#! /usr/bin/env python # def uvp_taylor ( nu, rho, n, x, y, t ): #*****************************************************************************80 # ## UVP_TAYLOR evaluates the Taylor exact Navier Stokes solution. # # Location: # # http://people.sc.fsu.edu/~jburkardt/py_src/navier_stokes_2d_exact/uvp_taylor.py # # Discussion: # # This flow is known as a Taylor-Green vortex. # # The given velocity and pressure fields are exact solutions for the 2D # incompressible time-dependent Navier Stokes equations over any region. # # To define a typical problem, one chooses a bounded spatial region # and a starting time, and then imposes boundary and initial conditions # by referencing the exact solution appropriately. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 January 2015 # # Author: # # John Burkardt # # Reference: # # Geoffrey Taylor, # On the decay of vortices in a viscous fluid, # Philosophical Magazine, # Volume 46, 1923, pages 671-674. # # Geoffrey Taylor, A E Green, # Mechanism for the production of small eddies from large ones, # Proceedings of the Royal Society of London, # Series A, Volume 158, 1937, pages 499-521. # # Parameters: # # Input, real NU, the kinematic viscosity. # # Input, real RHO, the density. # # Input, integer N, the number of points at which the solution is to # be evaluated. # # Input, real X(N), Y(N), the coordinates of the points. # # Input, real T or T(N), the time coordinate or coordinates. # # Output, real U(N), V(N), P(N), the velocity components and # pressure at each of the points. # import numpy as np cx = np.cos ( np.pi * x ) cy = np.cos ( np.pi * y ) c2x = np.cos ( 2.0 * np.pi * x ) c2y = np.cos ( 2.0 * np.pi * y ) sx = np.sin ( np.pi * x ) sy = np.sin ( np.pi * y ) e2t = np.exp ( - 2.0 * np.pi * np.pi * nu * t ) e4t = np.exp ( - 4.0 * np.pi * np.pi * nu * t ) u = np.zeros ( n ) v = np.zeros ( n ) p = np.zeros ( n ) u = - cx * sy * e2t v = sx * cy * e2t p = - 0.25 * rho * ( c2x + c2y ) * e4t return u, v, p def uvp_taylor_test ( ): #*****************************************************************************80 # ## UVP_TAYLOR_TEST samples the solution at the initial time. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 January 2015 # # Author: # # John Burkardt # import numpy as np from r8vec_uniform_ab import r8vec_uniform_ab nu = 1.0 rho = 1.0 print '' print 'UVP_TAYLOR_TEST' print ' Estimate the range of velocity and pressure' print ' at the initial time T = 0, using a region that is' print ' the square centered at (1.5,1.5) with "radius" 1.0,' print ' Kinematic viscosity NU = %g' % ( nu ) print ' Fluid density RHO = %g' % ( rho ) n = 1000 x_lo = 0.5 x_hi = +2.5 seed = 123456789 x, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) y, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) t = 0.0 u, v, p = uvp_taylor ( nu, rho, n, x, y, t ) print '' print ' Minimum Maximum' print '' print ' U: %14.6g %14.6g' % ( np.min ( u ), np.max ( u ) ) print ' V: %14.6g %14.6g' % ( np.min ( v ), np.max ( v ) ) print ' P: %14.6g %14.6g' % ( np.min ( p ), np.max ( p ) ) print '' print 'UVP_TAYLOR_TEST:' print ' Normal end of execution.' return def uvp_taylor_test2 ( ): #*****************************************************************************80 # ## UVP_TAYLOR_TEST2 samples the solution on the boundary at the initial time. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # import numpy as np r8_lo = 0.5 r8_hi = +2.5 nu = 1.0 rho = 1.0 t = 0.0 print '' print 'UVP_TAYLOR_TEST2' print ' Estimate the range of velocity and pressure' print ' on the boundary' print ' at the initial time T = 0, using a region that is' print ' the square centered at (1.5,1.5) with "radius" 1.0,' print ' Kinematic viscosity NU = %g' % ( nu ) print ' Fluid density RHO = %g' % ( rho ) n = 400 x = np.zeros ( n ) y = np.zeros ( n ) # # Python is consistent in its willful flouting of sensible conventions. # X[0:100] means X from 0 to 99...! # x[0:100] = np.linspace ( r8_lo, r8_hi, 100 ) y[0:100] = r8_lo x[100:200] = r8_hi y[100:200] = np.linspace ( r8_lo, r8_hi, 100 ) x[200:300] = np.linspace ( r8_hi, r8_lo, 100 ) y[200:300] = r8_hi x[300:400] = r8_lo y[300:400] = np.linspace ( r8_lo, r8_hi, 100 ) u, v, p = uvp_taylor ( nu, rho, n, x, y, t ) print '' print ' Minimum Maximum' print '' print ' U: %14.6g %14.6g' % ( np.min ( u ), np.max ( u ) ) print ' V: %14.6g %14.6g' % ( np.min ( v ), np.max ( v ) ) print ' P: %14.6g %14.6g' % ( np.min ( p ), np.max ( p ) ) print '' print 'UVP_TAYLOR_TEST2:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) uvp_taylor_test ( ) uvp_taylor_test2 ( ) timestamp ( )