#!/usr/bin/env python # def bernoulli_poly ( n, x ): #*****************************************************************************80 # ## BERNOULLI_POLY evaluates the Bernoulli polynomial of order N at X. # # Discussion: # # Thanks to Bart Vandewoestyne for pointing out an error in the previous # documentation, 31 January 2008. # # Special values of the Bernoulli polynomial include: # # B(N,0) = B(N,1) = B(N), the N-th Bernoulli number. # # B'(N,X) = N * B(N-1,X) # # B(N,X+1) - B(N,X) = N * X^(N-1) # B(N,X) = (-1)^N * B(N,1-X) # # A formula for the Bernoulli polynomial in terms of the Bernoulli # numbers is: # # B(N,X) = sum ( 0 <= K <= N ) B(K) * C(N,K) * X^(N-K) # # The first few polynomials include: # # B(0,X) = 1 # B(1,X) = X - 1/2 # B(2,X) = X^2 - X + 1/6 # B(3,X) = X^3 - 3/2*X^2 + 1/2*X # B(4,X) = X^4 - 2*X^3 + X^2 - 1/30 # B(5,X) = X^5 - 5/2*X^4 + 5/3*X^3 - 1/6*X # B(6,X) = X^6 - 3*X^5 + 5/2*X^4 - 1/2*X^2 + 1/42 # B(7,X) = X^7 - 7/2*X^6 + 7/2*X^5 - 7/6*X^3 + 1/6*X # B(8,X) = X^8 - 4*X^7 + 14/3*X^6 - 7/3*X^4 + 2/3*X^2 - 1/30 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the Bernoulli polynomial to # be evaluated. N must be 0 or greater. # # Input, real X, the value of X at which the polynomial is to # be evaluated. # # Output, real BX, the value of B(N,X). # import numpy as np from bernoulli_number import bernoulli_number from comb_row_next import comb_row_next b = bernoulli_number ( n ); # # Get row N of Pascal's triangle. # c = np.zeros ( n + 1 ) for i in range ( 0, n + 1 ): c = comb_row_next ( i, c ) bx = 1.0 for i in range ( 1, n + 1 ): bx = bx * x + b[i] * c[i] return bx def bernoulli_poly_test ( ): #*****************************************************************************80 # ## BERNOULLI_POLY_TEST tests BERNOULLI_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 December 2014 # # Author: # # John Burkardt # n = 15 x = 0.2 print '' print 'BERNOULLI_POLY_TEST' print ' BERNOULLI_POLY computes Bernoulli polynomials;' print '' print ' X = %g' % ( x ) print '' print ' I B(I,X)' print '' for i in range ( 1, n + 1 ): bx = bernoulli_poly ( i, x ) print ' %2d %14g' % ( i, bx ) print '' print 'BERNOULLI_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bernoulli_poly_test ( ) timestamp ( )