#!/usr/bin/env python # def quadrature_set ( quad_num ): #*****************************************************************************80 # ## QUADRATURE_SET sets abscissas and weights for Gauss-Legendre quadrature. # # Discussion: # # The integration interval is [ -1, 1 ]. # # The weight function w(x) = 1.0 # # The integral to approximate: # # Integral ( -1 <= X <= 1 ) F(X) dX # # Quadrature rule: # # Sum ( 1 <= I <= QUAD_NUM ) QUAD_W(I) * F ( QUAD_X(I) ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 November 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer QUAD_NUM, the order of the rule. # QUAD_NUM must be between 1 and 6. # # Output, real QUAD_W(QUAD_NUM), the weights of the rule. # # Output, real QUAD_X(QUAD_NUM), the abscissas of the rule. # from sys import exit import numpy as np if ( quad_num == 1 ): quad_x = np.array ( [ \ 0.0 ] ) quad_w = np.array ( [ \ 2.0 ] ) elif ( quad_num == 2 ): quad_x = np.array ( [ \ - 0.577350269189625764509148780502, \ 0.577350269189625764509148780502 ] ) quad_w = np.array ( [ \ 1.0, \ 1.0 ] ) elif ( quad_num == 3 ): quad_x = np.array ( [ \ - 0.774596669241483377035853079956, \ 0.0, \ 0.774596669241483377035853079956 ] ) quad_w = np.array ( [ \ 5.0 / 9.0, \ 8.0 / 9.0, \ 5.0 / 9.0 ] ) elif ( quad_num == 4 ): quad_x = np.array ( [ \ - 0.861136311594052575223946488893, \ - 0.339981043584856264802665759103, \ 0.339981043584856264802665759103, \ 0.861136311594052575223946488893 ] ) quad_w = np.array ( [ \ 0.347854845137453857373063949222, \ 0.652145154862546142626936050778, \ 0.652145154862546142626936050778, \ 0.347854845137453857373063949222 ] ) elif ( quad_num == 5 ): quad_x = np.array ( [ \ - 0.906179845938663992797626878299, \ - 0.538469310105683091036314420700, \ 0.0, \ 0.538469310105683091036314420700, \ 0.906179845938663992797626878299 ] ) quad_w = np.array ( [ \ 0.236926885056189087514264040720, \ 0.478628670499366468041291514836, \ 0.568888888888888888888888888889, \ 0.478628670499366468041291514836, \ 0.236926885056189087514264040720 ] ) elif ( quad_num == 6 ): quad_x = np.array ( [ \ - 0.932469514203152027812301554494, \ - 0.661209386466264513661399595020, \ - 0.238619186083196908630501721681, \ 0.238619186083196908630501721681, \ 0.661209386466264513661399595020, \ 0.932469514203152027812301554494 ] ) quad_w = np.array ( [ \ 0.171324492379170345040296142173, \ 0.360761573048138607569833513838, \ 0.467913934572691047389870343990, \ 0.467913934572691047389870343990, \ 0.360761573048138607569833513838, \ 0.171324492379170345040296142173 ] ) else: print '' print 'QUADRATURE_SET - Fatal error!' print ' The requested order %d is not available.' % ( quad_num ) exit ( 'QUADRATURE_SET - Fatal error!' ) return quad_w, quad_x def quadrature_set_test ( ): #*****************************************************************************80 # ## QUADRATURE_SET_TEST tests QUADRATURE_SET. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 November 2014 # # Author: # # John Burkardt # import numpy as np print '' print 'QUADRATURE_SET_TEST' print ' QUADRATURE_SET returns points and weights for a quadrature rule.' quad_num = 4 quad_w, quad_x = quadrature_set ( quad_num ) print '' print ' I W[i] X[i]' print '' for i in range ( 0, quad_num ): print ' %2d %8.4f %8.4f' % ( i, quad_w[i], quad_x[i] ) print '' print 'QUADRATURE_SET_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) quadrature_set_test ( ) timestamp ( )