#!/usr/bin/env python def i4_to_halton ( dim_num, step, seed, leap, base ): #*****************************************************************************80 # ## I4_TO_HALTON computes one element of a leaped Halton subsequence. # # Discussion: # # The DIM_NUM-dimensional Halton sequence is really DIM_NUM separate # sequences, each generated by a particular base. # # This routine selects elements of a "leaped" subsequence of the # Halton sequence. The subsequence elements are indexed by a # quantity called STEP, which starts at 0. The STEP-th subsequence # element is simply element # # SEED(1:DIM_NUM) + STEP * LEAP(1:DIM_NUM) # # of the original Halton sequence. # # An I4 is an integer value. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 November 2014 # # Author: # # John Burkardt # # Reference: # # John Halton, # On the efficiency of certain quasi-random sequences of points # in evaluating multi-dimensional integrals, # Numerische Mathematik, # Volume 2, Number 1, December 1960, pages 84-90 # # John Halton, GB Smith, # Algorithm 247: # Radical-Inverse Quasi-Random Point Sequence, # Communications of the ACM, # Volume 7, Number 12, December 1964, pages 701-702. # # Ladislav Kocis, William Whiten, # Computational Investigations of Low-Discrepancy Sequences, # ACM Transactions on Mathematical Software, # Volume 23, Number 2, June 1997, pages 266-294. # # Parameters: # # Input, integer DIM_NUM, the spatial dimension. # 1 <= DIM_NUM is required. # # Input, integer STEP, the index of the subsequence element. # 0 <= STEP is required. # # Input, integer SEED(DIM_NUM), the Halton sequence index # corresponding to STEP = 0. # 0 <= SEED(1:DIM_NUM) is required. # # Input, integer LEAP(DIM_NUM), the successive jumps in the # Halton sequence. 1 <= LEAP(1:DIM_NUM) is required. # # Input, integer BASE(DIM_NUM), the Halton bases. # 1 < BASE(1:DIM_NUM) is required. # # Output, real R(DIM_NUM), the STEP-th element of the leaped # Halton subsequence. # import numpy as np from sys import exit # # Check the input. # if ( dim_num < 1 ): print '' print 'I4_TO_HALTON - Fatal error!' print ' DIM_NUM < 1.' exit ( 'I4_TO_HALTON - Fatal error!' ) if ( step < 0 ): print '' print 'I4_TO_HALTON - Fatal error!' print ' STEP < 0.' exit ( 'I4_TO_HALTON - Fatal error!' ) if ( any ( seed < 0 ) ): print '' print 'I4_TO_HALTON - Fatal error!' print ' Some SEED(*) < 0.' exit ( 'I4_TO_HALTON - Fatal error!' ) if ( any ( leap < 1 ) ): print '' print 'I4_TO_HALTON - Fatal error!' print ' Some LEAP < 1.' exit ( 'I4_TO_HALTON - Fatal error!' ) if ( any ( base <= 1 ) ): print '' print 'I4_TO_HALTON - Fatal error!' print ' Some BASE <= 1.' exit ( 'I4_TO_HALTON - Fatal error!' ) # # Calculate the data. # r = np.zeros ( dim_num ) for i in range ( 0, dim_num ): seed2 = seed[i] + step * leap[i] base_inv = 1.0 / base[i] while ( seed2 != 0 ): digit = ( seed2 % base[i] ) r[i] = r[i] + digit * base_inv base_inv = base_inv / base[i] seed2 = seed2 / base[i] return r def i4_to_halton_test ( ): #*****************************************************************************80 # ## I4_TO_HALTON_TEST tests I4_TO_HALTON. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 November 2014 # # Author: # # John Burkardt # import numpy as np print '' print 'I4_TO_HALTON_TEST' print ' I4_TO_HALTON computes a Halton sequence.' print ' The user specifies all data explicitly.' print ' ' print ' In this test, we call I4_TO_HALTON repeatedly.' print ' We use distinct primes as bases.' n = 11 dim_num = 3 seed = np.array ( [ 0, 0, 0 ] ) leap = np.array ( [ 1, 1, 1 ] ) base = np.array ( [ 2, 3, 5 ] ) print ' ' print ' I R(0) R(1) R(2)' print ' ' for step in range ( 0, n ): r = i4_to_halton ( dim_num, step, seed, leap, base ) print ' %2d %8.4f %8.4f %8.4f' % ( step, r[0], r[1], r[2] ) # # Terminate. # print '' print 'I4_TO_HALTON_TEST' print ' Normal end of execution.' if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) i4_to_halton_test ( ) timestamp ( )