#!/usr/bin/env python def lp_coefficients ( n ): #*****************************************************************************80 # ## LP_COEFFICIENTS: coefficients of Legendre polynomials P(n,x). # # First terms: # # 1 # 0 1 # -1/2 0 3/2 # 0 -3/2 0 5/2 # 3/8 0 -30/8 0 35/8 # 0 15/8 0 -70/8 0 63/8 # -5/16 0 105/16 0 -315/16 0 231/16 # 0 -35/16 0 315/16 0 -693/16 0 429/16 # # 1.00000 # 0.00000 1.00000 # -0.50000 0.00000 1.50000 # 0.00000 -1.50000 0.00000 2.5000 # 0.37500 0.00000 -3.75000 0.00000 4.37500 # 0.00000 1.87500 0.00000 -8.75000 0.00000 7.87500 # -0.31250 0.00000 6.56250 0.00000 -19.6875 0.00000 14.4375 # 0.00000 -2.1875 0.00000 19.6875 0.00000 -43.3215 0.00000 26.8125 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 October 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Daniel Zwillinger, editor, # CRC Standard Mathematical Tables and Formulae, # 30th Edition, # CRC Press, 1996. # # Parameters: # # Input, int N, the highest order polynomial to evaluate. # Note that polynomials 0 through N will be evaluated. # # Output, int O, the number of coefficients. # # Output, double C[(N+2)/2], the coefficients of the Legendre # polynomial of degree N. # # Output, int F[(N+2)/2], the exponents. # import numpy as np ctable = np.zeros ( ( n + 1, n + 1 ), dtype = np.float64 ) for i in range ( 0, n + 1 ): for j in range ( 0, n + 1 ): ctable[i][j] = 0.0 ctable[0][0] = 1.0 if ( 0 < n ): ctable[1][1] = 1.0 for i in range ( 2, n + 1 ): for j in range ( 0, i - 1 ): ctable[i][j] = ( - i + 1 ) * ctable[i-2][j] / i for j in range ( 1, i + 1 ): ctable[i][j] = ctable[i][j] + ( i + i - 1 ) * ctable[i-1][j-1] / i # # Extract the nonzero data from the alternating columns of the last row. # o = ( n + 2 ) // 2 c = np.zeros ( o, dtype = np.float64 ) f = np.zeros ( o, dtype = np.int32 ) k = o for j in range ( n, -1, -2 ): k = k - 1 c[k] = ctable[n][j] f[k] = j return o, c, f def lp_coefficients_test ( ): #*****************************************************************************80 # ## LP_COEFFICIENTS_TEST tests LP_COEFFICIENTS. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 October 2014 # # Author: # # John Burkardt # from polynomial_print import polynomial_print import numpy as np m = 1 n_max = 10 print '' print 'LP_COEFFICIENTS_TEST' print ' LP_COEFFICIENTS: coefficients of Legendre polynomial P(n,x).' print '' for n in range ( 0, n_max + 1 ): o, c, f = lp_coefficients ( n ) e = np.zeros ( o, dtype = np.int32 ) for i in range ( 0, o ): e[i] = f[i] + 1 label = ' P(' + repr ( n ) + ',x) = ' polynomial_print ( m, o, c, e, label ) print '' print 'LP_COEFFICIENTS_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lp_coefficients_test ( ) timestamp ( )