FEM1D_CLASSES Built-in test case with dx = 1.0 mesh.coordinates()= [ 0. 1. 2. 3. 4. 5.] mesh.cells()= [[0 1 2 3 4] [1 2 3 4 5]] sfns.size()-3= 0 eltno= 0 n= [0 1] elt integral() err= 2.77555756156e-17 integral(deriv) err= 0.0 integral(x) err= 2.77555756156e-17 integral(x**2) err= 2.77555756156e-17 integral(x**2) err= 2.77555756156e-17 integral(x,phi') err= 1.11022302463e-16 integral(x**2,phi') err= 1.11022302463e-16 eltno= 0 n= [0 1] eltno= 1 n= [1 2] eltno= 2 n= [2 3] eltno= 3 n= [3 4] eltno= 4 n= [4 5] V.Ndofs()-correct= 0 V.size()-correct= 0 error in integral x over [ 0.0 , 5.0 ]= 0.0 error in integral 1 over [ 0.0 , 5.0 ]= 8.881784197e-16 error in integral x**2 over [ 0.0 , 5.0 ]= 0.0 error in integral x**3 over [ 0.0 , 5.0 ]= 2.84217094304e-14 error in integral x**4 over [ 0.0 , 5.0 ]= 0.0416666666667 (should be nonzero.) norm(V.dofpts()-correct)= 0.0 error A00= 2.77555756156e-17 error A01= 1.38777878078e-17 error A02= 0.0 error A11= 0.0 error A12= 0.0 error A22= 5.55111512313e-17 error A23= 1.38777878078e-17 error A24= 0.0 error A33= 0.0 error A34= 0.0 norm(A*f-b)= 4.44305997371e-17 Norm difference matrices= 5.6371840561e-17 error B00= 5.55111512313e-17 error B01= 2.77555756156e-17 error B02= -6.93889390391e-18 error B11= -1.11022302463e-16 error B12= 0.0 error B22= 1.11022302463e-16 error B23= 5.55111512313e-17 error B24= 0.0 error B33= 0.0 error B34= -2.77555756156e-17 Laplace Matrix error C00*3= 0.0 error C01*3= -4.4408920985e-16 error C02*3= 1.66533453694e-16 error C11*3= 8.881784197e-16 error C12*3= -4.4408920985e-16 error C22*3= 0.0 error C23*3= -4.4408920985e-16 error C24*3= 1.66533453694e-16 error C33*3= 8.881784197e-16 error C34*3= -4.4408920985e-16 const soln Laplace, norm check= 0.0 soln=x Laplace, norm check= 0.0 soln=x**2 Laplace, norm check= 8.5997505699e-16 norm check (rhs d/dx+Neumann, const soln)= 1.32542961742e-16 norm check (d/dx+Dirichlet soln=x)= 3.6821932063e-16 FEM1D_CLASSES Normal end of execution.