#! /usr/bin/env python # def resid_lucas ( nu, rho, n, x, y, t ): #*****************************************************************************80 # ## RESID_LUCAS returns residuals of the Lucas Bystricky Flow. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/navier_stokes_2d_exact/resid_lucas.py # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real NU, the kinematic viscosity. # # Input, real RHO, the density. # # Input, integer N, the number of points at which the solution is to # be evaluated. # # Input, real X(N), Y(N), the coordinates of the points. # # Input, real T(N), the time coordinate or coordinates. # # Output, real UR(N), VR(N), PR(N), the residuals in the U, V and P equations. # import numpy as np from rhs_lucas import rhs_lucas ur = np.zeros ( n ) vr = np.zeros ( n ) pr = np.zeros ( n ) # # Get the right hand side functions. # f, g, h = rhs_lucas ( nu, rho, n, x, y, t ); # # Form the functions and derivatives for the left hand side. # u = - np.cos ( np.pi * x ) / np.pi dudt = np.zeros ( n ) dudx = np.sin ( np.pi * x ) dudxx = np.pi * np.cos ( np.pi * x ) dudy = np.zeros ( n ) dudyy = np.zeros ( n ) v = - y * np.sin ( np.pi * x ) dvdt = np.zeros ( n ) dvdx = - np.pi * y * np.cos ( np.pi * x ) dvdxx = + np.pi * np.pi * y * np.sin ( np.pi * x ) dvdy = - np.sin ( np.pi * x ) dvdyy = np.zeros ( n ) p = np.zeros ( n ) dpdx = np.zeros ( n ) dpdy = np.zeros ( n ) # # Evaluate the residuals. # ur = dudt - nu * ( dudxx + dudyy ) + u * dudx + v * dudy + dpdx / rho - f vr = dvdt - nu * ( dvdxx + dvdyy ) + u * dvdx + v * dvdy + dpdy / rho - g pr = dudx + dvdy - h return ur, vr, pr def resid_lucas_test ( ): #*****************************************************************************80 # ## RESID_LUCAS_TEST samples Lucas Bystricky Flow residuals at the initial time. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # import numpy as np from r8vec_uniform_ab import r8vec_uniform_ab nu = 1.0 rho = 1.0 print '' print 'RESID_LUCAS_TEST' print ' Lucas Bystricky Flow' print ' Sample the Navier-Stokes residuals' print ' at the initial time T = 0, over the unit square.' print ' Kinematic viscosity NU = %g' % ( nu ) print ' Fluid density RHO = %g' % ( rho ) n = 1000 r8_lo = 0.0 r8_hi = 1.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) y, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) t = 0.0 ur, vr, pr = resid_lucas ( nu, rho, n, x, y, t ) print '' print ' Minimum Maximum' print '' print ' Ur: %14.6g %14.6g' % ( np.min ( np.abs ( ur ) ), np.max ( np.abs ( ur ) ) ) print ' Vr: %14.6g %14.6g' % ( np.min ( np.abs ( vr ) ), np.max ( np.abs ( vr ) ) ) print ' Pr: %14.6g %14.6g' % ( np.min ( np.abs ( pr ) ), np.max ( np.abs ( pr ) ) ) print '' print 'RESID_LUCAS_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) resid_lucas_test ( ) timestamp ( )