#!/usr/bin/env python def lpp_value ( m, n, o, x ): #*****************************************************************************80 # ## LPP_VALUE evaluates a Legendre Product Polynomial at several points X. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 October 2014 # # Author: # # John Burkardt # # Parameters: # # Input, int M, the spatial dimension. # # Input, int N, the number of evaluation points. # # Input, int O[M], the degree of the polynomial factors. # 0 <= O(*). # # Input, double X[M][N], the evaluation points. # # Output, double V[N], the value of the Legendre Product # Polynomial of degree O at the points X. # from lp_value import lp_value import numpy as np v = np.zeros ( n, dtype = np.float64 ) for j in range ( 0, n ): v[j] = 1.0 xi = np.zeros ( n, dtype = np.float64 ) for i in range ( 0, m ): for j in range ( 0, n ): xi[j] = x[i][j] vi = lp_value ( n, o[i], xi ) for j in range ( 0, n ): v[j] = v[j] * vi[j] return v def lpp_value_test ( ): #*****************************************************************************80 # ## LPP_VALUE_TEST tests LPP_VALUE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 October 2014 # # Author: # # John Burkardt # from comp_unrank_grlex import comp_unrank_grlex from lpp_to_polynomial import lpp_to_polynomial from polynomial_value import polynomial_value from r8mat_uniform_ab import r8mat_uniform_ab print '' print 'LPP_VALUE_TEST:' print ' LPP_VALUE evaluates a Legendre product polynomial.' m = 3 n = 1 xlo = -1.0 xhi = +1.0 seed = 123456789 x, seed = r8mat_uniform_ab ( m, n, xlo, xhi, seed ) print '' print ' Evaluate at X = ', for j in range ( 0, n ): for i in range ( 0, m ): print '%g ' % ( x[i][j] ), print '' print '' print ' Rank I1 I2 I3: L(I1,X1)*L(I2,X2)*L(I3,X3) P(X1,X2,X3)' print '' for rank in range ( 1, 21 ): l = comp_unrank_grlex ( m, rank ) # # Evaluate the LPP directly. # v1 = lpp_value ( m, n, l, x ) # # Convert the LPP to a polynomial. # o_max = 1 for i in range ( 0, m ): o_max = o_max * ( l[i] + 2 ) // 2 o, c, e = lpp_to_polynomial ( m, l, o_max ) # # Evaluate the polynomial. # v2 = polynomial_value ( m, o, c, e, n, x ) # # Compare results. # print ' %4d %2d %2d %2d %14.6g %14.6g' % \ ( rank, l[0], l[1], l[2], v1[0], v2[0] ) print '' print 'LPP_VALUE_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lpp_value_test ( ) timestamp ( )