#! /usr/bin/env python # def resid_ethier ( a, d, n, x, y, z, t ): #*****************************************************************************80 # ## RESID_ETHIER evaluates the residual of the Ethier exact Navier Stokes solution. # # Location: # # http://people.sc.fsu.edu/~jburkardt/m_src/navier_stokes_3d_exact/resid_ethier.m # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 January 2015 # # Author: # # John Burkardt # # Reference: # # C Ross Ethier, David Steinman, # Exact fully 3D Navier-Stokes solutions for benchmarking, # International Journal for Numerical Methods in Fluids, # Volume 19, Number 5, March 1994, pages 369-375. # # Parameters: # # Input, real A, D, the parameters. Sample values are A = PI/4 and # D = PI/2. # # Input, integer N, the number of points at which the solution is to # be evaluated. # # Input, real X(N), Y(N), Z(N), the coordinates of the points. # # Input, real T or T(N), the time coordinate or coordinates. # # Output, real UR(N), VR(N), WR(N), PR(N), the residuals. # import numpy as np # # Make some temporaries. # ex = np.exp ( a * x ) ey = np.exp ( a * y ) ez = np.exp ( a * z ) e2x = np.exp ( 2.0 * a * x ) e2y = np.exp ( 2.0 * a * y ) e2z = np.exp ( 2.0 * a * z ) e2t = np.exp ( - d * d * t ) e4t = np.exp ( - 2.0 * d * d * t ) exy = np.exp ( a * ( x + y ) ) eyz = np.exp ( a * ( y + z ) ) ezx = np.exp ( a * ( z + x ) ) sxy = np.sin ( a * x + d * y ) syz = np.sin ( a * y + d * z ) szx = np.sin ( a * z + d * x ) cxy = np.cos ( a * x + d * y ) cyz = np.cos ( a * y + d * z ) czx = np.cos ( a * z + d * x ) # # Form the functions and derivatives. # u = - a * ( ex * syz + ez * cxy ) * e2t ux = - a * ( a * ex * syz - a * ez * sxy ) * e2t uxx = - a * ( a * a * ex * syz - a * a * ez * cxy ) * e2t uy = - a * ( a * ex * cyz - d * ez * sxy ) * e2t uyy = - a * ( - a * a * ex * syz - d * d * ez * cxy ) * e2t uz = - a * ( d * ex * cyz + a * ez * cxy ) * e2t uzz = - a * ( - d * d * ex * syz + a * a * ez * cxy ) * e2t ut = + d * d * a * ( ex * syz + ez * cxy ) * e2t v = - a * ( ey * szx + ex * cyz ) * e2t vx = - a * ( d * ey * czx + a * ex * cyz ) * e2t vxx = - a * ( - d * d * ey * szx + a * a * ex * cyz ) * e2t vy = - a * ( a * ey * szx - a * ex * syz ) * e2t vyy = - a * ( a * a * ey * szx - a * a * ex * cyz ) * e2t vz = - a * ( a * ey * czx - d * ex * syz ) * e2t vzz = - a * ( - a * a * ey * szx - d * d * ex * cyz ) * e2t vt = + d * d * a * ( ey * szx + ex * cyz ) * e2t w = - a * ( ez * sxy + ey * czx ) * e2t wx = - a * ( a * ez * cxy - d * ey * szx ) * e2t wxx = - a * ( - a * a * ez * sxy - d * d * ey * czx ) * e2t wy = - a * ( d * ez * cxy + a * ey * czx ) * e2t wyy = - a * ( - d * d * ez * sxy + a * a * ey * czx ) * e2t wz = - a * ( a * ez * sxy - a * ey * szx ) * e2t wzz = - a * ( a * a * ez * sxy - a * a * ey * czx ) * e2t wt = + d * d * a * ( ez * sxy + ey * czx ) * e2t p = - 0.5 * a * a * e4t * ( \ + e2x + 2.0 * sxy * czx * eyz \ + e2y + 2.0 * syz * cxy * ezx \ + e2z + 2.0 * szx * cyz * exy ) px = - 0.5 * a * a * e4t * ( \ + 2.0 * a * e2x + 2.0 * a * cxy * czx * eyz - 2.0 * d * sxy * szx * eyz \ - 2.0 * a * syz * sxy * ezx + 2.0 * a * syz * cxy * ezx \ + 2.0 * d * czx * cyz * exy + 2.0 * a * szx * cyz * exy ) py = - 0.5 * a * a * e4t * ( \ + 2.0 * d * cxy * czx * eyz + 2.0 * a * sxy * czx * eyz \ + 2.0 * a * e2y + 2.0 * a * cyz * cxy * ezx - 2.0 * d * syz * sxy * ezx \ - 2.0 * a * szx * syz * exy + 2.0 * a * szx * cyz * exy ) pz = - 0.5 * a * a * e4t * ( \ - 2.0 * a * sxy * szx * eyz + 2.0 * a * sxy * czx * eyz \ + 2.0 * d * cyz * cxy * ezx + 2.0 * a * syz * cxy * ezx \ + 2.0 * a * e2z + 2.0 * a * czx * cyz * exy - 2.0 * d * szx * syz * exy ) # # Evaluate the residuals. # ur = ut + u * ux + v * uy + w * uz + px - ( uxx + uyy + uzz ) vr = vt + u * vx + v * vy + w * vz + py - ( vxx + vyy + vzz ) wr = wt + u * wx + v * wy + w * wz + pz - ( wxx + wyy + wzz ) pr = ux + vy + wz; return ur, vr, wr, pr def resid_ethier_test ( ): #*****************************************************************************80 # ## RESID_ETHIER_TEST samples the residual at the initial time. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 January 2015 # # Author: # # John Burkardt # import numpy as np from r8vec_uniform_ab import r8vec_uniform_ab a = np.pi / 4.0; d = np.pi / 2.0; print '' print 'RESID_ETHIER_TEST' print ' Sample the Navier-Stokes residuals' print ' at the initial time T = 0, using a region that is' print ' the cube centered at (0,0,0) with "radius" 1.0,' print ' Parameter A = %g' % ( a ) print ' Parameter D = %g' % ( d ) n = 1000 x_lo = -1.0 x_hi = +1.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) y, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) z, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) t = 0.0 ur, vr, wr, pr = resid_ethier ( a, d, n, x, y, z, t ) print '' print ' Minimum Maximum' print '' print ' Ur: %14.6g %14.6g' % ( np.min ( np.abs ( ur ) ), np.max ( np.abs ( ur ) ) ) print ' Vr: %14.6g %14.6g' % ( np.min ( np.abs ( vr ) ), np.max ( np.abs ( vr ) ) ) print ' Wr: %14.6g %14.6g' % ( np.min ( np.abs ( wr ) ), np.max ( np.abs ( wr ) ) ) print ' Pr: %14.6g %14.6g' % ( np.min ( np.abs ( pr ) ), np.max ( np.abs ( pr ) ) ) print '' print 'RESID_ETHIER_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) resid_ethier_test ( ) timestamp ( )