#!/usr/bin/env python def i4_lcm ( i, j ) : #*****************************************************************************80 # ## I4_LCM computes the least common multiple of two I4's. # # Discussion: # # The least common multiple may be defined as # # LCM(I,J) = ABS( I * J ) / GCD(I,J) # # where GCD(I,J) is the greatest common divisor of I and J. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 May 2013 # # Author: # # John Burkardt # # Parameters: # # Input, integer I, J, the integers whose LCM is desired. # # Output, integer VALUE, the least common multiple of I and J. # VALUE is never negative. VALUE is 0 if either I or J is zero. # from i4_gcd import i4_gcd value = abs ( i * ( j / i4_gcd ( i, j ) ) ) return value def i4_lcm_test ( ): #*****************************************************************************80 # ## I4_LCM_TEST tests I4_LCM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 May 2013 # # Author: # # John Burkardt # from i4_lcm import i4_lcm test_num = 7 i_test = [ 36, 49, 0, 12, 36, 1, 91 ] j_test = [ 30, -7, 71, 12, 49, 42, 28 ] print '' print 'I4_LCM_TEST' print ' I4_LCM computes the least common multiple.' print '' print ' I J I4_LCM' print '' for test in range ( 0, test_num ): i = i_test[test] j = j_test[test] k = i4_lcm ( i, j ) print ' %6d %6d %6d' % ( i, j, k ) # # Terminate. # print '' print 'I4_LCM_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) i4_lcm_test ( ) timestamp ( )