#!/usr/bin/env python # def bernoulli_number2 ( n ): #*****************************************************************************80 # ## BERNOULLI_NUMBER2 evaluates the Bernoulli numbers. # # Discussion: # # The Bernoulli numbers are rational. # # If we define the sum of the M-th powers of the first N integers as: # # SIGMA(M,N) = sum ( 0 <= I <= N ) I**M # # and let C(I,J) be the combinatorial coefficient: # # C(I,J) = I! / ( ( I - J )! * J! ) # # then the Bernoulli numbers B(J) satisfy: # # SIGMA(M,N) = 1/(M+1) * sum ( 0 <= J <= M ) C(M+1,J) B(J) * (N+1)**(M+1-J) # # Note that the Bernoulli numbers grow rapidly. Bernoulli number # 62 is probably the last that can be computed on the VAX without # overflow. # # First values: # # B0 1 = 1.00000000000 # B1 -1/2 = -0.50000000000 # B2 1/6 = 1.66666666666 # B3 0 = 0 # B4 -1/30 = -0.03333333333 # B5 0 = 0 # B6 1/42 = 0.02380952380 # B7 0 = 0 # B8 -1/30 = -0.03333333333 # B9 0 = 0 # B10 5/66 = 0.07575757575 # B11 0 = 0 # B12 -691/2730 = -0.25311355311 # B13 0 = 0 # B14 7/6 = 1.16666666666 # B15 0 = 0 # B16 -3617/510 = -7.09215686274 # B17 0 = 0 # B18 43867/798 = 54.97117794486 # B19 0 = 0 # B20 -174611/330 = -529.12424242424 # B21 0 = 0 # B22 854,513/138 = 6192.123 # B23 0 = 0 # B24 -236364091/2730 = -86580.257 # B25 0 = 0 # B26 8553103/6 = 1425517.16666 # B27 0 = 0 # B28 -23749461029/870 = -27298231.0678 # B29 0 = 0 # B30 8615841276005/14322 = 601580873.901 # # Recursion: # # With C(N+1,K) denoting the standard binomial coefficient, # # B(0) = 1.0 # B(N) = - ( sum ( 0 <= K < N ) C(N+1,K) * B(K) ) / C(N+1,N) # # Special Values: # # Except for B(1), all Bernoulli numbers of odd index are 0. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the highest order Bernoulli number to compute. # # Output, real B(1:N+1), the requested Bernoulli numbers B(0) through # B(N). # from math import exp from math import log import numpy as np r8_pi = 3.141592653589793 kmax = 400 tol = 1.0E-06 b = np.zeros ( n + 1 ) b[0] = 1.0 if ( n < 1 ): return b b[1] = -0.5 if ( n < 2 ): return b altpi = log ( 2.0 * r8_pi ) # # Initial estimates for B(I), I = 2 to N # b[2] = log ( 2.0 ); for i in range ( 3, n + 1 ): if ( ( i % 2 ) == 1 ): b[i] = 0.0 else: b[i] = log ( i * ( i - 1 ) ) + b[i-2] b[2] = 1.0 / 6.0 if ( n <= 3 ): return b b[4] = - 1.0 / 30.0 sgn = -1.0 for i in range ( 6, n + 1, 2 ): sgn = -sgn t = 2.0 * sgn * exp ( b[i] - i * altpi ) sum2 = 1.0 for k in range ( 2, kmax + 1 ): term = 1.0 / ( k ** i ) sum2 = sum2 + term if ( term <= tol * sum2 ): break b[i] = t * sum2 return b def bernoulli_number2_test ( ): #*****************************************************************************80 # ## BERNOULLI_NUMBER2_TEST tests BERNOULLI_NUMBER2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # from bernoulli_number_values import bernoulli_number_values print '' print 'BERNOULLI_NUMBER2_TEST' print ' BERNOULLI_NUMBER2 computes Bernoulli numbers;' print '' print ' I Exact Bernoulli' print '' n_data = 0 while ( True ): n_data, n, c0 = bernoulli_number_values ( n_data ) if ( n_data == 0 ): break c1 = bernoulli_number2 ( n ) print ' %2d %14e %14e' % ( n, c0, c1[n] ) print '' print 'BERNOULLI_NUMBER2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bernoulli_number2_test ( ) timestamp ( )