#! /usr/bin/env python def md ( d_num = 3, p_num = 500, step_num = 500, dt = 0.1 ): #*****************************************************************************80 # ## MD is the main program for the molecular dynamics simulation. # # Discussion: # # MD implements a simple molecular dynamics simulation. # # The velocity Verlet time integration scheme is used. # # The particles interact with a central pair potential. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer D_NUM, the spatial dimension. # A value of 2 or 3 is usual. # The default value is 3. # # Input, integer P_NUM, the number of particles. # A value of 1000 or 2000 is small but "reasonable". # The default value is 500. # # Input, integer STEP_NUM, the number of time steps. # A value of 500 is a small but reasonable value. # The default value is 500. # # Input, real DT, the time step. # A value of 0.1 is large; the system will begin to move quickly but the # results will be less accurate. # A value of 0.0001 is small, but the results will be more accurate. # The default value is 0.1. # import numpy as np mass = 1.0 # # Report to the user. # print '' print 'MD' print ' Python version' print ' A molecular dynamics program.' print '' print ' D_NUM, the spatial dimension, is %d' % ( d_num ) print ' P_NUM, the number of particles in the simulation is %d.' % ( p_num ) print ' STEP_NUM, the number of time steps, is %d.' % ( step_num ) print ' DT, the time step size, is %g seconds.' % ( dt ) print '' print ' At each step, we report the potential and kinetic energies.' print ' The sum of these energies should be a constant.' print ' As an accuracy check, we also print the relative error' print ' in the total energy.' print '' print ' Step Potential Kinetic (P+K-E0)/E0' print ' Energy P Energy K Relative Energy Error' print '' step_print_index = 0 step_print_num = 10 step_print = 0 for step in range ( 0, step_num + 1 ): if ( step == 0 ): pos, vel, acc = initialize ( p_num, d_num ) else: pos, vel, acc = update ( p_num, d_num, pos, vel, force, acc, mass, dt ) force, potential, kinetic = compute ( p_num, d_num, pos, vel, mass ) if ( step == 0 ): e0 = potential + kinetic if ( step == step_print ): rel = ( potential + kinetic - e0 ) / e0 print ' %8d %14f %14f %14g' % ( step, potential, kinetic, rel ) step_print_index = step_print_index + 1 step_print = ( step_print_index * step_num ) // step_print_num return def compute ( p_num, d_num, pos, vel, mass ): #*****************************************************************************80 # ## COMPUTE computes the forces and energies. # # Discussion: # # The potential function V(X) is a harmonic well which smoothly # saturates to a maximum value at PI/2: # # v(x) = ( sin ( min ( x, PI/2 ) ) )^2 # # The derivative of the potential is: # # dv(x) = 2.0 * sin ( min ( x, PI/2 ) ) * cos ( min ( x, PI/2 ) ) # = sin ( 2.0 * min ( x, PI/2 ) ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer P_NUM, the number of particles. # # Input, integer D_NUM, the number of spatial dimensions. # # Input, real POS(D_NUM,P_NUM), the positions. # # Input, real VEL(D_NUM,P_NUM), the velocities. # # Input, real MASS, the mass of each particle. # # Output, real FORCE(D_NUM,P_NUM), the forces. # # Output, real POTENTIAL, the total potential energy. # # Output, real KINETIC, the total kinetic energy. # import numpy as np from math import sin from math import sqrt r8_pi = 3.141592653589793 force = np.zeros ( [ d_num, p_num ] ) rij = np.zeros ( d_num ) potential = 0.0 for i in range ( 0, p_num ): # # Compute the potential energy and forces. # for j in range ( 0, p_num ): if ( i != j ): # # Compute RIJ, the displacement vector. # for k in range ( 0, d_num ): rij[k] = pos[k,i] - pos[k,j] # # Compute D and D2, a distance and a truncated distance. # d = 0.0 for k in range ( 0, d_num ): d = d + rij[k] ** 2 d = sqrt ( d ) d2 = min ( d, r8_pi / 2.0 ) # # Attribute half of the total potential energy to particle J. # potential = potential + 0.5 * sin ( d2 ) * sin ( d2 ) # # Add particle J's contribution to the force on particle I. # for k in range ( 0, d_num ): force[k,i] = force[k,i] - rij[k] * sin ( 2.0 * d2 ) / d # # Compute the kinetic energy. # kinetic = 0.0 for k in range ( 0, d_num ): for j in range ( 0, p_num ): kinetic = kinetic + vel[k,j] ** 2 kinetic = 0.5 * mass * kinetic return force, potential, kinetic def initialize ( p_num, d_num ): #*****************************************************************************80 # ## INITIALIZE initializes the positions, velocities, and accelerations. