#!/usr/bin/env python def i4_normal_ab ( mu, sigma, seed ): #*****************************************************************************80 # ## I4_NORMAL_AB returns a scaled pseudonormal I4. # # Discussion: # # The normal probability distribution function (PDF) is sampled, # with mean MU and standard deviation SIGMA. # # The result is rounded to the nearest integer. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real MU, the mean of the PDF. # # Input, real SIGMA, the standard deviation of the PDF. # # Input, integer SEED, a seed for the random number generator. # # Output, integer VALUE, a normally distributed # random value. # # Output, integer SEED, an updated seed for the random # number generator. # import numpy as np from r8_uniform_01 import r8_uniform_01 r1, seed = r8_uniform_01 ( seed ) r2, seed = r8_uniform_01 ( seed ) value = np.sqrt ( - 2.0 * np.log ( r1 ) ) * np.cos ( 2.0 * np.pi * r2 ) value = int ( mu + sigma * value ) return value, seed def i4_normal_ab_test ( ): #*****************************************************************************80 # ## I4_NORMAL_AB_TEST tests I4_NORMAL_AB. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 March 2015 # # Author: # # John Burkardt # print '' print 'I4_NORMAL_AB_TEST' print ' I4_NORMAL_AB computes integer pseudonormal values with' print ' mean MU and standard deviation SIGMA.' mu = 10.0 sigma = 2.0 seed = 123456789 print '' print ' MU = %g' % ( mu ) print ' SIGMA = %g' % ( sigma ) print ' SEED = %d' % ( seed ) print '' for i in range ( 0, 10 ): r, seed = i4_normal_ab ( mu, sigma, seed ) print ' %2d %12d' % ( i, r ) print '' print 'I4_NORMAL_AB_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) i4_normal_ab_test ( ) timestamp ( )