#! /usr/bin/env python # def resid_taylor ( nu, rho, n, x, y, t ): #*****************************************************************************80 # ## RESID_TAYLOR returns residuals of the Taylor exact Navier Stokes solution. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/navier_stokes_2d_exact/resid_taylor.py # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 January 2015 # # Author: # # John Burkardt # # Reference: # # Geoffrey Taylor, # On the decay of vortices in a viscous fluid, # Philosophical Magazine, # Volume 46, 1923, pages 671-674. # # Geoffrey Taylor, A E Green, # Mechanism for the production of small eddies from large ones, # Proceedings of the Royal Society of London, # Series A, Volume 158, 1937, pages 499-521. # # Parameters: # # Input, real NU, the kinematic viscosity. # # Input, real RHO, the density. # # Input, integer N, the number of points at which the solution is to # be evaluated. # # Input, real X(N), Y(N), the coordinates of the points. # # Input, real T(N), the time coordinate or coordinates. # # Output, real UR(N), VR(N), PR(N), the residuals in the U, V and P equations. # import numpy as np from rhs_taylor import rhs_taylor # # Get the right hand sides. # f, g, h = rhs_taylor ( nu, rho, n, x, y, t ); # # Make space. # c2x = np.array ( n ) c2y = np.array ( n ) cx = np.array ( n ) cy = np.array ( n ) e2t = np.array ( n ) e4t = np.array ( n ) p = np.array ( n ) px = np.array ( n ) py = np.array ( n ) s2x = np.array ( n ) s2y = np.array ( n ) sx = np.array ( n ) sy = np.array ( n ) u = np.array ( n ) ut = np.array ( n ) ux = np.array ( n ) uxx = np.array ( n ) uy = np.array ( n ) uyy = np.array ( n ) v = np.array ( n ) vt = np.array ( n ) vx = np.array ( n ) vxx = np.array ( n ) vy = np.array ( n ) vyy = np.array ( n ) # # Make some temporaries. # cx = np.cos ( np.pi * x ) cy = np.cos ( np.pi * y ) sx = np.sin ( np.pi * x ) sy = np.sin ( np.pi * y ) e2t = np.exp ( - 2.0 * np.pi * np.pi * nu * t ) c2x = np.cos ( 2.0 * np.pi * x ) c2y = np.cos ( 2.0 * np.pi * y ) s2x = np.sin ( 2.0 * np.pi * x ) s2y = np.sin ( 2.0 * np.pi * y ) e4t = np.exp ( - 4.0 * np.pi * np.pi * nu * t ) # # Form the functions and derivatives. # u = - cx * sy * e2t dudx = np.pi * sx * sy * e2t dudxx = np.pi * np.pi * cx * sy * e2t dudy = - np.pi * cx * cy * e2t dudyy = np.pi * np.pi * cx * sy * e2t dudt = + 2.0 * nu * np.pi * np.pi * cx * sy * e2t v = sx * cy * e2t dvdx = np.pi * cx * cy * e2t dvdxx = - np.pi * np.pi * sx * cy * e2t dvdy = - np.pi * sx * sy * e2t dvdyy = - np.pi * np.pi * sx * cy * e2t dvdt = - 2.0 * nu * np.pi * np.pi * sx * cy * e2t p = - 0.25 * rho * ( c2x + c2y ) * e4t dpdx = + 0.5 * rho * np.pi * s2x * e4t dpdy = + 0.5 * rho * np.pi * s2y * e4t # # Evaluate the residuals. # ur = dudt + u * dudx + v * dudy + ( 1.0 / rho ) * dpdx \ - nu * ( dudxx + dudyy ) - f vr = dvdt + u * dvdx + v * dvdy + ( 1.0 / rho ) * dpdy \ - nu * ( dvdxx + dvdyy ) - g pr = dudx + dvdy - h return ur, vr, pr def resid_taylor_test ( ): #*****************************************************************************80 # ## RESID_TAYLOR_TEST samples the residual at the initial time. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 January 2015 # # Author: # # John Burkardt # import numpy as np from r8vec_uniform_ab import r8vec_uniform_ab nu = 1.0 rho = 1.0 print '' print 'RESID_TAYLOR_TEST' print ' Sample the Navier-Stokes residuals' print ' at the initial time T = 0, using a region that is' print ' the square centered at (1.5,1.5) with "radius" 1.0,' print ' Kinematic viscosity NU = %g' % ( nu ) print ' Fluid density RHO = %g' % ( rho ) n = 1000 x_lo = 0.5 x_hi = +2.5 seed = 123456789 x, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) y, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) t = 0.0 ur, vr, pr = resid_taylor ( nu, rho, n, x, y, t ) print '' print ' Minimum Maximum' print '' print ' Ur: %14.6g %14.6g' % ( np.min ( np.abs ( ur ) ), np.max ( np.abs ( ur ) ) ) print ' Vr: %14.6g %14.6g' % ( np.min ( np.abs ( vr ) ), np.max ( np.abs ( vr ) ) ) print ' Pr: %14.6g %14.6g' % ( np.min ( np.abs ( pr ) ), np.max ( np.abs ( pr ) ) ) print '' print 'RESID_TAYLOR_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) resid_taylor_test ( ) timestamp ( )