#!/usr/bin/env python def abwe1 ( n, m, tol, coef2, even, b, x ) : #*****************************************************************************80 # ## ABWE1 calculates a Kronrod abscissa and weight. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 April 2013 # # Author: # # Original FORTRAN77 version by Robert Piessens, Maria Branders. # Python version by John Burkardt. # # Reference: # # Robert Piessens, Maria Branders, # A Note on the Optimal Addition of Abscissas to Quadrature Formulas # of Gauss and Lobatto, # Mathematics of Computation, # Volume 28, Number 125, January 1974, pages 135-139. # # Parameters: # # Input, integer N, the order of the Gauss rule. # # Input, integer M, the value of ( N + 1 ) / 2. # # Input, real TOL, the requested absolute accuracy of the # abscissas. # # Input, real COEF2, a value needed to compute weights. # # Input, logical EVEN, is TRUE if N is even. # # Input, real B(M+1), the Chebyshev coefficients. # # Input, real X, an estimate for the abscissa. # # Output, real X, the abscissa. # # Output, real W, the weight. # from sys import exit if ( x == 0.0 ): ka = 1 else: ka = 0 # # Iterative process for the computation of a Kronrod abscissa. # for iter in range ( 1, 51 ): b1 = 0.0 b2 = b[m+1-1] yy = 4.0 * x * x - 2.0 d1 = 0.0 if ( even ): ai = m + m + 1 d2 = ai * b[m+1-1] dif = 2.0 else: ai = m + 1 d2 = 0.0 dif = 1.0 for k in range ( 1, m + 1 ): ai = ai - dif i = m - k + 1 b0 = b1 b1 = b2 d0 = d1 d1 = d2 b2 = yy * b1 - b0 + b[i-1] if ( not even ): i = i + 1 d2 = yy * d1 - d0 + ai * b[i-1] if ( even ): f = x * ( b2 - b1 ) fd = d2 + d1 else: f = 0.5 * ( b2 - b0 ) fd = 4.0 * x * d2 # # Newton correction. # delta = f / fd x = x - delta if ( ka == 1 ): break if ( abs ( delta ) <= tol ): ka = 1 # # Catch non-convergence. # if ( ka != 1 ): print '' print 'ABWE1 - Fatal error!' print ' Iteration limit reached.' print ' Last DELTA was %e' % ( delta ) exit ( 'ABWE1 - Fatal error!' ) # # Computation of the weight. # d0 = 1.0 d1 = x ai = 0.0 for k in range ( 2, n + 1 ): ai = ai + 1.0 d2 = ( ( ai + ai + 1.0 ) * x * d1 - ai * d0 ) / ( ai + 1.0 ) d0 = d1 d1 = d2 w = coef2 / ( fd * d2 ) return x, w