#!/usr/bin/env python #*****************************************************************************80 def fem1d_heat_explicit_test01 ( ): #*****************************************************************************80 # ## FEM1D_HEAT_EXPLICIT_TEST01 runs a simple test. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 November 2014 # # Author: # # John Burkardt # from assemble_mass import assemble_mass from fem1d_heat_explicit import fem1d_heat_explicit from r8mat_write import r8mat_write from r8vec_write import r8vec_write import numpy as np from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import matplotlib.pyplot as plt print '' print 'FEM1D_HEAT_EXPLICIT_TEST01:' print ' The time dependent 1D heat equation is' print '' print ' Ut - k * Uxx = f(x,t)' print '' print ' for space interval A <= X <= B with boundary conditions' print '' print ' U(A,t) = UA(t)' print ' U(B,t) = UB(t)' print '' print ' and time interval T0 <= T <= T1 with initial condition' print '' print ' U(X,T0) = U0(X).' print '' print ' To compute an approximate solution:' print ' the interval [A,B] is replace by a discretized mesh Xi' print ' a set of finite element functions PSI(X) are determined,' print ' the solution U is written as a weighted sum of the basis functions,' print ' the weak form of the differential equation is written,' print ' a time grid Tj is imposed, and time derivatives replaced by' print ' an explicit forward Euler first difference,' print '' print ' The continuous PDE has now been transformed into a set of algebraic' print ' equations for the coefficients C(Xi,Tj).' # # Set the nodes. # x_num = 21 x_min = 0.0 x_max = 1.0 dx = ( x_max - x_min ) / ( x_num - 1 ) x = np.linspace ( x_min, x_max, x_num ) # # Set the times. # t_num = 401 t_min = 0.0 t_max = 80.0 dt = ( t_max - t_min ) / ( t_num - 1 ) t = np.linspace ( t_min, t_max, t_num ) # # Set finite element information. # element_num = x_num - 1 element_node = np.zeros ( ( 2, element_num ) ) for j in range ( 0, element_num ): element_node[0,j] = j element_node[1,j] = j + 1 quad_num = 3 mass = assemble_mass ( x_num, x, element_num, element_node, quad_num ) print '' print ' Number of X nodes = %d' % ( x_num ) print ' X interval = [ %f, %f ]' % ( x_min, x_max ) print ' X step size = %f' % ( dx ) print ' Number of T steps = %d' % ( t_num ) print ' T interval = [ %f, %f ]' % ( t_min, t_max ) print ' T step size = %f' % ( dt ) print ' Number of elements = %d' % ( element_num ) print ' Number of quadrature points = %d' % ( quad_num ) u_mat = np.zeros ( ( x_num, t_num ) ) for j in range ( 0, t_num ): if ( j == 0 ): u = ic_test01 ( x_num, x, t[j] ) u = bc_test01 ( x_num, x, t[j], u ) else: u = fem1d_heat_explicit ( x_num, x, t[j-1], dt, k_test01, \ rhs_test01, bc_test01, element_num, element_node, quad_num, mass, u ) for i in range ( 0, x_num ): u_mat[i,j] = u[i] # # Make a product grid of T and X for plotting. # t_mat, x_mat = np.meshgrid ( t, x ) # # Make a mesh plot of the solution. # fig = plt.figure ( ) ax = fig.add_subplot ( 111, projection = '3d' ) surf = ax.plot_surface ( x_mat, t_mat, u_mat ) plt.xlabel ( '<---X--->' ) plt.ylabel ( '<---T--->' ) plt.title ( 'U(X,T)' ) plt.savefig ( 'plot_test01.png' ) plt.show ( ) # # Write the data to files. # r8mat_write ( 'h_test01.txt', x_num, t_num, u_mat ) r8vec_write ( 't_test01.txt', t_num, t ) r8vec_write ( 'x_test01.txt', x_num, x ) print '' print ' H(X,T) written to "h_test01.txt"' print ' T values written to "t_test01.txt"' print ' X values written to "x_test01.txt"' print '' print 'FEM1D_HEAT_EXPLICIT_TEST01:' print ' Normal end of execution.' return def bc_test01 ( x_num, x, t, u ): #*****************************************************************************80 # ## BC_TEST01 sets the boundary conditions for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 02 February 2012 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM,1), the coordinates of the points. # # Input, real T, the current time. # # Input, real U(X_NUM), the solution at time T. # # Output, real U(X_NUM), the solution at time T, with # boundary conditions enforced. # u[0] = 90.0 u[x_num-1] = 70.0 return u def ic_test01 ( x_num, x, t ): #*****************************************************************************80 # ## IC_TEST01 sets the initial condition for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 January 2012 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM), the node coordinates. # # Input, real T, the time. # # Output, real U(X_NUM), the initial value of U. # import numpy as np u = np.zeros ( x_num ) for i in range ( 0, x_num ): u[i] = 50.0 return u def k_test01 ( x_num, x, t ): #*****************************************************************************80 # ## K_TEST01 evaluates the K coefficient for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 January 2012 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of evaluation points. # # Input, real X(X_NUM,1), the evaluation points. # # Input, real T, the evaluation time. # # Output, real K_VALUE(X_NUM,1), the value of K(X,T). # import numpy as np k_value = np.zeros ( x_num ) for i in range ( 0, x_num ): k_value[i] = 0.002 return k_value def rhs_test01 ( x_num, x, t ): #*****************************************************************************80 # ## RHS_TEST01 evaluates the right hand side function for problem 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 January 2012 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of evaluation points. # # Input, real X(X_NUM), the evaluation points. # # Input, real T, the time. # # Output, real RHS_VALUE(X_NUM), the right hand side function at # the given positions and time T. # import numpy as np rhs_value = np.zeros ( x_num ) return rhs_value if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fem1d_heat_explicit_test01 ( ) timestamp ( )