#!/usr/bin/env python # def fem1d_heat_explicit_test02 ( ): #*****************************************************************************80 # ## FEM1D_HEAT_EXPLICIT_TEST02 does a problem with known solution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 November 2014 # # Author: # # John Burkardt # from assemble_mass import assemble_mass from fem1d_heat_explicit import fem1d_heat_explicit from r8mat_write import r8mat_write from r8vec_write import r8vec_write import numpy as np from math import sqrt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import matplotlib.pyplot as plt print '' print 'FEM1D_HEAT_EXPLICIT_TEST02:' print ' Using the finite element method,' print ' compute an approximate solution to the time-dependent' print ' one dimensional heat equation for a problem where we' print ' know the exact solution.' print '' print ' dH/dt - K * d2H/dx2 = f(x,t)' # # Set the nodes. # x_num = 21 x_min = 0.0 x_max = 1.0 dx = ( x_max - x_min ) / ( x_num - 1 ) x = np.linspace ( x_min, x_max, x_num ) # # Set the times. # t_num = 51 t_min = 0.0 t_max = 10.0 dt = ( t_max - t_min ) / ( t_num - 1 ) t = np.linspace ( t_min, t_max, t_num ) # # Set finite element information. # element_num = x_num - 1 element_node = np.zeros ( ( 2, element_num ) ) for j in range ( 0, element_num ): element_node[0,j] = j element_node[1,j] = j + 1 quad_num = 3 mass = assemble_mass ( x_num, x, element_num, element_node, quad_num ) print '' print ' Number of X nodes = %d' % ( x_num ) print ' X interval = [ %f, %f ]' % ( x_min, x_max ) print ' X step size = %f' % ( dx ) print ' Number of T steps = %d' % ( t_num ) print ' T interval = [ %f, %f ]' % ( t_min, t_max ) print ' T step size = %f' % ( dt ) print ' Number of elements = %d' % ( element_num ) print ' Number of quadrature points = %d' % ( quad_num ) # # Running the code produces an array H of temperatures H(t,x), # and vectors x and t. # g_mat = np.zeros ( ( x_num, t_num ) ) h_mat = np.zeros ( ( x_num, t_num ) ) print '' print ' Step Time RMS Error' print '' for j in range ( 0, t_num ): if ( j == 0 ): h = ic_test02 ( x_num, x, t[j] ) h = bc_test02 ( x_num, x, t[j], h ) else: h = fem1d_heat_explicit ( x_num, x, t[j-1], dt, k_test02, \ rhs_test02, bc_test02, element_num, element_node, quad_num, mass, h ) g = exact_test02 ( x_num, x, t[j] ) e = 0.0 for i in range ( 0, x_num ): e = e + ( h[i] - g[i] ) ** 2 e = sqrt ( e / x_num ) print ' %4d %14.6g %14.6g' % ( j, t[j], e ) for i in range ( 0, x_num ): g_mat[i,j] = g[i] h_mat[i,j] = h[i] # # Make a product grid of T and X for plotting. # t_mat, x_mat = np.meshgrid ( t, x ) # # Plot the data. # fig = plt.figure ( ) ax = fig.add_subplot ( 111, projection = '3d' ) surf = ax.plot_surface ( x_mat, t_mat, h_mat ) plt.xlabel ( '<---X--->' ) plt.ylabel ( '<---T--->' ) plt.title ( 'U(X,T)' ) plt.savefig ( 'plot_test02.png' ) plt.show ( ) # # Write the data to files. # r8mat_write ( 'g_test02.txt', x_num, t_num, g_mat ) r8mat_write ( 'h_test02.txt', x_num, t_num, h_mat ) r8vec_write ( 't_test02.txt', t_num, t ) r8vec_write ( 'x_test02.txt', x_num, x ) print '' print ' G(X,T) written to "g_test02.txt"' print ' H(X,T) written to "h_test02.txt"' print ' T values written to "t_test02.txt"' print ' X values written to "x_test02.txt"' print '' print 'FEM1D_HEAT_EXPLICIT_TEST02:' print ' Normal end of execution.' return def bc_test02 ( x_num, x, t, h ): #*****************************************************************************80 # ## BC_TEST02 evaluates the boundary conditions for problem 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 November 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM), the node coordinates. # # Input, real T, the current time. # # Input, real H(X_NUM), the current heat values. # # Output, real H(X_NUM), the current heat values, after boundary # conditions have been imposed. # import numpy as np x_array = np.zeros ( 1 ) x_array[0] = x[0] h[0] = exact_test02 ( 1, x_array, t ) x_array[0] = x[x_num-1] h[x_num-1] = exact_test02 ( 1, x_array, t ) return h def exact_test02 ( x_num, x, t ): #*****************************************************************************80 # ## EXACT_TEST02 evaluates the exact solution for problem 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 November 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM), the node coordinates. # # Input, real T, the initial time. # # Output, real H(X_NUM), the exact solution at X and T. # from math import exp from math import sin from math import sqrt import numpy as np k = k_test02 ( x_num, x, t ) h = np.zeros ( x_num ) for i in range ( 0, x_num ): h[i] = exp ( - t ) * sin ( sqrt ( k[i] ) * x[i] ) return h def ic_test02 ( x_num, x, t ): #*****************************************************************************80 # ## IC_TEST02 evaluates the initial condition for problem 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 November 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM), the node coordinates. # # Input, real T, the initial time. # # Output, real H(X_NUM), the heat values at the initial time. # h = exact_test02 ( x_num, x, t ) return h def k_test02 ( x_num, x, t ): #*****************************************************************************80 # ## K_TEST02 evaluates the conductivity for problem 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 November 2014 # # Author: # # John Burkardt # # Parameters: # # Output, real K, the conducitivity. # # Parameters: # # Input, integer X_NUM, the number of evaluation points. # # Input, real X(X_NUM), the evaluation points. # # Input, real T, the evaluation time. # # Output, real K_VALUE(X_NUM), the value of K(X,T). # import numpy as np k_value = np.zeros ( x_num ) for i in range ( 0, x_num ): k_value[i] = 0.002 return k_value def rhs_test02 ( x_num, x, t ): #*****************************************************************************80 # ## RHS_TEST02 evaluates the right hand side for problem 2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 November 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer X_NUM, the number of nodes. # # Input, real X(X_NUM), the node coordinates. # # Input, real T, the time. # # Output, real RHS_VALUE(X_NUM), the source term. # import numpy as np rhs_value = np.zeros ( x_num ) return rhs_value if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fem1d_heat_explicit_test02 ( ) timestamp ( )