#! /usr/bin/env python # def i4vec_frac ( n, a, k ): #*****************************************************************************80 # #% I4VEC_FRAC searches for the K-th smallest entry in an N-vector. # # Discussion: # # Hoare's algorithm is used. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 May 2015 # # Author: # # John Burkardt. # # Parameters: # # Input, integer N, the number of elements of A. # # Input, integer A(N), the array to search. # # Input, integer K, the fractile to be sought. If K = 1, the minimum # entry is sought. If K = N, the maximum is sought. Other values # of K search for the entry which is K-th in size. K must be at # least 1, and no greater than N. # # Output, integer FRAC, the value of the K-th fractile of A. # from sys import exit if ( n <= 0 ): print '' print 'I4VEC_FRAC - Fatal error!' print ' Illegal nonpositive value of N = %d' % ( n ) exit ( 'I4VEC_FRAC - Fatal error!' ) if ( k <= 0 ): print '' print 'I4VEC_FRAC - Fatal error!' print ' Illegal nonpositive value of K = %d' % ( k ) exit ( 'I4VEC_FRAC - Fatal error!' ) if ( n < k ): print '' print 'I4VEC_FRAC - Fatal error!' print ' Illegal N < K, K = %d' % ( k ) exit ( 'I4VEC_FRAC - Fatal error!' ) left = 1 iryt = n while ( True ): if ( iryt <= left ): frac = a[k-1] break x = a[k-1] i = left j = iryt while ( True ): if ( j < i ): if ( j < k ): left = i if ( k < i ): iryt = j break # # Find I so that X <= A(I) # while ( a[i-1] < x ): i = i + 1 # # Find J so that A(J) <= X # while ( x < a[j-1] ): j = j - 1 if ( i <= j ): temp = a[i-1] a[i-1] = a[j-1] a[j-1] = temp i = i + 1 j = j - 1 return frac def i4vec_frac_test ( ): #*****************************************************************************80 # #% I4VEC_FRAC_TEST tests I4VEC_FRAC # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 May 2015 # # Author: # # John Burkardt # from i4vec_print import i4vec_print from i4vec_uniform_ab import i4vec_uniform_ab n = 10 b = 1 c = 2 * n seed = 123456789 print '' print 'I4VEC_FRAC_TEST' print ' I4VEC_FRAC: K-th smallest integer vector entry.' print ' Using initial random number seed = %d' % ( seed ) a, seed = i4vec_uniform_ab ( n, b, c, seed ) i4vec_print ( n, a, ' The array to search:' ) print '' print ' Fractile Value' print '' nh = ( n // 3 ) for k in range ( 1, n + 1, nh ): afrac = i4vec_frac ( n, a, k ) print ' %6d %6d' % ( k, afrac ) # # Terminate. # print '' print 'I4VEC_FRAC_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) i4vec_frac_test ( ) timestamp ( )