#!/usr/bin/env python def i4_is_prime ( n ) : #*****************************************************************************80 # ## I4_IS_PRIME reports whether an I4 is prime. # # Discussion: # # A simple, unoptimized sieve of Erasthosthenes is used to # check whether N can be divided by any integer between 2 # and SQRT(N). # # Note that negative numbers, 0 and 1 are not considered prime. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 September 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the integer to be tested. # # Output, boolean VALUE, is TRUE if N is prime, and FALSE # otherwise. # from math import floor from math import sqrt if ( n <= 0 ): value = False return value if ( n == 1 ): value = False return value if ( n <= 3 ): value = True return value nhi = int ( sqrt ( n ) ) for i in range ( 2, nhi + 1 ): if ( ( n % i ) == 0 ): value = False return value value = True return value def i4_is_prime_test ( ) : #*****************************************************************************80 # ## I4_IS_PRIME_TEST tests I4_IS_PRIME. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 September 2014 # # Author: # # John Burkardt # print '' print 'I4_IS_PRIME_TEST' print ' I4_IS_PRIME reports whether an I4 is prime.' print ' ' print ' I I4_IS_PRIME(I)' print ' ' for i in range ( -2, 26 ): j = i4_is_prime ( i ) print ' %8d %r' % ( i, j ) # # Terminate. # print '' print 'I4_IS_PRIME_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) i4_is_prime_test ( ) timestamp ( )