, norm check= 0.0
soln=x Laplace, norm check= 0.0
soln=x**2 Laplace, norm check= 8.5997505699e-16
norm check (rhs d/dx+Neumann, const soln)= 1.32542961742e-16
norm check (d/dx+Dirichlet soln=x)= 3.6821932063e-16

FEM1D_CLASSES
  Normal end of execution.