#!/usr/bin/env python def lpp_to_polynomial ( m, l, o_max ): #*****************************************************************************80 # ## LPP_TO_POLYNOMIAL writes a Legendre Product Polynomial as a polynomial. # # Discussion: # # For example, if # M = 3, # L = ( 1, 0, 2 ), # then # L(1,0,2)(X,Y,Z) # = L(1)(X) * L(0)(Y) * L(2)(Z) # = X * 1 * ( 3Z^2-1)/2 # = - 1/2 X + (3/2) X Z^2 # so # O = 2 (2 nonzero terms) # C = -0.5 # 1.5 # E = 4 <-- index in 3-space of exponent (1,0,0) # 15 <-- index in 3-space of exponent (1,0,2) # # The output value of O is no greater than # O_MAX = product ( 1 <= I <= M ) (L(I)+2)/2 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 October 2014 # # Author: # # John Burkardt # # Parameters: # # Input, int M, the spatial dimension. # # Input, int L[M], the index of each Legendre product # polynomial factor. 0 <= L(*). # # Input, int O_MAX, an upper limit on the size of the # output arrays. # O_MAX = product ( 1 <= I <= M ) (L(I)+2)/2. # # Output, int O, the "order" of the polynomial product. # # Output, double C[O], the coefficients of the polynomial product. # # Output, int E[O], the indices of the exponents of the # polynomial product. # from lp_coefficients import lp_coefficients from mono_rank_grlex import mono_rank_grlex from mono_unrank_grlex import mono_unrank_grlex from polynomial_compress import polynomial_compress from polynomial_sort import polynomial_sort import numpy as np c1 = np.zeros ( o_max, dtype = np.float64 ) c2 = np.zeros ( o_max, dtype = np.float64 ) e1 = np.zeros ( o_max, dtype = np.int32 ) e2 = np.zeros ( o_max, dtype = np.int32 ) f2 = np.zeros ( o_max, dtype = np.int32 ) pp = np.zeros ( m, dtype = np.int32 ) o1 = 1 c1[0] = 1.0 e1[0] = 1 # # Implicate one factor at a time. # for i in range ( 0, m ): o2, c2, f2 = lp_coefficients ( l[i] ); o = 0; c = np.zeros ( o_max, dtype = np.float64 ) e = np.zeros ( o_max, dtype = np.int32 ) for j2 in range ( 0, o2 ): for j1 in range ( 0, o1 ): c[o] = c1[j1] * c2[j2] if ( 0 < i ): p = mono_unrank_grlex ( i, e1[j1] ) for i2 in range ( 0, i ): pp[i2] = p[i2] pp[i] = f2[j2] e[o] = mono_rank_grlex ( i + 1, pp ) o = o + 1 c, e = polynomial_sort ( o, c, e ) o, c, e = polynomial_compress ( o, c, e ) o1 = o; for i1 in range ( 0, o ): c1[i1] = c[i1] e1[i1] = e[i1] return o1, c1, e1 def lpp_to_polynomial_test ( ): #*****************************************************************************80 # ## LPP_TO_POLYNOMIAL_TEST tests LPP_TO_POLYNOMIAL. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 October 2014 # # Author: # # John Burkardt # from comp_unrank_grlex import comp_unrank_grlex from polynomial_print import polynomial_print import numpy as np m = 2 print '' print 'LPP_TO_POLYNOMIAL_TEST:' print ' LPP_TO_POLYNOMIAL is given a Legendre product polynomial' print ' and determines its polynomial representation.' print '' print ' Using spatial dimension M = %d' % ( m ) for rank in range ( 1, 12 ): l = comp_unrank_grlex ( m, rank ) o_max = 1 for i in range ( 0, m ): o_max = o_max * ( l[i] + 2 ) // 2 c = np.zeros ( o_max, dtype = np.float64 ) e = np.zeros ( o_max, dtype = np.int32 ) o, c, e = lpp_to_polynomial ( m, l, o_max ) label = ' LPP #' + repr ( rank ) + ' = L(' + repr ( l[0] ) \ + ',X)*L(' + repr ( l[1] ) + ',Y) = ' print '' polynomial_print ( m, o, c, e, label ) print '' print 'LPP_TO_POLYNOMIAL_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lpp_to_polynomial_test ( ) timestamp ( )