#!/usr/bin/env python # def bernoulli_number_values ( n_data ): #*****************************************************************************80 # ## BERNOULLI_NUMBER_VALUES returns some values of the Bernoulli numbers. # # Discussion: # # The Bernoulli numbers are rational. # # If we define the sum of the M-th powers of the first N integers as: # # SIGMA(M,N) = sum ( 0 <= I <= N ) I**M # # and let C(I,J) be the combinatorial coefficient: # # C(I,J) = I! / ( ( I - J )! * J! ) # # then the Bernoulli numbers B(J) satisfy: # # SIGMA(M,N) = 1/(M+1) * sum ( 0 <= J <= M ) C(M+1,J) B(J) * (N+1)**(M+1-J) # # In Mathematica, the function can be evaluated by: # # BernoulliB[n] # # First values: # # B0 1 = 1.00000000000 # B1 -1/2 = -0.50000000000 # B2 1/6 = 1.66666666666 # B3 0 = 0 # B4 -1/30 = -0.03333333333 # B5 0 = 0 # B6 1/42 = 0.02380952380 # B7 0 = 0 # B8 -1/30 = -0.03333333333 # B9 0 = 0 # B10 5/66 = 0.07575757575 # B11 0 = 0 # B12 -691/2730 = -0.25311355311 # B13 0 = 0 # B14 7/6 = 1.16666666666 # B15 0 = 0 # B16 -3617/510 = -7.09215686274 # B17 0 = 0 # B18 43867/798 = 54.97117794486 # B19 0 = 0 # B20 -174611/330 = -529.12424242424 # B21 0 = 0 # B22 854,513/138 = 6192.123 # B23 0 = 0 # B24 -236364091/2730 = -86580.257 # B25 0 = 0 # B26 8553103/6 = 1425517.16666 # B27 0 = 0 # B28 -23749461029/870 = -27298231.0678 # B29 0 = 0 # B30 8615841276005/14322 = 601580873.901 # # Recursion: # # With C(N+1,K) denoting the standard binomial coefficient, # # B(0) = 1.0 # B(N) = - ( sum ( 0 <= K < N ) C(N+1,K) * B(K) ) / C(N+1,N) # # Special Values: # # Except for B(1), all Bernoulli numbers of odd index are 0. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the Bernoulli number. # # Output, real C, the value of the Bernoulli number. # import numpy as np n_max = 10 c_vec = np.array ( ( 0.1000000000000000E+01, \ -0.5000000000000000E+00, \ 0.1666666666666667E+00, \ 0.0000000000000000E+00, \ -0.3333333333333333E-01, \ -0.2380952380952380E-01, \ -0.3333333333333333E-01, \ 0.7575757575757575E-01, \ -0.5291242424242424E+03, \ 0.6015808739006424E+09 ) ) n_vec = np.array ( ( 0, 1, 2, 3, 4, 6, 8, 10, 20, 30 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 c = 0 else: n = n_vec[n_data] c = c_vec[n_data] n_data = n_data + 1 return n_data, n, c def bernoulli_number_values_test ( ): #*****************************************************************************80 # ## BERNOULLI_NUMBER_VALUES_TEST tests BERNOULLI_NUMBER_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 December 2014 # # Author: # # John Burkardt # print '' print 'BERNOULLI_NUMBER_VALUES_TEST:' print ' BERNOULLI_NUMBER_VALUES returns values of' print ' the Bernoulli numbers.' print '' print ' N BERNOULLI_NUMBER(N)' print '' n_data = 0 while ( True ): n_data, n, c = bernoulli_number_values ( n_data ) if ( n_data == 0 ): break print '%6d %14.6g' % ( n, c ) print '' print 'BERNOULLI_NUMBER_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bernoulli_number_values_test ( ) timestamp ( )