#! /usr/bin/env python # #*****************************************************************************80 def assemble_fem ( x_num, x, element_num, element_node, quad_num, t, k_fun, \ rhs_fun ): #*****************************************************************************80 # ## ASSEMBLE_FEM assembles the finite element stiffness matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 November 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM), the coordinates of nodes. # # Input, integer ELEMENT_NUM, the number of elements. # # Input, integer ELEMENT_NODE(2,ELEMENT_NUM); # ELEMENT_NODE(I,J) is the global index of local node I in element J. # # Input, integer QUAD_NUM, the number of quadrature points used in assembly. # # Input, real T, the current time. # # Input, real K_FUN(), a function to evaluate the heat conductivity. # # Input, real RHS_FUN(), a function to evaluate the right hand side. # # Output, sparse real A(X_NUM,X_NUM), the finite element stiffness matrix. # # Output, real B(X_NUM), the right hand side. # # Local parameters: # # Local, real BI, DBIDX, the value of some basis function # and its first derivative at a quadrature point. # # Local, real BJ, DBJDX, the value of another basis # function and its first derivative at a quadrature point. # from basis_function import basis_function from quadrature_set import quadrature_set from reference_to_physical import reference_to_physical import numpy as np # # Initialize the arrays. # b = np.zeros ( x_num ) a = np.zeros ( ( x_num, x_num ) ) # # Get the quadrature weights and nodes. # reference_w, reference_q = quadrature_set ( quad_num ) # # Consider each ELEMENT. # for element in range ( 0, element_num ): element_x = np.zeros ( 2 ) element_x[0] = x[element_node[0,element]] element_x[1] = x[element_node[1,element]] element_q = reference_to_physical ( element, element_node, x, quad_num, \ reference_q ) element_area = element_x[1] - element_x[0] element_w = np.zeros ( quad_num ) for quad in range ( 0, quad_num ): element_w[quad] = ( element_area / 2.0 ) * reference_w[quad] # # Consider the QUAD-th quadrature point in the element. # k_value = k_fun ( quad_num, element_q, t ) rhs_value = rhs_fun ( quad_num, element_q, t ) for quad in range ( 0, quad_num ): # # Consider the TEST-th test function. # # We generate an integral for every node associated with an unknown. # for i in range ( 0, 2 ): test = element_node[i,element] bi, dbidx = basis_function ( test, element, x, element_q[quad] ) b[test] = b[test] + element_w[quad] * rhs_value[quad] * bi # # Consider the BASIS-th basis function, which is used to form the # value of the solution function. # for j in range ( 0, 2 ): basis = element_node[j,element] bj, dbjdx = basis_function ( basis, element, x, element_q[quad] ) a[test,basis] = a[test,basis] + element_w[quad] * ( \ + k_value[quad] * dbidx * dbjdx ) return a, b