#!/usr/bin/env python def lp_values ( n_data ): #*****************************************************************************80 # ## LP_VALUES returns values of the Legendre polynomials P(n,x). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 October 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Parameters: # # Input, int N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, int N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, int N, the order of the function. # # Output, double X, the point where the function is evaluated. # # Output, double FX, the value of the function. # import numpy as np n_max = 22 fx_vec = np.array ( [ 0.1000000000000000E+01, 0.2500000000000000E+00, -0.4062500000000000E+00, -0.3359375000000000E+00, 0.1577148437500000E+00, 0.3397216796875000E+00, 0.2427673339843750E-01, -0.2799186706542969E+00, -0.1524540185928345E+00, 0.1768244206905365E+00, 0.2212002165615559E+00, 0.0000000000000000E+00, -0.1475000000000000E+00, -0.2800000000000000E+00, -0.3825000000000000E+00, -0.4400000000000000E+00, -0.4375000000000000E+00, -0.3600000000000000E+00, -0.1925000000000000E+00, 0.8000000000000000E-01, 0.4725000000000000E+00, 0.1000000000000000E+01 ], dtype = np.float64 ) n_vec = np.array ( [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], dtype = np.int32 ) x_vec = np.array ( [ 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.00E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 1.00E+00 ], dtype = np.float64 ) if ( n_data < 0 ): n_data = 0 n_data = n_data + 1 if ( n_max < n_data ): n_data = 0 n = 0 x = 0.0 fx = 0.0 else: n = n_vec[n_data-1] x = x_vec[n_data-1] fx = fx_vec[n_data-1] return n_data, n, x, fx def lp_values_test ( ): #*****************************************************************************80 # ## LP_VALUES_TEST tests LP_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 October 2014 # # Author: # # John Burkardt # print '' print 'LP_VALUES_TEST:' print ' LP_VALUES stores values of' print ' the Legendre polynomial P(o,x).' print '' print ' Tabulated' print ' O X L(O,X)' print '' n_data = 0 while ( True ): n_data, o, x, fx = lp_values ( n_data ) if ( n_data == 0 ): break print ' %4d %12.8f %24.16g' % ( o, x, fx ) print '' print 'LP_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lp_values_test ( ) timestamp ( )