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer P_NUM, the number of particles. # # Input, integer D_NUM, the number of spatial dimensions. # # Output, real POS(D_NUM,P_NUM), the positions. # # Output, real VEL(D_NUM,P_NUM), the velocities. # # Output, real ACC(D_NUM,P_NUM), the accelerations. # import numpy as np # # Positions. # seed = 123456789 pos, seed = r8mat_uniform_ab ( d_num, p_num, 0.0, 10.0, seed ) # # Velocities. # vel = np.zeros ( [ d_num, p_num ] ) # # Accelerations. # acc = np.zeros ( [ d_num, p_num ] ) return pos, vel, acc def r8mat_uniform_ab ( m, n, a, b, seed ): #*****************************************************************************80 # ## R8MAT_UNIFORM_AB returns a scaled pseudorandom R8MAT. # # Discussion: # # An R8MAT is an array of R8's. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 April 2013 # # Author: # # John Burkardt # # Reference: # # Paul Bratley, Bennett Fox, Linus Schrage, # A Guide to Simulation, # Second Edition, # Springer, 1987, # ISBN: 0387964673, # LC: QA76.9.C65.B73. # # Bennett Fox, # Algorithm 647: # Implementation and Relative Efficiency of Quasirandom # Sequence Generators, # ACM Transactions on Mathematical Software, # Volume 12, Number 4, December 1986, pages 362-376. # # Pierre L'Ecuyer, # Random Number Generation, # in Handbook of Simulation, # edited by Jerry Banks, # Wiley, 1998, # ISBN: 0471134031, # LC: T57.62.H37. # # Peter Lewis, Allen Goodman, James Miller, # A Pseudo-Random Number Generator for the System/360, # IBM Systems Journal, # Volume 8, Number 2, 1969, pages 136-143. # # Parameters: # # Input, integer M, N, the number of rows and columns in the array. # # Input, real A, B, the range of the pseudorandom values. # # Input, integer SEED, the integer "seed" used to generate # the output random number. # # Output, real R(M,N), an array of random values between 0 and 1. # # Output, integer SEED, the updated seed. This would # normally be used as the input seed on the next call. # import numpy as np from sys import exit i4_huge = 2147483647 if ( seed < 0 ): seed = seed + i4_huge if ( seed == 0 ): print '' print 'R8MAT_UNIFORM_AB - Fatal error!' print ' Input SEED = 0!' sys.exit ( 'R8MAT_UNIFORM_AB - Fatal error!' ) r = np.zeros ( ( m, n ) ) for j in range ( 0, n ): for i in range ( 0, m ): k = ( seed // 127773 ) seed = 16807 * ( seed - k * 127773 ) - k * 2836 seed = ( seed % i4_huge ) if ( seed < 0 ): seed = seed + i4_huge r[i][j] = a + ( b - a ) * seed * 4.656612875E-10 return r, seed def timestamp ( ): #*****************************************************************************80 # ## TIMESTAMP prints the date as a timestamp. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 April 2013 # # Author: # # John Burkardt # # Parameters: # # None # import time t = time.time ( ) print time.ctime ( t ) return None def update ( p_num, d_num, pos, vel, f, acc, mass, dt ): #*****************************************************************************80 # ## UPDATE updates positions, velocities and accelerations. # # Discussion: # # The time integration is fully parallelizable. # # A velocity Verlet algorithm is used for the updating. # # x(t+dt) = x(t) + v(t) * dt + 0.5 * a(t) * dt * dt # v(t+dt) = v(t) + 0.5 * ( a(t) + a(t+dt) ) * dt # a(t+dt) = f(t) / m # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer P_NUM, the number of particles. # # Input, integer D_NUM, the number of spatial dimensions. # # Input, real POS(D_NUM,P_NUM), the positions. # # Input, real VEL(D_NUM,P_NUM), the velocities. # # Input, real F(D_NUM,P_NUM), the forces. # # Input, real ACC(D_NUM,P_NUM), the accelerations. # # Input, real MASS, the mass of each particle. # # Input, real DT, the time step. # # Output, real POS(D_NUM,P_NUM), the updated positions. # # Output, real VEL(D_NUM,P_NUM), the updated velocities. # # Output, real ACC(D_NUM,P_NUM), the updated accelerations. # rmass = 1.0 / mass # # Update positions. # for i in range ( 0, d_num ): for j in range ( 0, p_num ): pos[i,j] = pos[i,j] + vel[i,j] * dt + 0.5 * acc[i,j] * dt * dt # # Update velocities. # for i in range ( 0, d_num ): for j in range ( 0, p_num ): vel[i,j] = vel[i,j] + 0.5 * dt * ( f[i,j] * rmass + acc[i,j] ) # # Update accelerations. # for i in range ( 0, d_num ): for j in range ( 0, p_num ): acc[i,j] = f[i,j] * rmass return pos, vel, acc def md_test ( ): #*****************************************************************************80 # ## MD_TEST tests MD. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 December 2014 # # Author: # # John Burkardt # # Parameters: # # None # from time import clock timestamp ( ) print '' print 'MD_TEST' print ' Test the MD molecular dynamics program.' d_num = 3 p_num = 500 step_num = 500 dt = 0.1 wtime1 = clock ( ) md ( d_num, p_num, step_num, dt ) wtime2 = clock ( ) print '' print ' Elapsed wall clock time = %g seconds.' % ( wtime2 - wtime1 ) # # Terminate. # print '' print 'MD_TEST' print ' Normal end of execution.' print '' timestamp ( ) if ( __name__ == '__main__' ): md_test ( )