#! /usr/bin/env python # def rhs_spiral ( nu, rho, n, x, y, t ): #*****************************************************************************80 # ## RHS_SPIRAL returns right hand sides of the Spiral Flow equations. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/navier_stokes_2d_exact/rhs_spiral.py # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 January 2015 # # Author: # # John Burkardt # # Reference: # # Geoffrey Taylor, # On the decay of vortices in a viscous fluid, # Philosophical Magazine, # Volume 46, 1923, pages 671-674. # # Geoffrey Taylor, A E Green, # Mechanism for the production of small eddies from large ones, # Proceedings of the Royal Society of London, # Series A, Volume 158, 1937, pages 499-521. # # Parameters: # # Input, real NU, the kinematic viscosity. # # Input, real RHO, the density. # # Input, integer N, the number of points at which the solution is to # be evaluated. # # Input, real X(N), Y(N), the coordinates of the points. # # Input, real T(N), the time coordinate or coordinates. # # Output, real F(N), G(N), H(N), the right hand sides in the U, V and P equations. # import numpy as np f = np.zeros ( n ) g = np.zeros ( n ) h = np.zeros ( n ) u = ( 1.0 + nu * t ) * 2.0 \ * ( x ** 4 - 2.0 * x ** 3 + x ** 2 ) \ * ( 2.0 * y ** 3 - 3.0 * y ** 2 + y ) dudt = nu * 2.0 \ * ( x ** 4 - 2.0 * x ** 3 + x ** 2 ) \ * ( 2.0 * y ** 3 - 3.0 * y ** 2 + y ) dudx = ( 1.0 + nu * t ) * 2.0 \ * ( 4.0 * x ** 3 - 6.0 * x ** 2 + 2.0 * x ) \ * ( 2.0 * y ** 3 - 3.0 * y ** 2 + y ) dudxx = ( 1.0 + nu * t ) * 2.0 \ * ( 12.0 * x ** 2 - 12.0 * x + 2.0 ) \ * ( 2.0 * y ** 3 - 3.0 * y ** 2 + y ) dudy = ( 1.0 + nu * t ) * 2.0 \ * ( x ** 4 - 2.0 * x ** 3 + x ** 2 ) \ * ( 6.0 * y ** 2 - 6.0 * y + 1.0 ) dudyy = ( 1.0 + nu * t ) * 2.0 \ * ( x ** 4 - 2.0 * x ** 3 + x ** 2 ) \ * ( 12.0 * y - 6.0 ) v = - ( 1.0 + nu * t ) * 2.0 \ * ( 2.0 * x ** 3 - 3.0 * x ** 2 + x ) \ * ( y ** 4 - 2.0 * y ** 3 + y ** 2 ) dvdt = - nu * 2.0 \ * ( 2.0 * x ** 3 - 3.0 * x ** 2 + x ) \ * ( y ** 4 - 2.0 * y ** 3 + y ** 2 ) dvdx = - ( 1.0 + nu * t ) * 2.0 \ * ( 6.0 * x ** 2 - 6.0 * x + 1.0 ) \ * ( y ** 4 - 2.0 * y ** 3 + y ** 2 ) dvdxx = - ( 1.0 + nu * t ) * 2.0 \ * ( 12.0 * x - 6.0 ) \ * ( y ** 4 - 2.0 * y ** 3 + y ** 2 ) dvdy = - ( 1.0 + nu * t ) * 2.0 \ * ( 2.0 * x ** 3 - 3.0 * x ** 2 + x ) \ * ( 4.0 * y ** 3 - 6.0 * y ** 2 + 2.0 * y ) dvdyy = - ( 1.0 + nu * t ) * 2.0 \ * ( 2.0 * x ** 3 - 3.0 * x ** 2 + x ) \ * ( 12.0 * y ** 2 - 12.0 * y + 2.0 ) p = rho * y dpdx = 0.0 dpdy = rho f = dudt - nu * ( dudxx + dudyy ) \ + u * dudx + v * dudy + dpdx / rho g = dvdt - nu * ( dvdxx + dvdyy ) \ + u * dvdx + v * dvdy + dpdy / rho h = dudx + dvdy return f, g, h def rhs_spiral_test ( ): #*****************************************************************************80 # ## RHS_SPIRAL_TEST samples the right hand sides at the initial time. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 January 2015 # # Author: # # John Burkardt # import numpy as np from r8vec_uniform_ab import r8vec_uniform_ab nu = 1.0 rho = 1.0 print '' print 'RHS_SPIRAL_TEST' print ' Spiral Flow:' print ' Sample the Navier-Stokes right hand sides' print ' at the initial time T = 0, over the unit square.' print ' Kinematic viscosity NU = %g' % ( nu ) print ' Fluid density RHO = %g' % ( rho ) n = 1000 x_lo = 0.0 x_hi = 1.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) y, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) t = 0.0 f, g, h = rhs_spiral ( nu, rho, n, x, y, t ) print '' print ' Minimum Maximum' print '' print ' Ur: %14.6g %14.6g' % ( np.min ( f ), np.max ( f ) ) print ' Vr: %14.6g %14.6g' % ( np.min ( g ), np.max ( g ) ) print ' Pr: %14.6g %14.6g' % ( np.min ( h ), np.max ( h ) ) print '' print 'RHS_SPIRAL_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) rhs_spiral_test ( ) timestamp ( )