#! /usr/bin/env python # def uvp_lucas ( nu, rho, n, x, y, t ): #*****************************************************************************80 # ## UVP_LUCAS evaluates Lucas Bystricky's exact Navier Stokes solution. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/navier_stokes_2d_exact/uvp_lucas.py # # Discussion: # # There is no time dependence. # # The pressure is 0. # # The preferred domain is the unit square. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real NU, the kinematic viscosity. # # Input, real RHO, the density. # # Input, integer N, the number of points at which the solution is to # be evaluated. # # Input, real X(N), Y(N), the coordinates of the points. # # Input, real T or T(N), the time coordinate or coordinates. # # Output, real U(N), V(N), P(N), the velocity components and # pressure at each of the points. # import numpy as np u = np.zeros ( n ) v = np.zeros ( n ) p = np.zeros ( n ) u = - np.cos ( np.pi * x ) / np.pi v = - y * np.sin ( np.pi * x ) p = 0.0 return u, v, p def uvp_lucas_test ( ): #*****************************************************************************80 # ## UVP_LUCAS_TEST samples the Lucas Bystricky solution at the initial time. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # import numpy as np from r8vec_uniform_ab import r8vec_uniform_ab nu = 1.0 rho = 1.0 print '' print 'UVP_LUCAS_TEST' print ' Lucas Bystricky Flow:' print ' Estimate the range of velocity and pressure' print ' at the initial time T = 0, over the unit square.' print ' Kinematic viscosity NU = %g' % ( nu ) print ' Fluid density RHO = %g' % ( rho ) n = 1000 r8_lo = 0.0 r8_hi = +1.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) y, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) t = 0.0 u, v, p = uvp_lucas ( nu, rho, n, x, y, t ) print '' print ' Minimum Maximum' print '' print ' U: %14.6g %14.6g' % ( np.min ( u ), np.max ( u ) ) print ' V: %14.6g %14.6g' % ( np.min ( v ), np.max ( v ) ) print ' P: %14.6g %14.6g' % ( np.min ( p ), np.max ( p ) ) print '' print 'UVP_LUCAS_TEST:' print ' Normal end of execution.' return def uvp_lucas_test2 ( ): #*****************************************************************************80 # ## UVP_LUCAS_TEST2 samples the Lucas Bystricky flow on the boundary. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # import numpy as np r8_lo = 0.0 r8_hi = +1.0 nu = 1.0 rho = 1.0 t = 0.0 print '' print 'UVP_LUCAS_TEST2' print ' Lucas Bystricky Flow:' print ' Estimate the range of velocity and pressure' print ' on the boundary' print ' at the initial time T = 0, over the unit square.' print ' Kinematic viscosity NU = %g' % ( nu ) print ' Fluid density RHO = %g' % ( rho ) n = 400 x = np.zeros ( n ) y = np.zeros ( n ) x[0:100] = np.linspace ( r8_lo, r8_hi, 100 ) y[0:100] = r8_lo x[100:200] = r8_hi y[100:200] = np.linspace ( r8_lo, r8_hi, 100 ) x[200:300] = np.linspace ( r8_hi, r8_lo, 100 ) y[200:300] = r8_hi x[300:400] = r8_lo y[300:400] = np.linspace ( r8_lo, r8_hi, 100 ) u, v, p = uvp_lucas ( nu, rho, n, x, y, t ) print '' print ' Minimum Maximum' print '' print ' U: %14.6g %14.6g' % ( np.min ( u ), np.max ( u ) ) print ' V: %14.6g %14.6g' % ( np.min ( v ), np.max ( v ) ) print ' P: %14.6g %14.6g' % ( np.min ( p ), np.max ( p ) ) print '' print 'UVP_LUCAS_TEST2:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) uvp_lucas_test ( ) uvp_lucas_test2 ( ) timestamp ( )