#!/usr/bin/env python # def bell ( n ): #*****************************************************************************80 # ## BELL returns the Bell numbers from 0 to N. # # Discussion: # # The Bell number B(N) is the number of restricted growth functions # on N. # # Note that the Stirling numbers of the second kind, S^m_n, count the # number of partitions of N objects into M classes, and so it is # true that # # B(N) = S^1_N + S^2_N + ... + S^N_N. # # Definition: # # The Bell number B(N) is defined as the number of partitions (of # any size) of a set of N distinguishable objects. # # A partition of a set is a division of the objects of the set into # subsets. # # Examples: # # There are 15 partitions of a set of 4 objects: # # (1234), (123)(4), (124)(3), (12)(34), (12)(3)(4), # (134)(2), (13)(24), (13)(2)(4), (14)(23), (1)(234), # (1)(23)(4), (14)(2)(3), (1)(24)(3), (1)(2)(34), (1)(2)(3)(4) # # and so B(4) = 15. # # First values: # # N B(N) # 0 1 # 1 1 # 2 2 # 3 5 # 4 15 # 5 52 # 6 203 # 7 877 # 8 4140 # 9 21147 # 10 115975 # # Recursion: # # B(I) = sum ( 1 <= J <= I ) Binomial ( I-1, J-1 ) * B(I-J) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of Bell numbers desired. # # Output, integer B(1:N+1), the Bell numbers from 0 to N. # import numpy as np from i4_choose import i4_choose b = np.zeros ( n + 1 ) b[0] = 1 for i in range ( 1, n + 1 ): b[i] = 0 for j in range ( 1, i + 1 ): b[i] = b[i] + i4_choose ( i - 1, j - 1 ) * b[i-j] return b def bell_test ( ): #*****************************************************************************80 # ## BELL_TEST tests BELL. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 December 2014 # # Author: # # John Burkardt # from bell_values import bell_values print '' print 'BELL_TEST' print ' BELL computes Bell numbers.' print '' print ' N exact C(I) computed C(I)' print '' n_data = 0 while ( True ): n_data, n, c = bell_values ( n_data ) if ( n_data == 0 ): break c2 = bell ( n ) print ' %2d %8d %8d' % ( n, c, c2[n] ) print '' print 'BELL_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bell_test ( ) timestamp ( )