#! /usr/bin/env python # def fem2d_bvp_linear ( ): # ## FEM2D_BVP_LINEAR solves a 2D boundary value problem in the unit square. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/fem2d_bvp_linear/fem2d_bvp_linear.py # # Discussion: # # The PDE is defined for 0 < x < 1, 0 < y < 1: # - uxx - uyy = f(x) # with boundary conditions # u(0,y) = 0, # u(1,y) = 0, # u(x,0) = 0, # u(x,1) = 0. # # The exact solution is: # exact(x) = x * ( 1 - x ) * y * ( 1 - y ). # The right hand side f(x) is: # f(x) = 2 * x * ( 1 - x ) + 2 * y * ( 1 - y ) # # The unit square is divided into N by N squares. Bilinear finite # element basis functions are defined, and the solution is sought as a # piecewise linear combination of these basis functions. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 October 2014 # # Author: # # John Burkardt # # Local parameters: # # Local, integer ELEMENT_NUM, the number of elements. # # Local, integer LINEAR_ELEMENT_NUM, the number of elements # in a row in the X or Y dimension. # # Local, integer NODE_LINEAR_NUM, the number of nodes in the X or Y dimension. # # Local, integer NODE_NUM, the number of nodes. # import numpy as np import scipy.linalg as la from timestamp import timestamp timestamp ( ) print "" print "FEM2D_BVP_LINEAR" print " Python version" print " Given the boundary value problem on the unit square:" print " - uxx - uyy = x, 0 < x < 1, 0 < y < 1" print " with boundary conditions" print " u(0,y) = u(1,y) = u(x,0) = u(x,1) = 0," print " demonstrate how the finite element method can be used to" print " define and compute a discrete approximation to the solution." print "" print " This program uses quadrilateral elements" print " and piecewise continuous bilinear basis functions." element_linear_num = 4 node_linear_num = element_linear_num + 1 element_num = element_linear_num * element_linear_num node_num = node_linear_num * node_linear_num # # Set the coordinates of the nodes. # The same grid is used for X and Y. # a = 0.0 b = 1.0 grid = np.linspace ( a, b, node_linear_num ) print "" print " Nodes along X axis:" print "" for i in range ( 0, node_linear_num ): print " %d %f" %( i, grid[i] ) # # Set up a quadrature rule. # This rule is defined on the reference interval [0,1]. # quad_num = 3 quad_point = np.array ( ( \ 0.112701665379258311482073460022, \ 0.5, \ 0.887298334620741688517926539978 ) ) quad_weight = np.array ( ( \ 5.0 / 18.0, \ 8.0 / 18.0, \ 5.0 / 18.0 ) ) # # Compute the system matrix A and right hand side RHS. # There is an unknown at every node. # A = np.zeros ( ( node_num, node_num ) ) rhs = np.zeros ( node_num ) # # Look at the square in row EX and column EY: # # N *-----* # | | # | | # Y | | # | | # | | # S *-----* # # W X E # for ex in range ( 0, element_linear_num ): w = ex e = ex + 1 xw = grid[w] xe = grid[e] for ey in range ( 0, element_linear_num ): s = ey n = ey + 1 ys = grid[s] yn = grid[n] # # Determine the node indices. # sw = ey * node_linear_num + ex se = ey * node_linear_num + ex + 1 nw = ( ey + 1 ) * node_linear_num + ex ne = ( ey + 1 ) * node_linear_num + ex + 1 # # The 2D quadrature rule is the "product" of X and Y copies of the 1D rule. # for qx in range ( 0, quad_num ): xq = xw + quad_point[qx] * ( xe - xw ) for qy in range ( 0, quad_num ): yq = ys + quad_point[qy] * ( yn - ys ) wq = quad_weight[qx] * quad_weight[qy] * ( xe - xw ) * ( yn - ys ) # # Evaluate all four basis functions, and their X and Y derivatives. # vsw = ( xe - xq ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ) vswx = ( -1.0 ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ) vswy = ( xe - xq ) / ( xe - xw ) * ( -1.0 ) / ( yn - ys ) vse = ( xq - xw ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ) vsex = ( 1.0 ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ) vsey = ( xq - xw ) / ( xe - xw ) * ( -1.0 ) / ( yn - ys ) vnw = ( xe - xq ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ) vnwx = ( -1.0 ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ) vnwy = ( xe - xq ) / ( xe - xw ) * ( 1.0 ) / ( yn - ys ) vne = ( xq - xw ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ) vnex = ( 1.0 ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ) vney = ( xq - xw ) / ( xe - xw ) * ( 1.0 ) / ( yn - ys ) # # Compute contributions to the stiffness matrix. # A[sw,sw] = A[sw,sw] + wq * ( vswx * vswx + vswy * vswy ) A[sw,se] = A[sw,se] + wq * ( vswx * vsex + vswy * vsey ) A[sw,nw] = A[sw,nw] + wq * ( vswx * vnwx + vswy * vnwy ) A[sw,ne] = A[sw,ne] + wq * ( vswx * vnex + vswy * vney ) rhs[sw] = rhs[sw] + wq * vsw * rhs_fn ( xq, yq ) A[se,sw] = A[se,sw] + wq * ( vsex * vswx + vsey * vswy ) A[se,se] = A[se,se] + wq * ( vsex * vsex + vsey * vsey ) A[se,nw] = A[se,nw] + wq * ( vsex * vnwx + vsey * vnwy ) A[se,ne] = A[se,ne] + wq * ( vsex * vnex + vsey * vney ) rhs[se] = rhs[se] + wq * vse * rhs_fn ( xq, yq ) A[nw,sw] = A[nw,sw] + wq * ( vnwx * vswx + vnwy * vswy ) A[nw,se] = A[nw,se] + wq * ( vnwx * vsex + vnwy * vsey ) A[nw,nw] = A[nw,nw] + wq * ( vnwx * vnwx + vnwy * vnwy ) A[nw,ne] = A[nw,ne] + wq * ( vnwx * vnex + vnwy * vney ) rhs[nw] = rhs[nw] + wq * vnw * rhs_fn ( xq, yq ) A[ne,sw] = A[ne,sw] + wq * ( vnex * vswx + vney * vswy ) A[ne,se] = A[ne,se] + wq * ( vnex * vsex + vney * vsey ) A[ne,nw] = A[ne,nw] + wq * ( vnex * vnwx + vney * vnwy ) A[ne,ne] = A[ne,ne] + wq * ( vnex * vnex + vney * vney ) rhs[ne] = rhs[ne] + wq * vne * rhs_fn ( xq, yq ) # # Modify the linear system to enforce the boundary conditions where # X = 0 or 1 or Y = 0 or 1. # v = 0 for j in range ( 0, node_linear_num ): for i in range ( 0, node_linear_num ): if ( i == 0 or i == node_linear_num - 1 or j == 0 or j == node_linear_num - 1 ): A[v,0:node_num] = 0.0 A[v,v] = 1.0 rhs[v] = 0.0 v = v + 1 # # Solve the linear system. # u = la.solve ( A, rhs ) # # Evaluate the exact solution at the nodes. # uex = np.zeros ( node_linear_num * node_linear_num ) v = 0 for j in range ( 0, node_linear_num ): y = grid[j] for i in range ( 0, node_linear_num ): x = grid[i] uex[v] = exact_fn ( x, y ) v = v + 1 # # Compare the solution and the error at the nodes. # print "" print " I J V X Y U Uexact" print "" v = 0 for j in range ( 0, node_linear_num ): y = grid[j] for i in range ( 0, node_linear_num ): x = grid[i] print "%4d %4d %4d %8f %8f %14g %14g" % ( i, j, v, x, y, u[v], uex[v] ) v = v + 1 # # Optionally, print the node coordinates. # if ( false ): v = 0 for j in range ( 0, node_linear_num ): y = grid[j] for i in range ( 0, node_linear_num ): x = grid[i] print "%8f %8f" % ( x, y ) v = v + 1 # # Optionally, print the elements, listing the nodes in counterclockwise order. # if ( false ): e = 0 for j in range ( 0, element_linear_num ): y = grid[j] for i in range ( 0, element_linear_num ): sw = j * node_linear_num + i se = j * node_linear_num + i + 1 nw = ( j + 1 ) * node_linear_num + i ne = ( j + 1 ) * node_linear_num + i + 1 print "%4d %4d %4d %4d" % ( sw, se, ne, nw ) e = e + 1 # # Terminate. # print "" print "FEM2D_BVP_LINEAR:" print " Normal end of execution." print '' timestamp ( ) # # That is the end of the main program. # Now we list some helper functions. # def exact_fn ( x, y ): # ## EXACT_FN evaluates the exact solution. # value = x * ( 1 - x ) * y * ( 1 - y ) return value def rhs_fn ( x, y ): # ## RHS_FN evaluates the right hand side. # value = 2 * x * ( 1 - x ) + 2 * y * ( 1 - y ) return value # # If this script is called directly, then run it as a program. # if ( __name__ == '__main__' ): fem2d_bvp_linear ( )